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Purpose: Although classical techniques for image segmentation may work well for

some images, they may perform poorly or not work at all for others. It often depends

on the properties of the particular image segmentation task under study. The reliable

segmentation of brain tumors in medical images represents a particularly challenging

and essential task. For example, some brain tumors may exhibit complex so-called

“bottle-neck” shapeswhich are essentially circles with long indistinct tapering tails, known

as a “dual tail.” Such challenging conditions may not be readily segmented, particularly

in the extended tail region or around the so-called “bottle-neck” area. In those cases,

existing image segmentation techniques often fail to work well.

Methods: Existing research on image segmentation using wormhole and entangle

theory is first analyzed. Next, a random positioning search method that uses a

quantum-behaved particle swarm optimization (QPSO) approach is improved by using

a hyperbolic wormhole path measure for seeding and linking particles. Finally, our novel

quantum and wormhole-behaved particle swarm optimization (QWPSO) is proposed.

Results: Experimental results show that our QWPSO algorithm can better cluster

complex “dual tail” regions into groupings with greater adaptability than conventional

QPSO. Experimental work also improves operational efficiency and segmentation

accuracy compared with current competing reference methods.

Conclusion: Our QWPSO method appears extremely promising for isolating

smeared/indistinct regions of complex shape typical of medical image segmentation

tasks. The technique is especially advantageous for segmentation in the so-called

“bottle-neck” and “dual tail”-shaped regions appearing in brain tumor images.
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INTRODUCTION

The accurate analysis of medical images, especially brain tumors,
is essential in reducing clinical mortality rates. Brain tumors
grow quickly and often appear as highly irregular and “complex
shaped” in medical images. This characteristic tumor appearance
is called a “dual tail sign” or “bottle-neck.” Usually, it occurs
close to a meningioma, and the dual tail feature appears due
to thickening, enhancement, and double distal tapering of
the tumor in this area. Existing medical image segmentation
methods often wholly ignore the smeared region or require
long processing periods to obtain more accurate segmentation.
However, precise medical image segmentation is essential in
helping to better recognize and diagnose tumors. Thus, there is
a pressing need for improved methods to help solve challenging
tumor image segmentation problems. Many researchers believe
that quantum theory offers a mysterious key that may help us
interpret our future world (1–4). Significantly, the practical image
segmentation method combines quantum theory with artificial
algorithms (5–8), such as Quantum-behaved particle swarm
optimization (QPSO). QPSO has been shown to perform well
in clustering and image segmentation tasks involving complex
object shapes (9). However, prior work with QPSO has not
considered highly complex and irregular forms or indistinct
smearing problems that are apparent in difficult medical image
segmentation tasks.

Can we analyze the cause of the complex shape of brain
tumors from the microscopic process and mechanism formation
of brain tumor cells? What is the relationship between the
complex shape of a brain tumor and the internal microscopic
structure between the tumor cells?

In 2017, Maldacena and Susskind (10) reported that the
fimbriae (finger-like threads appearing on bacteria) are visible as
crooked tentacles, dragging DNA into the bacteria in a way that
was somewhat analogous to the action of a wormhole between
black holes. Particularly, it has been shown that a wormhole-like
process exists in the synthesis of cells (11). Our previous research
patent for invention (ZL200810209785.8) on the protein folding
process proved that f(x) = acos(nx) + bsin(nx) could represent
the oscillation of protein folding in a cell (12). The f(x)= acos(nx)
+ bsin(nx) is also a representation of a sin curve when proteins
are in the folding process of forming a cell. It prompts the exciting
question of whether there could be a wormhole effect amongst
tumor cells.

Moreover, wemight apply wormhole theory to improve QPSO
for solving indistinct or highly complex ’bottle-neck,’ smeared,
or irregular shaped segmentation problems in medical images.
To date, most wormhole physics has been applied in computing
parallel connection problems or network attack prevention tasks
and, to a limited extent, in ortholog prediction algorithms and
gene clustering (13). However, the contribution and highlight of
our research objective is to validate the application of wormhole
theory to QPSO by proposing a novel method of quantum and
wormhole-behaved particle swarm optimization (QWPSO) for
complex medical image segmentation.

The rest of the study is organized as follows. In section
Method, we first discuss the possibility of inducing wormhole

behavior to achieve the complex shape in image segmentation.
Then, we present the theory of wormhole path measurement
and analyze the difference between wormhole path measurement
and the Delta potential well measurement in the QPSO method.
Finally, we put forward a novel segmentation method that
we call QWPSO for complex shapes of brain tumors based
on the wormhole path measurement. In section Results and
Discussion, we apply the QWPSO algorithm to segment medical
images, especially the complex shaped brain tumor images, and
implement comparative experiments. Finally, some conclusions
are given in the last section.

METHOD

This section first discusses the possibility of similarity between
wormhole behavior and the complex shape of brain tumor
segmentation to primarily determine the tumor contour of
“bottle-neck” and “dual-tailed.” Secondly, it analyzes QPSO
algorithm and finally proposes the QWPSO algorithm to
improve QPSO.

The Possibility of Inducing From Wormhole
Behavior to Brain Tumor Contour
The concept of “wormhole” was first proposed by Austrian
physicist Ludwig Frum (14) in 1916 andwas perfected by Einstein
and Nathan Rosen (15) in 1935. Therefore, “wormhole” is also
known as “Einstein-Rosen Bridge” (16). Worm-holes, commonly
known as wormholes in space-time, is thought to be possibly
curved shortcuts in the universe that allow objects to instantly
travel through space and time. Figuratively speaking, a wormhole
is a space tunnel connecting two distant spaces and times like a
whirlpool in an ocean, ubiquitous but fleeting (17). These space-
time vortices are caused by a combination of star rotation and
gravity. Just as a whirl, it can make a part of a body of water closer
to the bottom or make two parts of space that are relatively far
apart become very close in an instant.

New research found that a wormhole’s super strong magnetic
field can keep it open by relying on a Phantom matter (18).
Scientists believe that instead of a positive case, which produces
energy, it also has a negative mass, sucking up all the energy
around it. Because exotic matter has both positive energy and
negative mass, it can create repulsive effects to prevent the
wormhole from closing, thus stabilizing the “wormhole” energy
field. In 2013, two distinguished theoretical physicists, Maldesina
and Sarskander, explored the behavior of quantum entanglement
in the macroscopic area. In their study, they boldly proposed
the following: EPR = ER. EPR refers to quantum entanglement
(19), and ER is short for wormhole (20). This puzzling formula
links microscopic and macroscopic phenomena, pointing out
that the exotic matter that stabilizes the wormhole energy field
is quantum entanglement.

