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cellular processes. Maintaining the specimen in focus during image acquisition is crucial for high-
throughput applications, especially for long experiments or when a large sample is being continuously
scanned. Automated focus control methods are often expensive, imperfect, or ill-adapted to a specific
application and are a bottleneck for widespread adoption of high-throughput, live-cell imaging. Here,
we demonstrate a neural network approach for automatically maintaining focus during bright-field
microscopy. Z-stacks of yeast cells growing in a microfluidic device were collected and used to train a
convolutional neural network to classify images according to their z-position. We studied the effect on
prediction accuracy of the various hyperparameters of the neural network, including downsampling,
batch size, and z-bin resolution. The network was able to predict the z-position of an image with +1 um
accuracy, outperforming human annotators. Finally, we used our neural network to control microscope
focus in real-time during a 24 hour growth experiment. The method robustly maintained the correct
focal position compensating for 40 um of focal drift and was insensitive to changes in the field of view.
About ~100 annotated z-stacks were required to train the network making our method quite practical
for custom autofocus applications.

Biologists now routinely use live-cell imaging to monitor the dynamics of the cell’s state, to track real-time bio-
chemical processes in vivo, and to read out cellular phenotypes from time-lapse microscopy images'~>. From these
experiments, it has become apparent that cell populations inevitably display significant cell-to-cell variability in
cellular state, as quantified by protein and RNA expression levels*®. Of particular interest, populations are often
observed to contain cells exhibiting rare phenotypes, i.e., small subpopulations with a distinct state’=. Studying
the dynamics of these small populations is indispensable for understanding the probabilistic principles behind
how cells make transitions to these rare, but stable, phenotypic states!’-1. The challenge in live-cell imaging is to
record large populations such that rare phenotypes are sufficiently sampled for statistical analysis, perhaps requir-
ing 10°-10° total cells per experiment.

With advanced optical instruments and computer-controlled stages, time-lapse microscopy is a viable method
for capturing high-throughput data regarding cellular phenotypes!'>!®. Additionally, data-intensive computing
methodologies are now available that can analyze the large volumes of imaging data that are generated!”. One
challenge to bringing high-throughput microscopy into every biology lab is its performance on less sophisticated
equipment. Keeping the cells of interest in focus during time-lapse experiments and/or continuous movement
is difficult’®. Due to thermal drift, uneven slide surfaces, diverse cell sizes, and cell motion in 3D space, there is
not a single focal plane that will accommodate the entire experiment'*. In order to maintain image sharpness
throughout the experiment, focus need to be corrected before each image is acquired. Manual control of focal
position is not practical for experiments running for hours or when specimens are in continuous motion. Instead,
automated focusing is needed to establish the best focus in the absence of human intervention?'.

Autofocus methods can be broadly classified into two categories: active and passive autofocus. Active aut-
ofocus uses knowledge of the physical characteristics of the system to obtain defocus information, and then
correct the defocus accordingly??. Typically, electromagnetic waves, such as a laser or infrared light, are applied to
maintain the distance between object of interest and lens?. This approach is able to provide real-time correction,
however, what it actually measures is the distance between the reflective surface and lens, rather than the speci-
men itself". Therefore, any variations in thickness of the sample or coverslip can introduce error in determining
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the correct focal plane?'. Moreover, active autofocus methods require calibration before focal length can be deter-
mined, which makes it impractical for many image acquisition processes®.

In contrast, passive autofocus is based on image analysis, and thus requires little knowledge of the specific
imaging system?*?%. In passive autofocus, a predefined focal reference is first determined, typically by taking a
series of images at multiple z-positions on both sides of best focus of the sample. The images are then processed
and high frequency contents or edge information is extracted from the z-stacks to establish the focal position?.
Since passive autofocus is based on the information of the sample being imaged, it is generally more reliable than
active autofocus?'. Nevertheless, passive autofocus suffers from limitations that are intrinsically hard to overcome.
Low image intensity or low contrast may prevent it from being accurately analyzed®. In addition, because multi-
ple images at different z-positions need to be acquired and processed in order to determine the relative focus, it
takes longer to refocus the sample. Therefore, passive autofocus is not ideal for tracking changing objects or for
high-throughput imaging acquisitions.

