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ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs
that are among the main post-transcriptional reg-
ulators of gene expression. A number of data col-
lections and prediction tools have gathered putative
or confirmed targets of these regulators. It is often
useful, for discovery and validation, to harness such
collections to perform target enrichment analysis in
given transcriptional signatures or gene-sets in or-
der to predict involved miRNAs. While several meth-
ods have been proposed to this end, a flexible and
user-friendly interface for such analyses using vari-
ous approaches and collections is lacking. enrichMiR
(https://ethz-ins.org/enrichMiR/) addresses this gap
by enabling users to perform a series of enrichment
tests, based on several target collections, to rank
miRNAs according to their likely involvement in the
control of a given transcriptional signature or gene-
set. enrichMiR results can furthermore be visualised
through interactive and publication-ready plots. To
guide the choice of the appropriate analysis method,
we benchmarked various tests across a panel of ex-
periments involving the perturbation of known miR-
NAs. Finally, we showcase enrichMiR functionalities
in a pair of use cases.

GRAPHICAL ABSTRACT

INTRODUCTION

Post-transcriptional gene regulation is essential to main-
tain cellular integrity and to precisely coordinate trans-
lational changes in response to environmental cues. mi-
croRNAs (miRNAs) and RNA-binding-proteins (RBPs)
are the main post-transcriptional regulators, both impact-
ing RNA levels and thereby controlling gene expression (1–
3). Whereas miRNAs primarily exert an inhibitory role by
causing mRNA silencing and degradation, RBPs regulate
RNA abundance through a variety of mechanisms as they
affect splicing, transport, stabilisation and localization of
target RNAs (3–5).

miRNAs are a class of small non-coding RNAs that bind
to complementary sequence stretches, mainly on the 3′UTR
of mRNAs, as part of the RNA-induced silencing complex
(RISC) (4). Notably, each of the approximately 90 broadly
conserved miRNA families identified to date has an aver-
age of over 500 evolutionarily conserved canonical binding
sites in human 3′UTRs (4,6), enabling systemic regulation
of gene expression. There are a number of miRNA binding
site collections and prediction tools that compile putative
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and validated miRNA-target interactions, some of which
moreover ascribe scores for the strength of interaction and
hence potential effectiveness of a miRNA in downregulat-
ing the potential target (7–9).

With the advent of cheap sequencing technologies and
the accompanying generation of vast amounts of high-
throughput data, it is becoming ever more important to de-
velop bioinformatic tools to assist in prioritising candidates
for functional follow-up experiments. Particularly, to pre-
dict the potential involvement of miRNAs, it is often useful
to harness binding site collections through target enrich-
ment analyses in given transcriptional signatures or gene-
sets (10–13). Depending on the quality of the gene-set clas-
sification (e.g. the significantly changing genes in an RNA-
sequencing experiment upon cellular stimulation) and the
employed binding site collection, target enrichment analysis
can serve as computational validation of an expected effect
(14) or suggest altered activities of candidates to be explored
further (15). While this approach is conceptually analogous
to traditional gene-set enrichment analysis, target enrich-
ment analysis involves additional complexities in set mem-
bership, since a given miRNA can bind a target RNA si-
multaneously at several sites, and different interactions can
have different probabilities or intensities. There have already
been several tools developed that attempt to infer the func-
tional involvement of miRNAs in specific settings (see Sup-
plementary Table S1). These enrichment tools can be classi-
fied into two main types: miRNA pathway association tools
to test whether certain pathways are predicted to be regu-
lated by a specific miRNA, and target enrichment tools to
infer the activity of miRNAs in specified gene signatures.

Among the tools to test for miRNA associations with
specific pathways (e.g. Gene Ontology (GO) or the Kyoto
Encyclopaedia of Genes and Genomes), there are several
examples for powerful web interfaces such as miEAA2 (16)
and miRNet 2.0 (17), providing extended statistical func-
tionalities and excellent visual representations of the results.