Wormhole features according to Maldesina and Sarskander
(2013): physical space is by a space of two identical sheets, a
particle being represented by a “bridge” connecting these sheets.
The details are:

1. Wormholes are fragile and tiny (21).

Frontiers in Medicine | www.frontiersin.org 2 May 2022 | Volume 9 | Article 794126

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zhang et al. Brain Tumor Image Segmentation

FIGURE 1 | Wormhole hyperboloids. (Left) Lorentzian continuation of the Euclidean cigar. (Right) Schwarzschild metric.

2. The wormhole formation and wormhole stabilization process
depends on a unique effect of exotic matter, which is the
entangled state of quantum entanglement (22).

3. Changes in the magnetic field cause wormholes (23).
4. The shape of the wormhole is derived from the rotation of a

baseline, and the baseline is hyperbolic. The embedded curved
space is a hyperboloid (24).

Worm-holes can be described as the Lorentzian continuation
of the Euclidean cigar. The Schwarzschild metric, shown in
Figure 1, is the most famous wormhole model (25). It is a two-
sided eternal black hole. The horizons are the diagonal dotted
lines. The past and future singularities are the zigzag hyperbolas
at the bottom and top (24).

Schwarzschild Metric Wormhole Model Equation

ds2 = −c2dt2 +
dr2

1−
b20
r2

+ r2
(

dθ2 + sin2 θdϕ2
)

(1)

Where c is the speed of light, r is the radius of the throat
part of the wormhole, θ is the zenith angle between positive z-
axis, and ϕ is the azimuth angle between the positive X-axis in
the spherical coordinate system. In the two-dimensional static
spherically symmetric solution of a plane, Equation (1) can be
simplified as:

ds2 =
dr2

1−
b20
r2

+ r2dϕ2 (2)

Meanwhile, the equation of the embedded surface is:

z(r) = ±b0 ln





r

b0
+

√

(

r

b0

)2

− 1



 (3)

where b0 = 2GM (26), M is the object’s mass, G is the universal
gravitational constant, and r is the radius of the throat of the

hyperbolic neck. Specifically, r is the distance of the curve
represented by a radius line. At the same time, the wormhole’s
hyperbolic Equation (3) describes the spatial shape of the entire
hyperboloid obtained by rotating numerous radius lines.

Roman Konoplya (27), a research associate at the People’s
FriendshipUniversity of Russia (RUDN) Institute for Gravity and
Cosmology, proposed that the shape and mass of the wormhole
can be calculated from the displacement value and the range
of high-frequency gravitational waves. He first mathematically
described the shape of a symmetrical wormhole based on
its range of fluctuations. Then, using a quantum mechanical
approximated the wormhole, we therefore simplified Equation
(3) into Equation (4):

z(r) = ±b0ln(a) (4)

We used a hyperbolic disk to detail the equation for a hyperbola
with angular momentum in all directions (4). The coefficient of a
can be replaced by 1θ/2 and b0 can be replaced by 2/ζ . Hence,
Equation (4) is written in detail as the following Equation (5):

x(r) = r + r
′

+ (2/ζ )ln(1θ/2) (5)

Some shapes of brain tumors look like ’bottle-necks’ as hyperbolic
shapes, such as the Multitype xanthoma shown in Figure 2. Is
there any relationship between the shape of brain tumors and
wormholes? Let us analyze in detail below.

The Cause of Brain Tumor
Mounting evidence specifically from long-term mobile phone
use (cumulative exposure) shows that it can cause brain tumors,
including glioma and acoustic neuroma, and appreciable long-
term deficits in learning abilities and memory functions. Thus,
it raises public concern and compels investigation (27–32). In
Morgan’s view (33), many results and several epidemiology
studies are consistent with radiofrequency fields from which
states that mobile phones can cause brain cancer. There are many
causes to increase the risk of brain cancer, such as cumulative
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FIGURE 2 | Wormhole equations and brain tumor in bottle-neck shape. (Left) Hyperbola of angular momentum. (Middle) Hyperbolic disk. (Right) Multitype

xanthoma.

hours of use, long-time use, and radiated power. Saikhedkar’s
findings (34) indicate that extensive neurodegeneration on radio
waves increased the unstable production of reactive oxygen. It
is caused by the exhaustion of enzymatic and non-enzymatic
antioxidants and increased lipid peroxidation. It indicates that
radio waves increase the unstable production of reactive oxygen,
causing extensive neurodegeneration in selective areas of CA1
(cornu ammonis 1), CA3 (cornu ammonis 3), DG (dentate
gyrus), and the cerebral cortex. This extensive neuronal damage
results in alterations in behavior related to memory and learning.
Pronounced effects of electromagnetic fields may interfere with
the results of laboratory tests on murine experimental models
in veterinary or biomedical research (35). Electromagnetic
radiations may result in chromosomal aberrations by either
illegitimate recombination events or reduction of functionality
of nonhomologous end-joining (36). An association with high-
dose ionizing radiation and brain tumors has been observed in
A-bomb studies, nuclear-test fallout data, therapeutic radiation
for cancer and benign conditions, and occupational and
environmental studies (37). Information is somewhat limited
regarding the specific histologic type of tumor, particularly for
increasing brain tumor risk. In 2015, the Swedish team and
13 other countries reported significant risks associated with
gliomas from exposure to electromagnetic radiation, which was
reclassified by the International Agency for Research on Cancer
(IARC) from group 2B (probable) to Group 2A (highest level)
(38, 39). Researchers found that mobile phone users had an eight-
fold increased risk of brain tumors among people exposed to
electromagnetic radiation in cities (40, 41).

The Similarities Between Wormholes and Brain

Tumors
1. Both wormholes and brain tumors are caused by magnetic

fields regardless of the super-strong magnetic field or
electromagnetic radiation.

2. Their origin is the same because wormhole formation
depends on quantum entanglement, while brain tumors are
microscopic cells formed from mutated particles.

3. The formation processes of wormhole and brain tumors are all
unstable as both are caused by exposure to magnetic fields.

4. Some brain tumors are the “bottle-neck” shapes that are the
same as the hyperbolic shape of a wormhole

As for the cause, the initial formation process and the shape of
brain tumors and wormholes are all similar. Hence, in the next
section, we propose a wormhole behavior method to segment the
“bottle-neck” shaped brain tumor.