As along-standing topic over the years, autofocus in high-throughput microscopy has been approached by a
number of methods, most of which provide satisfying solutions under well-defined circumstances®. Still, these
methods are designed for a single type of imaging mode, and thus not applicable to other imaging systems. In
recent years, deep learning has become a promising approach for inference across various fields, such as speech
recognition, visual object recognition, object detection, drug discovery, and genomics®. It allows computational
models with multiple processing layers to learn features of data by extracting information from multiple levels®.
Specifically, deep convolutional neural networks (CNNG) are especially helpful in visual object recognition and
object detection, for instance, annotation of cellular cryo-electron tomograms, classification of cancer tissues
using hyperspectral imaging, cell segmentation in fluorescence microscopy images, and autofocusing in digital
holographic microscopy”—>!. CNNs are essentially neural networks that employ the convolution operation as
one of its layers. Typically, a CNN consists of a feature extraction layer that extracts features from input data
and a classification layer that classifies the feature map, the weights of which are determined through a training
process®®. The feature extraction layer consists of pairs of convolution and pooling layers in tandem, where the
convolution layer performs convolution operation on input data, and the pooling layer reduces the dimension
of the input data. The output of CNN's is generated from the classification layer, which in most cases employs an
ordinary multi-class classification neural network.

In this paper we demonstrate a deep learning approach to use convolutional neural networks as an autofocus
method for bright-field and phase-contrast microscopy. A benefit of the proposed method is that the z-position of
an image can be determined solely from the information in the image itself, without the necessity of using other
z-plane images. Thus, real-time control of focus can be realized, which allows high-throughput data acquisition
from time-lapse and fast-tracking microscopy. Using the proposed method we achieved accurate control of the
focal position in bright-field microscopy of yeast cells, and the method was shown to be robust against noise,
optical artifacts, and features other than cells.

Results

Autofocus neural network structure, training, and testing.  To infer the focal position of a yeast cell
culture during live-cell microscopy, we built and trained a convolutional neural network (CNN) using z-stacks of
yeast cells growing in a microfluidic device. Our network is shown in Fig. 1a and uses a variation on a well-studied
CNN architecture for image classification®***. The CNN consists of two convolution blocks followed by two fully
connected layers. Each convolution block consists of a convolution, an activation, and a max-pooling layer. The
first convolution layer maps image regions to 32 features with a kernel size of 10 x 10 x 1 with a stride of 1 and
zero padding to preserve the image size. A rectified linear unit (ReLU) activation function is applied to the convo-
lution output to provide a nonlinearity. Finally, a 5 x 5 max-pooling layer with a stride of 5 x 5 downsamples the
spatial domain of the features. The second convolution layer maps the downsampled features from the first block
to 64 larger-scale features with a kernel size of 10 x 10 x 32 and, similarly, ReLU activation and 5 x 5 max-pooling
are performed afterwards.

The first fully connected layer maps the feature output from the second convolution block to 1024 classifica-
tion neurons. It is followed by ReLU activation and a dropout layer to minimize overfitting*!. The dropout proba-
bility was set to 0.5. The last fully connected layer maps the output of neurons from the previous layer to a variable
number of neurons that predict the discretized z-position of the image, using one neuron for each possible z-bin.
Finally, a softmax layer gives the z-position probabilities. For reference, a model using 4X downsampling and 41
z-bins has 6.8 million parameters.

We collected 431 z-stacks of yeast cells (see Fig. 1b) from five independent growth experiments for use in
training and testing the neural network (see Methods). Each z-stack spanned ~30 um of focal distance using 31
images collected ~1 yum apart in the z dimension. We manually curated each z-stack and recorded the z-slice that
was considered in focus, usually near image 15. We randomly partitioned the z-stacks into training (80%) and
testing (20%) data sets.