Likewise, several tools have been developed, based on
various statistical approaches, to test for miRNA target en-
richment. Early attempts to infer miRNA activity from mi-
croarray and RNA-sequencing datasets were for example
conducted by Sood et al. (18) and van Dongen et al. (10),
both testing for enrichments of sequence word motifs in
the 3′UTRs of genes. Cheng and Li (19) as well as Arora
and Simpson (20) propose other approaches, either apply-
ing rank based tests by considering gene expression levels
or miRNA-target binding scores. More recently, web inter-
faces such as miTEA (21), mirExTra v2.0 (22) and Mientur-
net (13) have been developed to make such methods more
widely accessible (Table 1). Albeit offering first insights into
potential post-transcriptional functionalities of miRNAs,
each of these tools has serious limitations. First, most of
them only enable the use of a single statistical approach
(typically variations of the hypergeometric test) and some
(e.g. Mienturnet) do not even offer the possibility of spec-
ifying a background or universe for the target enrichment
analysis, which is notoriously problematic. Second, many
of the tools are limited in their usage, especially regarding
the flexibility of the inputs, such as accepting differential
expression analyses in standard output formats or differ-
ent gene identifiers. Moreover, only mirExTra v2.0 gives the

possibility to restrict the analysis to expressed miRNAs, an
essential functionality given the various cell type specific
expression patterns of miRNAs (23,24). Finally, the tools
mentioned do not allow specifying different plotting op-
tions of the produced results and none of them gives the
option to generate cumulative distribution plots that are re-
garded as standard in the field to investigate regulatory ef-
fects of microRNAs.

enrichMiR addresses this gap by providing a user-friendly
interface to perform different statistical tests, based on var-
ious binding site collections, to rank post-transcriptional
regulators (e.g. miRNAs, RBPs) according to their likely in-
volvement in the control of a given transcriptional signature
or gene-set. Inputs can be custom gene lists, Gene Ontology
terms or differential expression analysis (DEA) results (all
with either Ensembl ID or gene symbols). These can then be
tested using different binding site databases and a collection
of benchmarked statistical tests. enrichMiR results can sub-
sequently be plotted as enrichment- and cumulative distri-
bution plots or downloaded as tables including individual
predicted target genes. Complementing the web interface,
enrichMiR is in addition freely available as a documented R
package to provide more experienced bioinformatic users
even more flexibility in their analyses.

MATERIALS AND METHODS

The enrichMiR package and web interface

enrichMiR has been programmed in R and builds on a num-
ber of packages, including some specifically developed for
enrichment analysis (viper and fgsea). It is available both as
a standalone package and as a shiny web application. At its
core is the testEnrichment function, offering a single flexi-
ble interface (for example adapting to various inputs and
gene IDs) to various annotations, including manually cu-
rated binding site collections of, for instance, further species
not provided by default in the web application. A more de-
tailed description of the individual functionalities can be
found in the package’s vignette and app documentation.

Binding site collections

enrichMiR provides the option to perform enrich-
ment tests with several binding site collections.
miRNA binding site predictions were obtained from
TargetScan8 (http://www.targetscan.org/vert 80/)
(7), scanMiR (https://bioconductor.org/packages/
release/bioc/html/scanMiR.html) (9) and miRTar-
Base (https://mirtarbase.cuhk.edu.cn/~miRTarBase/
miRTarBase 2022/php/index.php) (8).

TargetScan annotations can additionally be restricted to
conserved sites for human, mouse, rat, worm and fly. When
using tests that incorporate a target score along with Tar-
getScan predicted miRNA binding sites, the ‘cumulative
weighted context++ score’ is used for human, mouse and
rat predictions and the ‘total context score’ for fly, worm
and fish predictions. scanMiR scores are based on the bio-
chemical model of McGeary et al. (25) and were shown to
predict miRNA repression efficiency more accurately than
TargetScan context scores (9). However, to improve com-
puting times, we restricted scanMiR annotations to canoni-

http://www.targetscan.org/vert_80/
https://bioconductor.org/packages/release/bioc/html/scanMiR.html
https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/index.php
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Table 1. Overview of miRNA target enrichment tools and comparison of their specific web interface options

enrichMiR Mienturnet mirExTra 2.0 miTEA

Statistical tests: (see
Supplementary Table S1
for additional
information)

A compendium of
benchmarked statistical
tests

Hyper-geometric test Hyper-geometric test Mutual minimum
hyper-geometric test
(mmHG)

Web application specifications:
Allowed input: Various DEA formats,

custom gene lists &
GO-Terms (gene symbol
or Ensembl IDs)