QPSO
The particle swarm optimization (PSO) method originally comes
from a simulation of the social behavior of birds while flocking.
However, PSO is not a global convergence-guaranteed algorithm.
This is because at each iteration, the particles are restricted
to a finite search space. Alternatively, the QPSO approach is
one in which individual particles are assumed to have quantum
behavior. QPSO is based on the quantum theory of a Delta
potential well which offers a robust global searching ability (42,
43). Furthermore, the particles in QPSO can appear anywhere
during the iterations, thus enhancing the population diversity.

In a Delta potential well, QPSO particles, in the process of
optimization, move around the center area of the Delta potential
toward the best position P for which the quantum potential
V (xid) is expressed as V (xid) = −λδ(xid − pid), where λ is
weight, δ(xid−pid) is the Dirac delta function, and yid = xid−pid.
For the calculation of the particle’s fitness values, we must know
the exact particle position of xid. However, we only know the
probability density function of Q

(

yid
)

from the quantum state
of each particle yid as shown below:

Q
(

yid
)

= | ψ
(

yid
)

|
2
=

1

L
e
−2|yid |

L (6)

where L = h2/mγ , γ is the intensity of the potential well, m is
the particle mass, and h is Planck’s constant. As a given particle
moves toward the potential well’s center, ψ

(

yid
)

is the spin field
operator, while the quantum state function Q

(

yid
)

represents the
location of a particle probabilistically. To make the wave collapse
to an actual state for each particle, we must use a method to
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estimate the position of the particles (44, 45). Employing the
Monte Carlo random simulation (46), it is assumed that s is a
lucky number within the range of (0, 1/L), that is:

s =
1

L
rand (0, 1) =

1

L
u, and u = rand (0, 1) (7)

Take Equation (6) into the random number Equation (7), s =

1
L e

−
2|yid|

L , and u = e−
2|yid|

L . Consequently, yid = ± L
2 ln(1/u) and

yid = xid − pid. Therefore, the estimated position of the particle
xid can be obtained by the following prototype:

Xid = Pid ±
L

2
ln

(

1

µ

)

(8)

where L is the characteristic length of the potential well and µ

indicates the random value between 0 and 1 that represents the
arbitrary distance between particles in the quantum potential
well. Pid is the best position of the particle.

Suppose P = (P1, P2, . . . , PM), then the particles coordinates
of P is given by:

P =
(

ϕ1 × Pid + ϕ2 × Pgd
)

/(ϕ1 + ϕ2) (9)

Mbest =

∑M
i=1 P (t)

M
(10)

where ϕ1 = rand (0, 1) , ϕ2 = rand(0, 1), Pid represents the ith
components of the personal best position of the particle, and Pgd
represents the global best position of the population. Mbest is
the mean best position. The following iterative step is defined as
the local best position of all particles on average and is calculated
as follows:

If the random digital µ > 0.5,

x (t+ 1) = P− α · |Mbest− x (t) | · ln(1/µ) (11)

If the random digital µ≤ 0.5,

x (t+ 1) = P+ α · |Mbest− x (t) | · ln(1/µ) (12)

Where α is the expansion coefficient of the speed in
controlling convergence, and it represents the maximum number
of iterations.

The QWPSO Method
Because particles in QPSO move around the central area of
the Delta potential well, the existing QPSO approach, when
applied to long-range searches such as when two regions
are far apart, fails to segment well (47). However, there
exists the notion of a wormhole in quantum theory. It offers
an unusual correlation between particles, wherein actions
performed on one particle immediately affect another reverse
particle no matter how far apart the two particles are. We
therefore propose a new quantum and QWPSO method, the
details of which now follow. All nodes exist in a metric
space, where distance abstracts to node similarities (48, 49).
Hence, more similar nodes are closer in the area, and more

alike or close nodes are more likely to be connected. Thus,
particle optimization consists of links with the probability that
decreases with the hidden distance. It gives two metric spaces
between each pair of nodes: observable and hidden. Visible
teams are joined with neighborhood nodes by entanglement
(50, 51), while remote pairs can be expressed as a kind
of wormhole.

Hence, we conclude that the features of the wormhole metric
are as follows:

• All nodes exist in a metric space.
• The separation distance in this space represents one

way of describing the similarity of the node. The
more similar the nodes, the closer in the area they
appear. Worm-holes link the other measure of similarity
between nodes.

• The network consists of wormhole links. These exist with
the probability that decreases with the hidden distance. Thus,
more similar/close nodes are more likely to be connected.

• Worm-holes link long-distance nodes as a consequence of
their negative curvature.

• A node forwards information to its neighbor closest to the
destination in the wormhole space.

• Clustering is a consequence of the metric property of
the wormhole spaces.

Worm-holes in Schwarzschild’s solution form naturally in the
cosmos, as it contains no matter and is merely full of curved
space-time (52). Therefore, wormhole paths are asymptotically
the shortest. However, many wormhole paths are successful
depending on the image space geometry (51–59). Consequently,
we put forward the measure that the wormhole is Hyperbolic
in shape.

The Novel Wormhole Measure of Hyperbolic Path
Assuming a wormhole is a hyperbolic disc, we present the novel
hyperbolic wormhole equation as of N = ceR/2, where R is the
radius, N is the number of nodes in the network, and c controls
its average degree. The node distribution of uniform angular
density is ρθ (θ) = 1/(2π), where the range of θ is from 0 to
57.32, namely, θ ≤ 360/2π . The node degree at a distance r
from the disc center in an exponential radial density is ρ (r) =

sinh r/(coshR− 1) ≈ er−R, and a simple approximation, ρ(r) ≈
(4c/π)e(R−r)/2 ≈ e−ζ r/2, connects each pair of nodes located
at (r, q) and (r’, q’), for which the connection probability is:
P = eζ (x− R)/2.

The wormhole measure of hyperbolic path x is
as follows:

x = r + r
′

+ (2/ζ )ln(1θ/2) (13)

where the range of 1θ is: 0 < 1θ < 57.32 and
ζ indicates the distance coefficient. When there is a
wormhole between nodes, we modify the measure of
QPSO as a wormhole path measure in a hyperbolic path
of QWPSO.
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QWPSO Method
The node probability distribution of the wormhole path measure
ρ (r) is:

ρ(r) ≈ e−ζ r/2 (14)

The position of a particle in the wormhole path measure is:

Xiw = Pid ± (2/ζ )ln(1θ/2) (15)

Pid is the best position of the wormhole particle, and x (t + 1)
represents the next step for the iteration variable wormhole
particle which is defined as the local best position of all particles
on average.