To train the network, we followed the typical procedure for image classification®. Briefly, we used stochas-
tic gradient descent on mini-batches containing 10-50 images to optimize the multinomial logistic regression.
We initialized all weights in the neural network with random Gaussian distributed values with mean 0.0 and
standard deviation 0.1, truncated at two standard deviations. All biases were initially set to 0.1. To generate each
image in the mini-batch, we randomly selected an image from the training data set and then extracted a random
1000 x 1000 pixel region from it. We then randomly flipped and rotated this image to augment the data set and
to compensate for global illumination effects. Finally, the image was downsampled by 2-10X. To perform the
optimization we used the Adam algorithm® with a training rate of 107*%, 5, =0.9, and 3, =0.999. We took the
cross entropy between the neural network output and the annotated focal position as the loss function. Each CNN
model was trained for 100,000 steps, which was roughly 20X coverage of the training data.
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Figure 1. Autofocus convolutional neural network. (a) Architecture of the convolutional neural network
(CNN). Images of 1000 x 1000 pixels in size are downsampled before entering the neural network. The CNN
consists of two convolution blocks and two fully connected layers. (b) Sample images from a z-stack. Each
z-stack is composed of 31 images in steps of Az=1 um, including images below and above the focal plane
(z=0). The complete z-stack is shown in Fig. S1.

To evaluate each model we used the testing data set. We extracted the center 1000 x 1000 pixel region from
each image in the testing data set and downsampled it to be consistent with the neural network model being
tested. The processed images were evaluated by the trained neural network and the inferred focal position of
the image was taken to be the center of the z-bin with the highest predicted probability. We then calculated the
distribution of errors between the annotated and predicted focal positions for the entire testing data set. Overall,
the CNN was able to infer the focal position of an image remarkably well. Using the best model, half of all the test
images were predicted within =1 gm of the annotated z-position.

The effect of downsampling on inference accuracy. Next, we began to study the effect on prediction
accuracy of the various hyperparameters of the CNN model. To investigate the effect of both feature size and
resolution on CNN accuracy, we evaluated three different image downsampling factors: 2X, 4X, and 10X (see
Fig. 2a—c). In the full resolution image, a large yeast cell with a diameter of 6 um would be ~100 pixels across. For
2X downsampling this corresponds to a diameter of 50/10/2 pixels in the various convolution layers, 25/5/1 for
4X downsampling, and 10/2/0.4 for 10X downsampling. We trained a new CNN model using data downsampled
with each of these three values.

We analyzed the full test data set using each of the trained neural network models. The errors for models
trained with different downsampling factors are plotted in Fig. 2d. The mean error stays relatively consistent
when varying downsampling. However, the error distribution is wider for downsampling of 10X and 2X than
downsampling of 4X. Figure 2e shows the mean squared error for the inference. The model trained with a down-
sampling of 4X exhibited a lower mean squared error than with the models trained with 10X and 2X. Notably, in
the 4X downsampling model a typical cell with an initial diameter of 60-100 pixels will be represented by a spatial
domain of around ~1 square pixel in the final convolution layer. It appears that this represents a reasonable choice
when deciding on the construction of a CNN for classifying cells. In the 10X downsampling model, cells occupy
less than a single pixel so multiple neighboring cells become averaged before the classification layer is applied. In
the 2X downsampling model cells would occupy a roughly 2 x 2 pixel area, which also appears to be less optimal,
perhaps because of the increase in the number of parameters that need to be optimized.

We also tested the effect of varying batch size on the models. For the models trained with downsampling of
10X and 4X, the mean squared error increases with decreasing batch size, which also can be seen from the larger
distributions in Fig. 2d. With larger batch sizes the gradient is calculated from more training data, which helps
improve training performance in general. Even though models trained with larger batch size give better results,
the training time increases significantly with batch size, as shown in Fig. 2f. It took more than 100 hours to train
our models with a batch size of 50. In addition, for a specific batch size the training time also increases with
reduced downsampling.