Custom gene list
(gene symbols)

Table with differentially
expressed
genes + background
(Ensembl IDs)

Ranked gene list (gene
symbols)

Supported Species: 6 6 4 5
Available binding site
databases:

ScanMiR, TargetScan,
miRTarBase &
oRNAment

TargetScan &
miRTarBase

DIANA-TarBase v7.0 &
DIANA-microT-CDS

TargetScan,
MicroCosm & EiMMo

Allow specific
background:

Yes No Yes Yes

Specify miRNA
expression:

Yes No Yes No

UTR length correction: Yes No No No
Plotting options: Enrichment plots &

Cumulative Distribution
Plots

Network visualization Network visualization miRNA network
visualization

Tools which used to have a web interface that is not anymore available (e.g Sylamer) are not included here. See Supplementary Table S1 for additional
information on miRNA enrichment tools in general.

cal 7&8mer sites in the 3′UTR. Unlike TargetScan and miR-
TarBase predictions, scanMiR binding site annotations are
also available at the transcript level.

As an additional feature, enrichMiR offers the option to
perform enrichment tests for RNA-binding proteins based
on the oRNAment database (http://rnabiology.ircm.qc.ca/
oRNAment). However, applying enrichMiR in the context
of RBP enrichment is rather exploratory, since the statisti-
cal tests used in the package were solely benchmarked for
miRNAs.

Gene symbol to Ensembl identifier conversions were gen-
erated using the R Bioconductor biomaRt interface (26), al-
lowing both to be used as input options for the web interface
of enrichMiR.

Description of the enrichment tests

enrichMiR implements several target enrichment tests (see
Table 2 for an overview). Many of them have been pre-
viously used in this context, though often not available
through a web interface (e.g. regularized regression), while
some had only been applied before to other enrichment
tasks (e.g. areamir, woverlap) or regression analyses (e.g.
ebayes). In addition, enrichMiR implements the lmadd test,
which is a variant of linear regression approaches but dis-
entangles miRNAs with correlated regression by requiring
each additional miRNA to have a significant effect condi-
tioned on the more significant miRNAs (see the Supple-
mentary Methods for more information). Beyond the tests
themselves, we provide recommendations as to which tests
should be used based on a systematic benchmark (see be-
low).

The tests differ in terms of the target annotation as well as
the type of input signal used for enrichment. On the signal
side, tests denoted as ‘binary’ compare features (genes or
transcripts) in a given set (e.g. significantly downregulated
genes) to those in a background set (i.e. over-representation

analysis), whereas tests denoted as ‘continuous’ instead rely
on a numeric input signal, such as the magnitude or signifi-
cance of changes in an input differential expression analysis
(by default, the tests use the sign of the fold change multi-
plied by the -log10(FDR), which is well correlated to logFC
for genes with low intra-group variability, and more robust
than the latter for RNAseq experiments). On the annota-
tion side, tests either use set membership (i.e. whether or
not a given feature is a predicted miRNA target) or numeric
values, such as the number of binding sites harboured by a
given feature, or a repression score (i.e. the extent to which
a given feature is predicted to be repressed by a miRNA).

Datasets used for the benchmark as well as for enrichMiR use
cases

Further information on the processing and use of the spe-
cific datasets can be found in the Supplementary Methods.

Selection of the gene universe / background for enrichMiR
analyses

Some guidance on the choice of a gene universe (back-
ground genes) for enrichMiR analyses can be found in the
Supplementary Methods.

RESULTS AND DISCUSSION

enrichMiR workflow

We developed the enrichMiR package to allow miRNA tar-
get enrichment testing in a user-friendly and flexible way
as well as to directly generate publication-ready plots of
the results. In an effort to increase the accessibility of en-
richMiR also for non-bioinformaticians, we implemented
its functions in a graphical user interface web application
(see the graphical abstract for a general overview of the

http://rnabiology.ircm.qc.ca/oRNAment
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Table 2. Overview of the available enrichment tests

