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Underlying the regulation of mammalian gene expression at
the level of transcription is the structure and modifications
of chromatin. Understanding the twisting structures of DNA
wrapped around histones and their higher-level ordering
allows us to peek into a vast regulatory landscape. Looking
closer, the physical accessibility of the genome provides
information on the positions of nucleosomes and biologi-
cally-active regions— promoters, enhancers, insulators, and
other regulatory elements. Currently, Assay for Transpo-
sase-Accessible Chromatin with high-throughput sequen-
cing (ATAC-seq) is a widely used technology for detecting
genome-wide chromatin accessibility [1,2]. Compared to
other methods, such as micrococcal nuclease sequencing
(MNase-seq) [3], formaldehyde-assisted isolation of reg-
ulatory elements sequencing (FAIRE-seq) [4], and DNase I
hypersensitive sites sequencing (DNase-seq) [5], ATAC-seq
offers a simpler and quicker protocol by incorporating hy-
peractive Tn5 transposase to simultaneously cut open
chromatin and ligate high-throughput sequencing adapters
at chromatin-accessible regions [1,2]. Importantly, ATAC-
seq can also be applied to samples with limited starting cell
material (500–50,000 cells) [1,2].

These advantages of ATAC-seq — simplicity, speed, and
low input material requirements — have made it highly

popular in recent years. Publications and datasets using
ATAC-seq have increased exponentially [6]. Several inter-
national consortia, including The Cancer Genome Atlas
(TCGA) [7], CommonMind [8], FOUNDIN-PD [9], AD
Knowledge Portal [10], and iPSCORE [11], use ATAC-seq
data for population-scale studies. Despite the growing need
to process ATAC-seq data, only a few analytical tools have
been developed specifically for such data. Most of the
current tools used for ATAC-seq data analysis are adopted
from DNase-seq or chromatin immunoprecipitation se-
quencing (ChIP-seq) data analysis suites assuming similar
data characteristics [12]. Typically, there are five steps for
ATAC-seq data analysis: 1) quality control (QC); 2) read
alignment; 3) peak calling; 4) downstream analysis (such as
peak differential analysis, peak annotation, motif enrich-
ment, and nucleosome position analysis); and 5) integration
with multi-omics data [6]. However, there is no compre-
hensive and standalone analytical pipeline defined to guide
ATAC-seq users.

In this issue, Liu et al. [13] and Qiu et al. [14] make great
strides toward a standalone analytical ATAC-seq pipeline.
Liu et al. present the ATAC-seq Integrative Analysis
Package (AIAP), which defines a series of ATAC-seq-
specific QC metrics to optimize data and further uses a
pseudo single-end strategy (PE-asSE) specifically develo-
ped for ATAC-seq to improve data analysis [13]. Using
these ATAC-seq-specific metrics (e.g., reads under peak

1672-0229 © 2021 The Authors. Published by Elsevier B.V. and Science Press on behalf of Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center
for Bioinformation and Genetics Society of China.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Peer review under responsibility of Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China.
https://doi.org/10.1016/j.gpb.2021.06.002

*Corresponding author.
E-mail: yac7@uci.edu (Cui Y).

https://doi.org/10.1016/j.gpb.2021.12.012
http://www.elsevier.com/locate/gpb
http://www.sciencedirect.com
http://www.elsevier.com/locate/gpb
http://www.elsevier.com/locate/gpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gpb.2021.06.002&domain=pdf


ratio, background, promoter enrichment, and subsampling
enrichment) in conjunction with other traditional QC me-
trics, Liu et al. conducts QC checks at different steps of data
processing and provide a user-friendly visualization of
quality reports. Even further, Liu et al. incorporate a
PE-asSE strategy to better analyze the Tn5 transposase in-
sertion event within ATAC-seq data. Briefly, Liu et al. shift
each end of the non-redundant uniquely mapped read pair
+4 bp/−5 bp to define the Tn5 insertion position and then
further extend 75 bp in both directions around the Tn5 in-
sertion position. By applying this strategy, one non-re-
dundant uniquely mapped read pair is divided into two
single-end fragments. Applying the PE-asSE approach to
ATAC-seq data of GM12878 cells leads to the identification
of ~ 99.9% peaks that can be identified by traditional
strategies and an additional ~ 23% (20,918) peaks that
cannot be discovered by traditional methods. Further ana-
lysis shows that most of these PE-asSE-specific peaks
overlap with known GM12878 DNase I hypersensitive sites
(DHSs) and are highly enriched in all active histone modi-
fications. Taken together, the additional open chromatin
regions (OCRs) identified by PE-asSE are likely to be true
functional regulatory elements rather than false positives,
highlighting dramatic improvements in ATAC-seq OCR
discovery. Given these improvements, Liu et al. further
extend the usage of AIAP to differentially accessible region
(DAR) analysis, applying AIAP to ATAC-seq data of mouse
liver at embryonic day 11.5 (E11.5) and postnatal day 0
(P0). Peak differential analysis of data collected at these two
time points results in an ~ 35% increase in the number of
DARs identified. Overall, Liu et al. present an ATAC-seq
QC and analysis pipeline that dramatically improves the
sensitivity of both peak calling and differential analysis.