Inference accuracy depends upon the z-bin size. A key advance in our study is the classification of
images into z-position bins. Thus, the number and spacing of the bins may have a large effect on the accuracy
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Figure 2. The effect of downsampling on CNN accuracy. (a-c) Images downsampled by (a) 10X, (b) 4X and (c)
2X from an original image of 1000 x 1000 pixels in size. (d) Error of CNNs trained with different downsampling
and batch sizes. The error is defined as the difference between the inferred and annotated z-position. Symbols
give the mean error and bars are £1 standard deviation. Blue dots, orange triangles, and green stars correspond
to batch sizes of 10, 25 (22 for 2X downsampling) and 50, respectively. (e) Mean squared error (MSE) with
symbols and colors as described in (d). (f) Time taken to train each CNN.

of our method. To investigate whether and how bin size affects the z-position prediction of our CNN, we tested
various bin sizes ranging from 1 pm to 5um. All of the bins spanned the range —20 pim to 420 um, covering the
entire focal distance of our z-stacks. Thus, the output of the final classification layer ranged from 9-41 categories.
We assumed that the inferred z-position was the center of the predicted z-bin.

Figure 3a shows the probability of a particular focal position inference given a label, for the highest resolution
model with a bin size of 1 gm (41 categories). Near the center of the focal plane, the correct bin has the highest
probability in all cases with alower amount of probability appearing in the &1 bins. Near the edges of the z-stack
the probability becomes more spread out as these images become more difficult to distinguish. The model has the
highest accuracy when the cells are near the focal plane. Figure 3b shows the probability map for the lowest res-
olution model with a bin size of 5 um (9 categories). Here, the model is able to accurately infer the single correct
bin, except when the actual z-position approaches the boundary between two bins. But the localization error is
overall greater because the width of the bins is greater.

Figure 3c,d show the inference error by bin size. The width of the error distribution and the mean squared
error both increase monotonically with bin size. If the z-bin resolution dropped below the information content
of the images we would expect there to be a minimum in the mean squared error. However, for our z-stack res-
olution even a one-to-one mapping between z-slices and bins produces good accuracy. It appears that there are
sufficient differences between z-slices separated by a single step to accurately differentiate them. With higher
resolution z-stacks further improvement in the positional inference could likely be achieved by the model.

The effect of training data set size on CNN performance. In the previous sections, we used our com-
plete training data set consisting of 345 z-stacks to train the CNN. However, it would be useful to know the
minimum number of z-stacks needed to achieve good focal position inference. Thus, we trained additional CNNs
using only a subset of the training data in order to investigate how the size of training data set affects the accuracy
of trained CNNs. We randomly selected 50, 100, 150, 200, 250 and 300 z-stacks from the complete training data
set to train the new models.

The prediction errors of these trained neural networks are shown in Fig. 4a. The width of the error distribution
drops at ~100 z-stacks. Similarly, the mean squared error (Fig. 4b) also drops sharply at ~100 z-stacks and then
continues to slowly decrease as more z-stacks are used. Therefore, while the CNN trained with the full training
data set outperforms the networks trained with smaller data sets, it is possible to train a network to high accuracy
with ~100 z-stacks. The collection and annotation of unique z-stacks represents a significant fraction of the total
effort to build an autofocus CNN model. Collecting data incrementally until the model’s accuracy converges,
rather than collecting a large data set up front, appears to be a reasonable strategy.

Comparison of neural network and human focusing performance. To independently evaluate the
performance of CNNs, we compared the accuracy of our autofocus CNN with four human annotators (H1-H4).
We used for the computer (CNN) the best CNN model from the previous sections (4X downsampling, batch
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actual z-position using a CNN with a bin size of (a) 1 and (b) 5. (¢) Error as a function of bin size. Symbols give
the mean error and bars are &1 standard deviation. Blue dots, orange triangles, and green stars correspond to
downsampling of 10X, 4X and 2X, respectively. A batch size of 50 was used for 10X and 4X downsampling, and
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Figure 4. The relationship between accuracy and data set size. (a) Error as a function of the number of z-stacks
in the data set. Symbols give the mean error and bars are 1 standard deviation. (b) The mean squared error
(MSE) vs. data set size.

size 50, bin size 1, trained with 345 z-stacks). The evaluation was conducted using two separate tests: (1) identify
the best in-focus image given a full z-stack, and (2) determine the numerical z-position of an individual image
without using the z-stack for context. For training, the human annotators were given a ~10 minute lesson on the
appearance of in-focus images as assigned by the original annotator. Additionally, each was given five example
z-stacks with annotations showing the z-position relative to the focal plane to use as a reference during the tests.