Test Input signal type Annotation type Description

overlap binary (set) genesets Over-representation (ORA) of target genes among set
woverlap † binary (set) nb sites ORA of binding sites, correcting for UTR length
siteoverlap binary (set) nb sites ORA of binding sites
areamir † continuous (DEA) scores Score-weighted analytic Rank Enrichment Analysis (aREA)
modsites continuous (DEA) nb sites Linear regression of logFCs on nb of binding sites
modscore continuous (DEA) scores Linear regression of logFCs on predicted repression scores
ebayes † continuous (DEA) scores Linear regression of logFCs on predicted repression scores with

moderated t-statistics
lmadd †,* continuous (DEA) scores As ebayes, but followed by consecutive additive linear regression of

logFCs on predicted repression scores
regmir.cc † continuous (DEA) scores Regularized regression to select miRNAs for linear regression testing
ks continuous (DEA) genesets Kolmogorov-Smirnov (KS) test on logFCs
mw continuous (DEA) genesets Mann-Whitney / Wilcoxon test on logFCs
gsea continuous (DEA) genesets Gene set enrichment analysis (GSEA)

Tests denoted by an asterisk (*) are novel, while those denoted by a dagger (†) are novel in the specific context of miRNA target enrichment analysis.

workflow). The enrichMiR web app provides several pre-
compiled binding site collections, currently enabling target
enrichment testing for human, mouse, rat, worm, fly and
fish gene signatures (see Methods and the app online help
for further details). Users can supply these gene signatures
in a variety of input formats: enrichMiR readily accepts ex-
ported ‘.csv’ files from several standard RNA-sequencing
analysis algorithms (such as edgeR (27), DESeq2 (28) and
others), custom compiled lists of genes of interest with the
appropriate expression background as well as gene ontol-
ogy annotations. If necessary, conversion between ensembl
IDs and gene symbols is handled internally. The analysis
can be further refined by restricting the tests to miRNAs
expressed in a certain tissue of interest, which can be ei-
ther indicated as a custom list, by uploading a miRNA-
expression table, or by selecting one of the specific expres-
sion profiles provided for mouse and human tissues and
cell types. The results of an enrichMiR analysis can be de-
picted as customizable enrichment or cumulative distribu-
tion (‘CD’) plots, including the option to change several
graphical parameters. We hope this allows users to generate
publication-ready plots even in the absence of any in-depth
bioinformatic knowledge. In addition, enrichMiR provides
the option to download the results of a target enrichment
analysis as ‘.csv’ or Excel files, optionally comprising the an-
notated target genes for each regulator (see Supplementary
Table S2 for an example output of an enrichMiR analysis).

Visual interpretation of enrichMiR results

While representing the results of an enrichMiR analysis with
an interactive ‘enrichment plot’ yields a quick overview on
the ranking and potential activity of miRNAs in a cer-
tain setting (see Supplementary Figure S1A for an example
enrichment plot in the context of a miRNA mimic trans-
fection), it is often useful to inspect the behaviour of a
particular miRNA more closely. This is most often done
through plotting cumulative fold change distributions (CD
plots). enrichMiR enables users who provide a DEA to gen-
erate such CD plots. By default, enrichMiR splits the cu-
mulative logFC-distributions of predicted targets by the
best site-type on each 3′UTR, ideally revealing a dose-
response pattern along the reported different strength of

various miRNA site types (29) (Supplementary Figure S1B,
C). Moreover, enrichMiR allows splitting targets by ‘score’,
distinguishing between annotated highly-effective and less-
efficient binding sites (Supplementary Figure S1D). In set-
tings without a clear signal, it can be beneficial to simply
split between predicted targets and non-targets (see Supple-
mentary Figure S1E–G for examples using different binding
site collections in the context of a miRNA-mimic transfec-
tion). In general, however, we recommend the use of CD
plots split by site type, as these are less prone to length bi-
ases.

Benchmark of miRNA enrichment tests

It is well established that tremendous differences exist in the
performance of various enrichment tests for gene set anal-
ysis (30,31). However, to our knowledge, the only bench-
marking study in the context of miRNA target enrichment
analyses is relying on microarray data, employs (meanwhile)
outdated target annotations and lacks a proper assessment
of false discoveries (32). Hence, to guide users in the selec-
tion of appropriate tests to perform miRNA target enrich-
ment testing, we conducted a comprehensive benchmark
on 28 RNA-sequencing datasets of miRNA-mimic trans-
fection experiments in human cell lines as well as one tis-
sue specific RNA-sequencing dataset of a miRNA knock-
out mouse model (see Methods for further details). We in-
clude in this effort several well established statistical tests
and variations thereof (see Methods), as well as relevant al-
ternatives in terms of input and annotations (see below).