If the angle between nodes1θ > 2, then

x (t+ 1) = P(t)− (2/ζ ) · |Mbest− x (t) | · ln(1θ/2) (16)

On the other hand, if the angle between nodes1θ ≤ 2, then

x (t+ 1) = P(t)+ (2/ζ ) · |Mbest− x (t) | • ln(1θ/2). (17)

where Mbest is at the mean best position described as Mbest =
∑M

i=1 P(t)
M , P (t) represents the position of the particle Pid at time

t, and M represents the number of particles.

The Difference Between QPSO and QWPSO
Our proposed QWPSO method is based on a measure of
entanglement and wormhole theory. Using clustering, we
firstly analyze and determine the connection type, i.e., is it
entanglement or wormhole? If the connection is by trap, we
find particles by a random link and cluster. If there is a
wormhole connection between nodes, we employ our proposed
wormhole measure, Equation (13), to find the particles and
then cluster them. The main difference between QPSO and
QWPSO is the coefficient α in equations (11), (12), and ζ in
equations (16) and (17). ζ is related to distance, while α is
related to speed. It means that while every step in QWPSO
has a definite path, we know where to find a random process
that finds the next particle in QPSO. Therefore, the efficiency
in QWPSO is higher than QPSO due to the characteristic of a
definite path exiting the wormhole. This is because ln(1θ/2) in
equations (16), (17) in QWPSO, and the range of 1θ is 0 <

1θ <57.32. Otherwise, in QPSO, the integer random value
of µ in the function of ln(1/µ) is from 0 to 32767 depending
on the computing power of a computer. Corresponding to the
angular coordinate, the value range of µ in QPSO is from 0
to 360. Hence, 57.32 in 360 equals to 15.9%, the running time
of QWPSO is only 15.9 % of the QPSO, and the efficiency
of QWPSO is higher than that of QPSO. In addition, the
critical difference between the existing QPSO approach and
our QWPSO method is the definition of wormhole limitations.
We conclude the three definitions for an existing wormhole
as follows.

The three definitions for an existing wormhole:
(These limitations are more specific to image segmentation)

(1) The number of nodes clustered by the wormhole is not less
than two, i.e., there are at least two nodes as particles;

(2) Node positions are not in the neighborhood, but their gray
values are similar;

(3) The similarity matches the wormhole measure.

If the cluster nodes meet the three limitations, the segmentation
can be done by our proposed QWPSO method.

The Framework of the QWPSO Algorithm
As mentioned in previous sections, two distinguished theoretical
physicists, Maldesina and Sarskander, explored the behavior of
quantum entanglement in the macroscopic field. They boldly
proposed the equation of “EPR=ER,” where EPR refers to
quantum entanglement and E.R. is short for wormhole (6, 50, 60–
64). The puzzling formula links microscopic and macroscopic
phenomena and points out that the wormhole is caused by
quantum entanglement. Inspired by this, this study presents the
novel concept of seed and pixel particles. The seed particle is in
quantum entanglement which exists a wormhole between each
seed particle. In contrast, the pixel particle is opposite the seed
particle, and there is no quantum entanglement and wormhole
between the particles. Therefore, our proposed method of
QWPSO consists of two sections. First, we cluster particles into
seed and pixel particles. Secondly, we determine a wormhole
between two seed particles by wormhole Equation (13) and
segment the image using the QWPSO algorithm. Otherwise, if
there are no seed particles, and therefore no wormholes between
particles, the image segmentation is performed by QPSO. The
detail of the QWPSO framework is shown in Figure 3.

1. Cluster particles into seed particles and pixel particles:

Two particles are found by a random process to determine if one
particle is within the neighborhood range of the other particle.
This is done by comparing the characteristics of the gray pixel
value and position information between them. Assuming the
two-particle positions, x

(

i, j
)

and x(k, l), their gray pixel values
are fij and fkl. THo and THf are the threshold values of position
variance and pixel gray value difference, where f represents the
gray value difference of the two particles and 1d represents the
root mean square difference of the particles’ position. Only when
two particles satisfy the entanglement Equation (18) are they
considered within one cluster as seed particles. Otherwise, they
are pixel particles.

1f =| f ij − fkl |≤ THf and1d =

√

(i− k)2 + (j− l)2 ≤ THo

(18)

2. If a pixel particle encounters a seed particle:

If a pixel particle meets a seed particle, the gray seed value
fkl is replaced by the average gray value of the particles in the
seed area, represented by f . Only when two particles satisfy
the entanglement Equation (19) are the two particles entangled
together. They are then considered to be within one cluster as a
new seed particle. The entangle equation is:

1f =| f ij − f |≤ THf and1d =

√

(i− k)2 + (j− l)2 ≤ THo

(19)
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FIGURE 3 | The framework of quantum and wormhole-behaved particle swarm optimization (QWPSO) algorithm.

3. If two seeds meet:

Find a seed particle by Equation (13). If the two seed
particles meet, and there exists a wormhole between them, then
the entanglement equations (8), (11), and (12) are replaced
by the measure of the wormhole equations (13), (16), and
(17) respectively.

The QWPSO Algorithm
The process and flow chart of the QWPSO algorithm is shown in
Figure 4. There are two sections in the algorithm. The left one is
the seeds particle with wormhole path and the right one is pixel
particles that have no wormhole path between them. According
to the different paths, it will be processed with different equations.

The steps in conducting the QWPSO algorithm is
listed below:

Step 1: Input the image and initialize the position vector for
each particle.
Step 2: Cluster particles into seeds and pixels. In cases where
two-pixel particles meet, check if one particle is within the
neighborhood range of another particle by Equation (18), and
then group them otherwise, go to step 5.
Step 3: In cases where pixel quantum particles meet a seed
quantum particle, check whether any particle is within the
neighborhood range of the seed particle using Equation (19).
Then, group them. Otherwise, go to step 5.
Step 4: In cases where two seed particles meet, calculate their
distance by Equation (13) and go to step 6.
Step 5: If the random digital µ >0.5, then calculate
according to Equation (11). Otherwise, calculate using
Equation (12), and then cluster particles into foreground and
background regions.
Step 6: If the angle between nodes 1θ >2, then calculate
according to Equation (16). Otherwise, calculate using

Equation (17), and then cluster particles into foreground and
background regions.
Step 7: if all particles are clustered, output the segmented image
and then exit. Otherwise, return to step 2.

The Contributions and Highlights of the QWPSO

Algorithm
As for the complex so-called “bottle-neck” shapes in brain tumor
image segmentation, to essentially solve the problem of ’dual
tail’ shape segmentation, we propose a novel method of QWPSO
algorithm. The novelty, challenges, advantages, and limitations
are as follows.