For the first test, we provided both computer and human annotators with 100 z-stacks and asked them to
estimate which z-plane was the most in focus. We recorded the difference between the estimated focal position
and that determined by the original annotator. As shown in Fig. 5a, the CNN performed well in determining the
correct in-focus image given an entire z-stack. Even though this was the easier of the two tests for the human
annotators, since they could scan up and down in the z-stack to compare images, the CNN performance equaled
the best human annotator and exceeded the other three. Moreover, in some cases, the human annotators showed
a bias in determining the focal plane, while the computer showed minimum bias in the test.
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Figure 5. Comparison of the accuracy of the CNN and human annotators. (a) Error of human annotators
(H1-H4) compared with the CNN in determining the in-focus image given a full z-stack to analyze, relative
to a reference annotation. (b) Error of human annotators in re-determining the in-focus image relative to
their previous annotation. (c) Error in determining the numerical z-position of an image without using any
additional context.

To control for potential bias by the human annotators due to differences in interpreting what in-focus cells
look like, we later tested the human annotators again on the same 100 z-stacks as the first test but in a random
order. We calculated the difference in predictions between the two experiments for each human to study the esti-
mation variance regardless of the original z-position annotation. These results are shown in Fig. 5b. The overall
error and the variance of the human annotators went down relative to the first experiment. However, both were
still greater than for the CNN model.

For the second test, we presented the human annotators and the computer with 100 individual images that
were randomly drawn from the testing data set. We recorded their individual estimates of the z-position of the
image. Human annotators relied heavily on the reference z-stacks for this test. Figure 5c shows the results of
determining the z-position of an individual image without access to nearby context. This was a very difficult test
for the human annotators and they generally had a large degree of error. Here, the CNN performance exceeded
that of all of the human annotators, being both more accurate and more precise. Interestingly, the CNN was more
precise than the original human annotator who was one of the test subjects. If we assume that the annotator had
a similar level of imprecision when annotating the training images, it appears that these errors average out during
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Figure 6. CNN controlled autofocusing during live-cell imaging of yeast. The (black) stage position and (blue)
sample focal position over the course of a 24 hour growth experiment.

the training phase. Therefore, our trained CNN model was able to achieve accurate and consistent position infer-
ence that outperformed manual focusing.

Comparison to other software-based focus inference methods. We wanted to compare the perfor-
mance of our model to other software focus-inference methods. We implemented three focus-scoring algorithms
that summarize various features of an image (e.g. the density of edges) to pick out the most “in-focus” image®-3%.
The details of the methods are given in Supplementary Text S1. We calculated the score for each method for
all z-slices in our testing data set. Figure S2 shows the distribution of scores by z-position. Of the three meth-
ods tested, only image quality assessment (IQA) was able to capture a relationship between image features and
z-position. We also tested the ability of each method to uniquely identify the focal plane. Again, only IQA was
able to reliably identify the focal plane in our z-stacks by finding the z-slice with the maximum detail, as shown
in Fig. S3a.

To compare the ability of the IQA and CNN methods to infer the z-position of an image, we calculated the
IQA profile for all of the z-stacks in our training set. We normalized each profile individually against its maximum
and assigned the z-position of the peak to be zero. We then averaged all of these profiles to obtain a global IQA
versus z-position profile. We used this profile to infer the z-position of each image in our testing data set. We cal-
culated the error as the difference between the inferred and actual z-position, relative to the IQA estimated focal
plane for that z-stack. Figure S3b shows the IQA method has significantly greater error than our CNN method
when inferring the z-position of an image.