Since the benchmark datasets were selected to ensure a
signal genuinely tied to the miRNA, most of them yield
a strong signal, and as a consequence nearly all methods
managed to rank the true miRNA as top candidate, al-
beit followed by a varying number of false positives (Fig-
ure 1A, B). We therefore made the problem more diffi-
cult by generating scrambled datasets in which the expres-
sion of a fraction of target genes was randomly exchanged
with that of non-target genes in each experiment (see Ma-
terials and Methods). As expected, test performances de-
crease steadily with the amount of scrambling (Supplemen-
tary Figure S2). Averaging over these experiments indicates
differences between methods in a more comprehensive way
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Figure 1. Benchmark of miRNA target enrichment tests, using the original datasets (A, B) as well as their conjunction with scrambled versions (C–E).
(A) Rank of the true miRNA among the predicted candidates (the lower the better) using the various tests across the benchmark datasets. (B) Overall
sensitivity and False Discovery Rate (FDR) at a nominal FDR threshold of 0.05, using the original datasets. (C, D) Rank of the true miRNA (C) and FDR
(D) using the various tests across the original and scrambled datasets (averaged per dataset). (E) Overall sensitivity and False Discovery Rate (FDR) at a
nominal FDR threshold of 0.05 across scrambled datasets.

(Figure 1C–E). While many methods still rank the true hy-
pothesis at top for most experiments, the majority show a
very high FDR. The best FDR control was achieved by the
areamir method, while the siteoverlap and woverlap tests
had the best sensitivity. These two methods, which take into
account the fact that a given regulator can affect a target
through more than one site, both outperform the classical
hypergeometric test (‘overlap’) in controlling the FDR, an
observation that has been similarly made by Ulitsky et al.
(11). Of note, the GSEA method (33), which is amongst the

most popular methods for traditional gene set enrichment
analysis, performed rather poorly here.

It has been argued that distinguishing spliced from un-
spliced transcripts in RNAseq analysis could make it eas-
ier to detect miRNA-mediated post-transcriptional regula-
tion (34). The downside of such an approach is that intron-
retaining transcripts are poorly represented in typical se-
quenced profiles, leading to less powerful quantification
and statistical analysis. We therefore tested whether us-
ing spliced (i.e. exon-specific) differential expression anal-



Nucleic Acids Research, 2022, Vol. 50, Web Server issue W285

ysis (DEA) improved the identification of the perturbed
miRNA (Supplementary Figure S3). Using exon-specific
signals almost always led to a decrease in FDR, however at
a cost in sensitivity which was drastic in some experiments.
Of note, however, most datasets were profiled very early af-
ter transfection, diminishing the confounding effect of indi-
rect downstream events. In other less ideal scenarios where
such indirect effects are more important, the exon-specific
profiles might have a larger positive impact.

We next considered whether restricting the analyses to
miRNAs expressed in the given cell type improved the pre-
dictions (Supplementary Figure S4). As expected, including
miRNA expression profiles again led to a decrease in FDR,
at little or no cost to sensitivity. Yet, despite these clear re-
sults and the known tissue specific miRNA expression dif-
ferences (23), to our knowledge, mirExTra v2.0 is the only
other miRNA target enrichment tool allowing to specify ex-
pressed miRNAs.

Although it is well known that testing against a back-
ground of all annotated genes can easily create spurious en-
richments, some other miRNA target enrichment web tools
such as Mienturnet (13) do not enable users to specify an
appropriate background. We therefore tested the extent to
which using a cell-type specific background (e.g. the ex-
pressed genes) influenced the results (Supplementary Figure
S5A). As expected, the use of an appropriate background
had a massive positive effect on both FDR and sensitivity.
Moreover, we conducted an analysis restricting the back-
ground to the highest 5000 expressed genes (Supplementary
Figure S5B). While the sensitivity in this case generally de-
creases, the error control for some of the methods improved
(e.g. for the woverlap and the areamir test).