In another paper of this issue, Qiu et al. present the
Containerized Bioinformatics workflow for Reproducible
ChIP/ATAC-seq Analysis (CoBRA), which provides a
comprehensive and customizable ChIP and ATAC-seq
analysis pipeline [14]. The strength of CoBRA is to in-
tegrate multiple commonly used functions, including nor-
malization, copy number variation adjustment, sample
clustering, differential peak calling, motif enrichment,
Cistrome DB Toolkit [15] analysis, and Gene Set Enrich-
ment Analysis (GSEA) [16] pathway analysis into the same
package for scientists with limited computational experie-
nce. Based on the snakemake system [17], CoBRA can also
easily integrate additional analytical tools in the future.
CoBRA is well-documented and provides step-by-step tu-
torials for 3 case studies to guide users with limited com-
putational experience. As an example, Qiu et al. have
applied CoBRA to the ATAC-seq data of HL-60 promye-
locytes differentiating into macrophages at five time points
(0 h, 3 h, 24 h, 96 h, and 120 h). Unsupervised analysis
results in three clusters showing clear differences in open

chromatin between the early (0 h and 3 h), intermediate
(24 h), and late stage (96 h and 120 h) time points. Further
motif enrichment analysis in each cluster also identifies
potential functional transcriptional regulators, such as early
growth response protein (EGR) and Maf, in macrophage
differentiation. Finally, Qiu et al. have integrated ATAC-seq
data with sample-matched RNA-seq data, highlighting
that genes differentially expressed during macrophage
differentiation are flanked by changes in open chromatin
structure.

In short, AIAP and CoBRA, the two useful ATAC-seq
analysis pipelines developed by Liu et al. and Qiu et al., will
provide a convenient entry and general guideline for scien-
tists with limited computational experience to explore
ATAC-seq data. Both pipelines use docker to allow com-
patibility on different operating systems and are able to
generate high-quality figures automatically. These two
studies represent significant progress in ATAC-seq analysis.
Despite their benefits, more efforts are needed to extend the
power of these ATAC-seq pipelines in the future. For exam-
ple, more alternative tools may be included for each ana-
lytical step. Currently, both AIAP and CoBRA pipelines
only include a popular software MACS2 [18] for peak
calling, but not HMMRATAC [19], an alternative peak
caller that is specifically developed for ATAC-seq and
outperforms MACS2 [19]. Furthermore, to take advantage
of multi-omics data from the same individual, more ad-
vanced analytical functions are required to integrate
ATAC-seq data with other -omics data such as those from
genotyping, RNA-seq, and ChIP-seq. For example, the in-
tegration of genotype and ATAC-seq modalities to identify
quantitative trait loci for chromatin accessibility (caQTLs)
has been recently used to evaluate genetic effects on chro-
matin accessibility [20]. caQTLs have been applied to the
fine mapping of causal variants in noncoding chromatin
accessible regions in multiple cell lines and tissues, such as
blood [21], liver [22], and brain [23], furthering our un-
derstanding of regulatory mechanisms in human diseases at
the tissue or cell type-specific levels. We expect more
ATAC-seq-specific analytic tools to be developed in the
future. Benchmarking studies for ATAC-seq analytical tools
will help guide developers of comprehensive ATAC-seq
pipelines in selecting the appropriate tools to be included.
As ATAC-seq data continue to be generated for more in-
dividuals, cell types, and molecular processes, compre-
hensive and user-friendly ATAC-seq analytic pipelines will
aid in the interpretation of biological mechanisms under-
lying ATAC-seq data.
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