It is important to note two caveats in our comparison with the IQA method. (1) The IQA profile is peaked at
a z-position of zero so it cannot distinguish whether the image is above or below the focal plane. We assumed
in our analysis that some outside metric was available to correctly make this determination with 100% accuracy
and always used the correct half of the IQA profile in our error calculation. (2) The IQA peak value varies for
different z-stacks so a global normalization constant cannot be used. In our analysis, we calculated the maximum
IQA score for each testing z-stack before calculating the error. A real-world application of IQA would therefore
require collecting a new z-stack of the imaging region whenever the field of view experienced substantial changes.
However, even with these two advantages for IQA in our comparison our CNN model still outperforms IQA in
predicting the z-position of an image.

Using the neural network to automatically maintain focus during live-cell imaging. We con-
nected our best CNN model to the focal control of our microscope through a software interface. The CNN pro-
cesses the live microscopy images at a rate of 20 Hz to estimate the current z-position position of the sample. The
controller then automatically adjusts the objective in real-time to maintain the estimate within £1 yum of the
z-position locked-in by the user. Figure 6 shows the result of a 24 hour growth experiment. Here, we purposely
allowed the temperature of the environmental chamber to vary by 3 °C to induce expansion effects on the stage
(see Fig. S4). The stage position varies by 40 m during the 24 hour period, but the sample is maintained in pre-
cisely the desired focal range.

Moreover, focus is well-controlled regardless of large changes that occur in the field of view. Over the course
of the 24 hour growth experiment the number of cells in the frame increases from fifteen to many hundreds (see
Supplementary Video S8). Additionally, because we did not affix the cells to the coverslip in this experiment, cells
and cell clusters move around and occasionally drift into and out of frame. Focus is maintained within the set
range regardless of these variations. The CNN is robust to these changes because it does not predict focus using
any specific features but globally over the entire image.

Even though it performs well in the vast majority of cases, it is interesting to consider circumstances where
the method infers the z-position incorrectly. In Supplementary Fig. S5 we show three examples where the infer-
ence error is >5 pum, the distance between cells on the bottom and top of the chamber. In Fig. S5a the inference
is incorrect because only a few cells are present in the central 1000 x 1000 region and the majority of these cells
happen to be adhered to the ceiling of the growth chamber. The inference of the z-position of the microscope is
thus off by ~5 um. Figure S5b show a case where there are two distinct populations in the field of view. Some cells
are on the floor of the growth chamber and some on the ceiling. This results in a bimodal softmax distribution.
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The incorrect mode is slightly higher and the inference is thus incorrect. Figure S5c shows the same population as
in (b) but when imaging above the focal plane. The softmax distribution is not bimodal in this case, but extremely
broad due to the combination the two populations. The inference thus becomes ambiguous. Overall, most infer-
ence errors observed in our data are due to the cases where a significant fraction of the cells do not occupy the
expected z-position.

Performance of the model on alternate cell types. Finally, to investigate the capability of our method
to infer the focal position of cells with more complex intracellular structures than yeast, we trained a CNN model
to infer the focus of fixed and stained Euglena cells (Carolina Biological Supply Company). These are oblong cells
with length ranging from 30-50 m. Because of the larger cell size, we used a 10X phase-contrast objective to
capture multiple cells per image. We collected 136 z-stacks in total, with each z-stack spanning ~600 um of focal
distance using 51 images collected ~12 ysm apart in z-direction (Supplementary Fig. S6). We randomly parti-
tioned the z-stacks into training (109) and testing (27) data sets. Similar to the models trained for yeast cells, two
neural networks were trained with image downsampling of 4X and 2X (using 1000 x 1000 pixels regions) and a
batch size of 50 and 22, respectively, for 100,000 steps.

We evaluated the trained neural networks using the testing data set. We used the CNN to infer the z-position of
each image and compared that with the annotated position. Supplementary Fig. S7 shows the probability of a par-
ticular z-position inference given a labeled z-position (bin size 12 um). Both neural networks were able to reliably
infer the z-position of an image. The probability distribution at any labeled position is wider than for the yeast CNN
due to the significantly increased depth of field of the 10X objective. Despite making no changes to the hyperparam-
eters, our CNN method was able to properly learn to infer the focus of a new cell type and imaging configuration.