The novelty and challenge of the QWPSO algorithm:

1. The study of wormhole behavior comes from the microscopic
process of DNA dragged into the bacteria. Between the
tumor cells, we have sensed that fimbriae appeared as
crooked tentacles to drag DNA into the bacteria, which is
somewhat analogous to the action of a wormhole between
black holes.

2. The study comes from the research of synthesis of cells as well.
They prove that a wormhole-like process exists in the synthesis
of cells.

3. The study origins from our previous research patent for
invention (ZL2008 1 0209785.8) on the protein folding
process proved that f(x)= acos(nx)+bsin(nx) could represent
the oscillation of protein folding in a cell. The f(x) =

acos(nx)+bsin(nx) is also a representation of a curve that
looks like a worm-hole.

4. Based on the novel research of the microscopic structure of
DNA into the bacteria, the wormhole-like process that existed
in the synthesis of cells, and the protein curve folding process,
we prompt an exciting and challenging research to discuss the
relationship between the shape of the tumor and the shape of
the wormhole.

Frontiers in Medicine | www.frontiersin.org 7 May 2022 | Volume 9 | Article 794126

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zhang et al. Brain Tumor Image Segmentation

FIGURE 4 | Flow chart of the QWPSO algorithm.
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5. This study’s main contributions and highlights introduce a
wormhole behavior method to improve QPSO into QWPSO.
First, we proposed the novel concept of seeds and pixel
particles. Thus, the QWPSO consists of two sections. Then,
we present all the wormhole behavior equations, frames, and
algorithms for QWPSO.

6. The difference or superiority of the proposed QWPSO
method compared with the existing brain image segmentation
methods mainly aims to solve the segmentation problem of
special-shaped tumors, especially the shape of “bottle-neck”
and “dual tail” based on the similar shape between the special
shaped tumors and the shape of wormhole behavior.

The advantages of the QWPSO algorithm:

1. We propose the novel wormhole measure equation applied to
themethod of QWPSO. The wormholemeasure is represented
by the hyperbolic path, with angles describing the wormhole
in all directions.

2. We propose the novel framework of the QWPSO algorithm
with two sections. Firstly, the coarse clustering aims to achieve
two groups of particles: seed particles have wormholes, and
pixel particles do not. Secondly, and key to our method,
is the refined clustering by quantum entanglement and the
wormhole measure equation with seed particles.

3. The wormhole theory of a hyperbolic path in QWPSO is
proposed instead of a random path as in QPSO. The running
efficiency of QWPSO is higher than that of QPSO.

4. The QWPSO algorithm enables more accurately a segment
in complex ’bottle-neck’ and indistinct shapes, typical of
trailing brain tumor images in cases where other segmentation
algorithms often fail.

The limitations of the QWPSO algorithm:

1. The proposed QWPSO algorithm is designed for a brain
tumor with a unique shape, but in a human tumor, there
are various tissues and parts with such curved shapes, such
as lung, liver, spleen, etc. Next, our study extends from
brain tumors to image segmentation of other organs with
curved shapes.

2. The proposed method of the QWPSO algorithm should be
extended to the image segmentation of particular curved
shape targets in other fields besides medical images. Therefore,
we will study the application of this method and expand into
more research areas in future studies.

RESULTS AND DISCUSSION

Magnetic resonance imaging and CT images are typically used
to analyze medical brain images. In this section, we consider
three tests for the two types of brain images. Test 1 included
ten MRI brain images, including tumors of complex shape with
long tails or bottle-neck contours. We wished to investigate
whether our method is feasible and valuable in segmenting this
challenging brain image, and determine the distance coefficient
value of 1θ representing the angle between nodes. Test 2
aimed to test another important CT medical image beside the
image of MRI for the comparative test to examine whether

our proposed way is better than existing. There are four
CT brain images for which we compare results with five
current related reference methods. They are QPSO (65, 66), J.
Sun cooperation quantum-behaved particle swarm optimization
(SunCQPSO) (67), the Dynamic-context cooperation quantum-
behaved particle swarm optimization algorithm (CCQPSO)
(59), partitioned and cooperative quantum-behaved particle
swarm optimization (SCQPSO) (45), and the improved quantum
particle swarm optimization–intelligent fuzzy level set (IQPFLS)
(8). We aimed to prove if our proposed QWPSO algorithm
had better adaptability for object region shape, operational
efficiency, and segmentation accuracy than QPSO and other
typical competing reference methods. Test 3 is specifically for
demonstrating the advantage of the proposed QWPSO method,
the compared tests were implemented in 10 studies listed in
references (8, 68–77), of which publication years were from 2018
to 2021.

Test 1: MRI Brain Image Segmentation
Test 1 aimed to determine the distance coefficient value of
1θ in the proposed QWPSO approach. It consisted of 10
images, and they are from the benchmark datasets of brain
tumor segmentation (BRATS) (78). Their names and tumor
types are Glioma 1 and 2, Occipital, Ependymoma 1 and 2,
Edema, Meningioma 1 and 2, Hematoma, and Tuberculoma. We
aimed to test if our proposed method, QWPSO, could segment
the tumor with complex object shapes called neck and tail
features. Images of Ependymoma 1, Hematoma, Tuberculoma,
and Ependymoma 2 include neck features, while the others
all have tails features either long or short. From observation
of the segmented images, shown in Table 1, it can be seen
that the pictures with neck features, especially Ependymoma 1,
Hematoma, and Tuberculoma as segmented by our QWPSO
method, have a better and more accurate contour line than those
segmented by using theQPSOmethod. The other images with tail
features segmented by QWPSO also perform better than those
segmented using the QPSO method.

The quantitative evaluation parameters of the image
segmentation process were Time (Running time), P (Precision),
R (Recall), and F (F-measure). These were used to evaluate
whether the method can achieve good results in image
segmentation. The time parameters represented the running
time to assess the algorithm’s efficiency. P, R, and F were used
to access and compare consistency, accuracy, and sensitivity,
respectively. P is the fraction of retrieved relevant instances.
It determines how beneficial the results are. The recall rate R
is derived from our original sample, and it tells us how many
positive examples in the sample were predicted to be correct.
Finally, it was compared with the prediction. Therefore, P
and R indicators are sometimes contradictory, so they need to
be considered comprehensively by F. Specifically, P tells the
accuracy, and F demonstrates the final and mixed evaluated
results. The two parameters, P and F, are more critical among
the P, R, and F parameters. The detailed evaluation parameters
obtained from test 1 are shown in Table 2. The range of 1θ in
the 10 brain images was 0.06 to 40.00. It is within the range we
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TABLE 1 | MRI brain image segmented by quantum-behaved particle swarm optimization (QPSO) and quantum and wormhole-behaved particle swarm optimization

(QWPSO) methods.