Finally, the relative performance of individual methods
might depend on the target annotation used. For exam-
ple, the sets of targets per miRNA is considerably smaller
in the conserved TargetScan annotation in comparison to
the scanMiR binding site collection, which can naturally
interfere with the performance of the tests. We therefore
tested the most successful tests on both annotations (Sup-
plementary Figure S6). Overall, enrichment analyses with
the scanMiR binding site collection yielded lower perfor-
mance than those based on conserved TargetScan sites. This
can be partially explained by the increase in task difficulty,
due to the fact that scanMiR annotations are specific for
each miRNA (while TargetScan combines predicted tar-
gets of miRNA families). However, even when aggregating
the predictions at the family level, scanMiR-based analy-
ses tended to perform worse than those based on conserved
TargetScan binding sites, and similarly to all TargetScan
binding sites. This suggests that smaller, higher-confidence
target sets are more powerful for enrichment analysis, espe-
cially for tests like siteoverlap. Of note, however, the con-
served TargetScan annotation does not include all miR-
NAs, and for some miRNAs the target set might be too
small to offer sufficient power. Further, in some cases it
might be beneficial to identify an individual miRNA, in-
stead of a miRNA family possibly comprising several mem-
bers. scanMiR was shown to maximise the correlation with
observed repression (9), and indeed we observed that tests
relying on a regression of the input signal on predicted
miRNA-mediated repression, in particular the additive lin-

ear models (lmadd), performed best in this context, achiev-
ing superior results to those obtained with the TargetScan
annotation (Supplementary Figure S6). In addition, the
lmadd test using scanMiR annotation could successfully
identify the specific miRNA of a family in the one example
of such cases among the benchmark datasets (Supplemen-
tary Figure S7).

Based on these results, we suggest testing for miRNA
enrichments first using the TargetScan conserved annota-
tion, followed by further tests using scanMiR and the lmadd
statistic to obtain the most likely miRNA candidate within
a given family. A summary of the benchmarking analyses is
further included in the enrichMiR web application.

enrichMiR detects a tissue specific increase in miR-7 activity
upon knockout of the lncRNA Cyrano

Whereas the detection of mRNA expression changes by
RNA-sequencing is by now a straightforward and afford-
able method, shifts in the activity of a miRNA are consider-
ably more difficult to assess. Without a clear hypothesis one
would need to perform small RNA sequencing on each tis-
sue, leaving open the possibility that an increase in miRNA
activity might not directly result in an increase in measur-
able miRNA levels (be it because the miRNA is relocated
upon a stimulus, differently processed or loaded into the
RISC, or that binding sites get more accessible). Moreover,
assessing miRNA expression changes on a single-cell level
is still in its infancy (35–37). Here, we demonstrate how en-
richMiR can be used to get a first impression of potential
changes in miRNA activity upon applying a certain stim-
ulus or condition on the basis of a differential expression
signature.

Some miRNA binding sites lead to a degradation of
the bound miRNAs (a process called target RNA-directed
miRNA degradation, TDMD) instead of causing post-
transcriptional silencing of the target (38). One of the most
prominent TDMD examples is the miR-7 binding site on
the lncRNA Cyrano (39–41). Kleaveland et al. (39) have
shown that knockout of this lncRNA in mice yields a signif-
icant increase of miR-7 levels in several tissues, followed by
a downregulation of miR-7 targets in some of these tissues.
By applying enrichMiR on each DEA of all the sequenced
tissues, we predict a strong increase in miR-7 activity in cor-
tex, hippocampus, skeletal muscle as well as moderately en-
hanced miR-7 activity in the striatum/thalamus (Figure 2,
Supplementary Figure S8). Notably, albeit Kleaveland et al.
(39) showed a substantial upregulation of miR-7 levels in
the cerebellum, enrichMiR suggests, in concordance with
the original study, that the effect on miR-7 targets in these
areas upon Cyrano knockout are negligible. Moreover, a
surprising result warranting further investigation is the po-
tential increase in activity of the lowly expressed miR-325
in the spleen (Supplementary Figure S8).

enrichMiR suggests an increase in miR-129 activity in neu-
rons upon PTX stimulation