Conclusion

Autofocus is of great importance in high-throughput microscopy of microbial cells. It allows unattended imaging
over large length and time scales. In this work, we presented a convolutional neural network (CNN) approach
for inferring the focal position of microbial cells under bright-field microscopy and for using the CNN output
to reliably and accurately control a microscope in real-time to maintain focus. We have developed this method
to assist in collecting high-throughput, live-cell imaging of yeast growing in a microfluidic device. Our method
enables us to maintain focus on the cell monolayer during long-duration imaging and while rapidly scanning the
stage to image the entire device, which may have height imperfections along its length.

In comparison with other autofocus approaches, our method does not require physical calibration nor the
acquisition of z-stacks during imaging, and is robust to noise, optical artifacts, and features other than cells (e.g.
structures in the microfluidic device). Even though the presented method provides some advantages over other
forms of autofocus control, it is system specific in terms of microscope objective, imaging mode, and cell type. It
is unlikely that a trained CNN model would work well if any of these variables were changed. Nevertheless, given
that a relatively small data set of 100 z-stacks is needed and an adequate CNN can be trained in a few days on a
GPU, construction of system specific autofocus models is quite practical.

Additionally, it should be possible, given a large and varied data set and a deeper neural network, to train a
single model to recognize focal position of many different systems. Likewise, we have only tested our method
on microbial systems with relatively homogeneous cells. A deeper or more sophisticated neural network may
be required to infer the focal position of more complex cell types, such as neurons. Our method therefore pro-
vides a novel conceptual and practical framework for automated focus control in high-throughput imaging of
biological samples, and we anticipate that this framework is generally applicable in the field of bright-field and
phase-contrast microscopy where unattended and real-time control of focal position is desired.

Finally, while our CNN model only infers the best single focal position for an entire image, by using deconvo-
lution techniques®*° the focal position of all individual cells within the image could also be obtained. Then, all
cells within the field of view could be focused on and imaged individually or complex spatially varying features
could be tracked and followed in the z dimension. Such a method would assist in automatic high-throughput
imaging of multiple cell layers within complex biofilms or tissues.

Materials and Methods

Cell growth and microscopy. The Yeast GFP Clone Collection STE20/YHLO007C fusion strain (courtesy
of Dr. John Kim) was used in this study. Yeast cells were initially cultured overnight in low-fluorescence synthetic
defined media without histidine (SD-H) at 30 °C. Cells were then loaded into a custom soft-lithography microflu-
idic device with a ~6 um tall growth chamber containing 10 zm diameter pillars on a 50 pm grid to prevent cham-
ber collapse. The device was fabricated according to standard protocols. Yeast cells were continuously supplied
with fresh SD-H media through the entire imaging process.

Images were acquired using an Axiovert 35 inverted microscope (Zeiss) equipped with a custom automated
stage and environmental chamber. A Fluar 40X oil-immersion objective with 1.30 NA (Zeiss) was used during all
microscopy. Images were captured using a Flea3 FL3-U3-32S2M-CS camera (FLIR Systems) operating at 20 fps,
10dB gain, and 50 ms exposure time. The image size was 2080 x 1552 pixels with a resolution of ~60 nm per pixel.
The microscope, stage, camera, and light source were controlled by custom software. Z-stacks were acquired at
room temperature and live-cell imaging was conducted at 30°C.

Neural network implementation. The neural network was implemented using the TensorFlow frame-
work*.. In TensorFlow, computation, shared state, and operations that mutate that state are represented by dataflow
graphs. Specifically, functional operators, such as matrix multiplication and convolution, as well as mutable state and
operations that update the state, are represented as nodes, while multi-dimensional arrays (tensors) that are input to
or output from nodes are represented as edges. All training runs were executed on 4 GB Tesla K20m GPUs (Nvidia).
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Data availability. The code for training the neural network and inferring the focal position of images is given
in Supplementary File S9. All training and testing data, along with the final neural network model, is available for
download from our website (http://www.robertslabjhu.info/home/data/).
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