Method Glioma 1 Occipital Ependymoma 1 Glioma 2 Edema

Original Image

QPSO method

QWPSO method (Proposed in this paper)

Meningioma 1 Hematoma Tuberculoma Ependymoma 2 Meningioma 2

Original Image

QPSO method

QWPSO method (Proposed in this paper)
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TABLE 2 | Evaluation of parameters in test 1.

Image QWPSO evaluate parameters QPSO evaluate parameters

1θ/ rad/s Time/s P/% R/% F/% Time/s P/% R/% F/%

Glioma 1 2.60 0.849 1.0000 0.9097 0.9527 0.863 0.9401 0.9090 0.9491

Occipital 2.00 0.865 1.0000 0.9903 0.9951 0.882 0.9996 0.9877 0.9936

Ependymoma 1 4.00 0.820 1.0000 0.9941 0.9970 0.840 0.9929 0.9988 0.9958

Glioma 2 40.00 0.829 0.9966 0.9868 0.9917 0.875 0.9741 1.0000 0.9869

Edema 1.60 0.823 0.9836 0.9941 0.9888 0.885 0.8344 1.0000 0.9097

Meningiom1 0.06 0.801 1.0000 0.9973 0.9986 0.950 0.9997 0.9888 0.9983

Hematoma 2.00 0.842 0.9995 1.0000 0.9967 0.976 0.9649 1.0000 0.9821

Tuberculoma 0.60 0.882 1.0000 0.9891 0.9945 0.922 0.9891 1.0000 0.9945

Ependymoma 2 2.00 1.144 0.9936 0.9256 0.9584 1.211 0.9048 1.0000 0.9500

Meningiom2 2.00 0.888 1.0000 0.9942 0.9971 1.000 1.000 0.9929 0.9964

predicted and is less than 360/2π , which is within the scope of 0
to 57.32.

The running time (Time) of our proposed method QWPSO
was also less than the QPSO method. This is because our
approach ran an angle 1θ within a changing range from in each
step, while the QPSO ran a random value in every step. This
meant that the changing rise in QWPSO had higher efficiency
than the haphazard approach used in the QPSO method. Test
1 has also shown that the run time of QWPSO was less in
the range of 84 to 98% than that of the QPSO. The evaluation
parameters of P, R, and F, especially parameter P, for our QWPSO
policy were optimal, i.e., they were all greater than the value
obtained by QPSO. Moreover, the parameter R for QWPSO
was better than that of QPSO. Furthermore, the parameter F
was obtained from our proposed method, QWPSO, which was
better than the method QPSO, except for the value 0.9945 for
Tuberculoma, which is equal to both QPSO and QWPSO. In
summary, for the essential evaluation parameters of Time, P,
and F, our QWPSO method outperforms that which is obtained
when using the QPSO method. This means that our process of
QWPSO offers higher efficiency and greater accuracy than the
QPSO method in the ten complex tumor-shaped medical image
segmentation tasks.

Test 2: CT Brain Image Segmentation
Test 2 aimed to test another important C.T. medical image
beside the image from MRI. It explored the results compared
with the latest improved QPSO methods: SunCQPSO, CCQPSO,
SCQPSO, and the IQPFLSmethod.We considered four complex-
shaped tumors that typically appear in CTmedical tumor images,
all of which included shapes with a long tail known as a ’dual
tail’ and the so-called ’bottle-neck’ feature. The test CT images
comprised CT201.86, CT201.136, CT201.29, and CT200.2, which
were all taken from reference (78). The segmented images are
shown in Table 3.

In Table 3, it may be observed that the images segmented
by our proposed method of QWPSO have a precise contour,
especially at the region with the shape of long-tail known as
the ’dual tail’ and around the so-called ’bottle-neck’ region. For

example, in image CT201.86, there is a ’dual tail’ in the object
region. Thus, the trail is clear and distinct when segmented
by our proposed method. However, the trail is comparatively
fuzzy and unclear when segmented by competing methods
like QPSO, SunCQPSO, CCQPSO, SCQPSO, and the IQPFLS
method. Similar results were obtained for images CT201.29 and
CT200.2. In the case of image CT201.136, there was a bottle-neck
shape within the object region, for which our proposed method
has achieved a distinct perfect bottle-neck curve in the object
contour. On the other hand, neither a distinct ’bottle-neck nor
angle was segmented by the other methods.

The evaluated parameters of P, R, and F are shown in Table 4.
We use1θ of 0.6 in our QWPSOmethod to segment the images.
From Table 4, we can see that all the evaluation parameters
(P, R, and F) show an improved performance for our QWPSO
method compared with that obtained using QPSO, SunCQPSO,
CCQPSO, SCQPSO, and IQPFLS. As for the mean values for R
in our approach, QWPSO is all in the range of 0.7423 to 0.9990.
Moreover, it is greater than the range of 0.3116 to 0.8876 obtained
using the other five methods. The mean value R increased from
1.12 to 2.382 times. As for the value P, our QWPSO ways are all
better than the compared methods except for our QWPSO and
IQPFLS process in Image CT200.2 which had the same value of
0.7546. This is because there was no distinct ’bottle-neck’ shape
within the object region in Image CT200.2. The value of F is the
combination of precision P and recall rate R. This reflects the
total score of image segmentation. Our method QWPSO in the
range of 0.7484 to 0.9995 is greater than the range of 0.3988 to
0.8171 obtained by the other five methods. The mean value F has
increased 1.876 to 1.223 times. Namely, our proposed method
QWPSO has significant advantages, especially in distinct ’bottle-
neck’ shape images. Furthermore, our approach’s running time
ranges from 0.810 to 0.900/s, which is less than needed for any of
the other four methods.

In summary, based on the two tests, we conclude that
our proposed method of QWPSO offers an advantage when
applied to typical MRI and CT medical image segmentation
tasks, especially for segmenting complex indistinct tumor shapes.
Compared with the existing methods of QPSO, SunCQPSO,
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TABLE 3 | Comparison segmentation test using CT brain images.

Method Image CT201.86 Image CT201.136 Image CT201.29 Image CT200.2

Original image

QPSO

SunCQPSO

CCQPSO

SCQPSO

IQPFLS

QWPSO (Our proposed method)
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TABLE 4 | Evaluate parameters in test 2.

Image name Method name Time/s P/ R/% F/%

CT201.86 QPSO 0.932 0.6769 0.7985 0.7327

SunCQPSO 1.000 0.6323 0.8876 0.7385

CCQPSO 1.022 0.6822 0.8168 0.7435

SCQPSO 1.120 0.6823 0.8164 0.7434

IQPFLS 1.108 0.9476 0.7144 0.8146

QWPSO 0.900 0.9996 0.9990 0.9993

CT201.136 QPSO 0.900 0.6078 0.5548 0.5801

SunCQPSO 0.933 0.5670 0.6594 0.6097

CCQPSO 0.912 0.5508 0.6220 0.5843

SCQPSO 0.990 0.5734 0.6597 0.6135

IQPFLS 1.102 0.9208 0.7344 0.8171

QWPSO 0.856 0.9998 0.9993 0.9995

CT201.29 QPSO 0.912 0.6439 0.7887 0.7090

SunCQPSO 1.000 0.5536 0.3116 0.3988

CCQPSO 1.021 0.5657 0.3909 0.4624

SCQPSO 1.020 0.6056 0.3355 0.4318

IQPFLS 1.099 0.7571 0.6675 0.7094

QWPSO 0.874 0.7944 0.7951 0.7948

CT200.2 QPSO 0.850 0.7216 0.6062 0.6589

SunCQPSO 0.912 0.7186 0.6192 0.6652

CCQPSO 0.923 0.7464 0.6583 0.6996

SCQPSO 0.931 0.7654 0.6622 0.7101

IQPFLS 1.111 0.7858 0.7097 0.7458

QWPSO 0.810 0.7546 0.7423 0.7484

CCQPSO SCQPSO, and IQPFLS, our approach offers improved
performance in terms of operational efficiency. In addition, we
reduced the running time to shorter and higher segmentation
accuracy, both under manual observational inspection and in
quantitative analysis using established evaluation parameters.

Test 3: Compared With Existing Methods
To demonstrate the advantage of the proposed QWPSOmethod,
test 3 implements a comparison between ten studies listed
from (8, 68–77) in references whose publication years were
from 2018 to 2021. Table 5 shows the original image, reference
segmentation results, suggested QWPSO method, and ground
truth in the 1st to 4th columns. The ground truth is obtained
by an evaluation program. The detail is that we first input
the original image into the evaluation program, and then
input our segmented image. The program gave a standard
segmentation result (red) based on the original image. Our
segmentation result was blue, red, and blue overlap, indicating a
good segmentation result. As seen in Table 5, despite the great
challenge of these images due to the low contrast and high-
intensity inhomogeneities, the QWPSO segmentation results
are pretty consistent with the ground truth, and it successfully
recovers the contours of the tumor substructures, especially in
the region with bottle-neck. Although, for example, the green
circle regions shown in the image of (8) illustrate the main
differences between the segmentation result and the ground
truth, their results lead to the fuzzy andmissing of the bottle-neck

parts. Still, our QWPSO segmentation results can enforce spatial
consistency. Consequently, the contours of different reference
images are well segmented by our QWPSO method.

In addition to the P, R, and F parameters, the receiver
operating curve (ROC) and Hausdorff evaluation parameters
were added in this part in order to better compare the methods
proposed and the experimental results of the reference studies.
The ROC curve reflects the relationship between sensitivity
and specificity, while the value of Hausdorff can measure the
distance between proper subsets in a metric space. The smaller
the Hausdorff value is, the higher the edge matching. ROC
curve is shown in Figure 5, while Tables 6, 7 demonstrate the
performance-evaluated parameters of segmentation Precision,
Recall, F-measure, and Haudorff (H, the abbreviation for
Haudorff in this study). All values of P, R, F, andH of the reference
studies and our segmentation results are in each row.

Table 6 demonstrates the reference studies (8, 68–71)
published from 2021 to 2020. These studies used newly proposed
methods within two years of the methods’ publication in higher-
level international journals from 2018 to 2019. Table 7 includes
references (72–77) published from 2019 to 2018. In Table 6, for
example, the first row P of Allioui et al. (68) is 0.9176, and
the value of 0.9785 is the P results of our proposed QWPSO
method. The corresponding segmentation results in rows P, R,
and F show that our proposed methods are higher than their
reference studies.

The first row in Table 7 shows that the mean values of P
compared to (72) are from 0.7623 to 0.7911. Our value of 0.9789
is the average P. As for the last row of Haudorff, our H values are
all less than the compared values, with the least one being three.
Despite this, the H value compared with (73) is 22.0907, and the
corresponding Ground Truth (GT) image in Table 5 is in pink
without blue, indicating that the blue is completely overlapped.
In addition, the segmented image and the standard segmentation
image are almost identical and cannot be distinguished by the
naked eye. Thus, regardless of whehter the studies were published
in the periods 2018–2019 or 2020–2021, the segmentation results
of our proposed QWPSO method are all higher than theirs. This
further illustrates that the segmented images with prominent
bottle-neck regions have even better performance, i.e., reference
images of (70, 71, 75, 76), of which our evaluated parameter P are
all 1.0000.

The ROC curve, also known as the “subject operating
characteristic curve” or sensitivity curve, is mainly used for the
prediction accuracy from X to Y. The ROC curve reflects the
relationship between sensitivity and specificity. The X-axis is 1–
specificity, also known as false-positive rate. The closer the X-axis
is to zero, the higher the accuracy. The Y-axis is called sensitivity,
also known as true positive rate (sensitivity). The higher the Y-
axis, the better the accuracy. According to the position of the
Curve, the whole graph is divided into two parts. The Area under
the Curve (AUC) indicates the accuracy of prediction. The higher
the AUC value is, the higher the accuracy of prediction. The
closer the curve is to the top left corner. Hence, the smaller the
X, the larger the Y, and the higher the prediction accuracy. The
ROC curve of the segmentation results of our proposed method
and reference studies are shown in Figure 5.
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TABLE 5 | Comparison segmentation test.

Original (68) Ours Ground Truth(G.T.)

Original (8) Ours G.T.

Original (69) Ours G.T.

Original (70) Ours G.T.

Original (71) Ours G.T.

Original (72) Ours G.T.

(Continued)
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TABLE 5 | Continued

Original (73) Ours G.T.

Original (74) Ours G.T.

Original (75) Ours G.T.

Original (76) Ours G.T.

Original (77) Ours G.T.

In comparing the two curves of our proposed QWPSO
method and the reference methods in Figure 5, we can state that
no matter the AUC, our proposed QWPSOmethod is better than
the reference studies. Therefore, we conclude that our proposed
QWPSO method has a higher segmentation accuracy than the
reference methods.

DISCUSSION

The current related works with the proposed QWPSO are
the PSO, QPSO, and their improving algorithms, such as
SunCQPSO, CCQPSO SCQPSO, and IQPFLS. The limitations
of all these related works are that they solve the general shape
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FIGURE 5 | The receiver operating characteristic (ROC) curve of the proposed QWPSO and reference methods.

TABLE 6 | Evaluate parameters in test 3-part one.

Allioui et al. (68), Ours Radha et al. (8), Ours Mahesa et al. (69), Ours Vijh et al. (70), Ours Sharif et al. (71), Ours

P 0.9176, 0.9785 0.8875, 0.9429 -, 0.9877 0.9800, 1.0000 0.994-0.998, 1.0000,

R 0.9248, 0.9541 -,0.5034 -,0.7088 -,0.9784 -,0.9265

F 0.9212,0.9661 -,0.6563 -,0.8253 -,0.9891 -, 0.9619

H 35.4683, 21.3073 24.5967, 18.1384 47.2017, 33.1813 93.1933, 10.9545 35.0571, 17.1172,

TABLE 7 | Evaluate parameters in test 3-part two.

Khairuzzaman et al.

(72), Ours

Ibungomacha

Singh et al. (73),

Ours

Hasan et al. (74), Ours Guerrout et al. (75),

Ours

Pham et al. (76), Ours Ma et al. (77), Ours

P 0.7623–0.7911,

0.9789,

0.8650, 0.9993 0.9220, 0.9656 0.855–0.991, 1.0000, 0.9126–0.9835, 1.0000 0.900, 0.9811

R -,0.9479 -,0.9920 -,0.9544 -,0.5605 -,0.7218 0.850,0.8747

F -, 0.9632 -,0.9956 -,0.9599 -, 0.7184 -,0.8384 0.870,0.9248

H 70.3847,17.5784 22.0907, 3 44.2945,28.7054 15.9374,14.6969 24.7790,10.1980 50.2905,17.8045

of the image segmentation problem rather than specifically for
the special curved ’bottle-neck’ shape of the image segmentation
problem. However, in terms of technical improvement, there
exists an interesting evolutionary relationship between the PSO,
QPSO, and our QWPSO segmentation algorithm. While our
proposed QWPSO algorithm is based on the existing QPSO
technique, the QPSO approach is an improved version of the
PSO algorithm. It is perhaps helpful to consider these algorithms’

unique properties and functions. Particles are dynamically
represented in the PSO approach. Particles adjust their speed
according to the flight experience of both individuals and groups.
The PSO algorithm works well for some image segmentation
tasks but works less for others, particularly those involving
complex and indistinct object shapes. The QPSO algorithm
represents the latest intelligent optimization algorithm. Each
particle moves well according to quantum behavior based on
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a Delta potential where they are centered during the various
iteration steps. In this way, the QPSO algorithm can usefully
enhance the population diversity and has a more robust global
searching ability than the earlier PSO algorithm. Furthermore,
this also means that the QPSO algorithm is better for more
complex object shapes than in segmentation tasks. However, in
the case of our QWPSO algorithm, all nodes are additionally
considered to potentially have existing similar nodes which are
more likely to be connected by a wormhole. This characteristic
of the QWPSO algorithm provides a unique, advantageous,
and powerful global searching ability for defining complex and
unique object contour shapes in challenging image segmentation
tasks. This unique ability to connect long-distance particles is a
significant contribution of our QWPSO algorithm.

The above experimental results indicate that the QWPSO
algorithm has good application for complex and specialized
object contour segmentation, particularly for object regions
typically encountered in medical tumor images that possess ’dual
tails’ and ’bottle-neck’ feature shapes. For example, in Table 2,
for the segmentation of MRI brain images, we present evaluation
parameters that include Time, P, R, and F. We obtained the best
values from the proposed QWPSO algorithm, namely, 0.801,
1.000, 1.000, and 0.9986 for Time, P, R, and F, respectively.
Furthermore, the average running time of the QWPSO algorithm
is 0.8743 s, which compares favorably with 0.9404 s for the QPSO
algorithm, giving a decrease of 0.0961/s or ∼12% reduction in
average running time. Together these results indicate that our
QWPSO algorithm has high efficiency in segmenting complex
and specially shaped objects. As for the evaluation parameters
of P, R, and F, our QWPSO algorithm attains optimal values of
almost 1 for all. A parameter p-value of 0.9995 was obtained.
While parameter R was slightly better for the QPSO algorithm,
parameter F, which is the product of P and R, was better
in all cases for our proposed QWPSO approach. It indicates
that the accuracy of our proposed QWPSO algorithm is better
than the QPSO algorithm for MRI brain image segmentation.
Table 4 presents results obtained for the segmentation of CT
brain images. All parameters, Time, P, R, and F, indicate
improved performance over the improved QPSO algorithms,
such as SunCQPSO, CCQPSO, and SCQPSO. Therefore, in
general, the QWPSO algorithm offers greater adaptability to
object region shape, together with better operational efficiency
and segmentation accuracy over QPSO or improved QPSO
algorithms for typically challenging MRI and CT brain image
segmentation tasks. Furthermore, the evaluated parameters P,
R, F, and H of the proposed QWPSO algorithm are shown in
Tables 6, 7. All are better than the compared typical references
within the last three years, especially achieving the highest value
1 for P among the images with distinct bottle-neck regions, such
as images from references studies (70, 71, 75, 76). Lastly, the AUC
area in the ROC curve of our proposedmethod in Figure 5 shows
higher accuracy than that of all the reference studies.

CONCLUSION

This study has presented a QWPSO algorithm for challenging
image segmentation tasks.We applied wormhole-inspired theory

to our method and put forward a hyperbolic wormhole path
measure equation that seeds and links particles to improve the
performance of the existing QPSO segmentation method. The
QPSO method uses random positioning in the search space
even if there are long distances between particles. Our QWPSO
algorithm can cluster long-distance regions into groupings
and has better adaptability than the existing QPSO algorithm
and the current improved QPSO algorithms. Experimental
results, both from MRI and CT, have demonstrated enhanced
performance in segmenting rare brain tumors with tailing
and bottle-neck regions. In addition, our QWPSO method
improved operational efficiency and segmentation accuracy
compared with current competing reference methods. Because
there are many image segmentation that consists of similar
curved targets, in the future, we are committed to extending the
proposed QWPSO algorithm in this study to the segmentation
of curved tumors in other organs’ medical images, such as
lung, liver, and/or spleen tumors. In addition to medical
images, the proposed QWPSO algorithm should also be
extended to other research areas of curving or bending target
image segmentations.
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