It has been shown that miRNAs play a significant role in
orchestrating changes in neuronal activity in response to
extracellular cues (42,43). We hence wondered whether en-
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Figure 2. Enrichment of miR-7 binding sites in genes downregulated upon Cyrano knockout in skeletal muscle. An enrichMiR analysis was conducted on
the 5’000 highest expressed genes of a DEA generated from bulk RNA-sequencing data upon knockout of the lncRNA Cyrano versus control in skeletal
muscle tissue (39). (A) Enrichment plot showing a significant enrichment of miR-7 binding sites in downregulated genes as revealed by the siteoverlap
test using the TargetScan mouse conserved annotation. Each dot depicts one miRNA family, coloured by the expression of its top expressed member in
the tissue (23). The size of the dot indicates the number of predicted targets significantly downregulated in the dataset. (B) CD plot showing a site type
dependent downregulation of miR-7a-5p targets using the scanMiR mouse annotation. Genes classified as ‘no site’ do not contain a canonical 7mer or
8mer site.

richMiR is also able to detect functional miRNA enrich-
ment signals under such more physiological conditions, us-
ing neuron stimulation with the GABA-A receptor blocker
picrotoxin (PTX) as a paradigm. Rajman and colleagues
have shown that PTX stimulation for 48h leads to an in-
crease in miR-129-5p levels, and that this miRNA is re-
quired for the PTX-mediated changes in neuronal activ-
ity mediated by synaptic downscaling (44). While an en-
richMiR analysis on the transcriptional changes observed
upon PTX stimulation in hippocampal neurons with the
siteoverlap test did not yield a miRNA passing the FDR-
threshold of 0.05, miR-129-5p was ranked as the top candi-
date (Figure 3A). This shows that, even when the signal is
insufficient to provide proper statistical power, enrichMiR
can serve as a powerful discovery tool by ranking poten-
tial candidates for further investigation. Supporting this no-
tion, CD plots of miR-129-5p further corroborate its pre-
dicted involvement in post-transcriptional regulation of the
neuronal response upon PTX-treatment (Figure 3B, Sup-
plementary Figure S9).

Finally, we wondered whether the increase of miR-129-
5p activity upon PTX-stimulation could be linked to a par-
ticular cellular component. Calcium-signalling is essential
for synaptic downscaling (45), and it has been shown that
miR-129-5p regulates the calcium pump Atp2b4 (44). By
conducting an enrichMiR analysis on the GO-Term ‘Cal-
cium channel complex’ we obtained further support for an
involvement of miR-129-5p in regulating calcium signalling
upon PTX stimulation in neurons (Figure 3C).

CONCLUSION

enrichMiR provides a user-friendly workflow to perform
miRNA target enrichment analyses in a very flexible man-
ner, implementing various tests based on different binding
site collections. Its web application enables users not es-

pecially trained in bioinformatics to conduct such analy-
ses with a set of benchmarked statistical tests and inter-
pret their results with the help of customizable, publication-
ready plots. In addition, the downloadable plot data and
R package allows more skilled users to seamlessly integrate
analyses in their workflows and adapt the functions to other
purposes or annotations.

Of the subset of other similar tools that have the same
specific aim, i.e. miRNA target enrichment analysis, only
some have a web interface enabling their use by a wide audi-
ence (Table 1). Those that do (e.g. Mienturnet, miTEA and
mirExTra) have a number of major shortcomings. In partic-
ular they are mostly based on feature-level hypergeometric
approaches that generally yield a high number of false posi-
tives (see Figure 1) and are as such very suboptimal for this
specific task. Moreover, most other tools are very restricted
in the input formats they accept, and in some cases they do
not even allow the specification of a background/universe,
which is critical to such approaches. Furthermore, none of
the other tools enable the visualization of cumulative fold-
change distribution plots, which is the gold standard to plot
genuine miRNA effects. The web interface of enrichMiR
not only addresses these gaps, but contains a number of ad-
ditional features, such as preset miRNA expression collec-
tions and support for transcript-level inputs (which to our
knowledge only enrichMiR allows so far). Finally, enrich-
MiR is the only tool offering access to the scanMiR binding
site database, enabling to disentangle miRNAs with identi-
cal seeds by using the newly-developed lmadd test (Supple-
mentary Figure S7).

To guide users, we provide a benchmark of the imple-
mented tests. When the annotation consists of relatively few
high-confidence targets, we find that the siteoverlap and
woverlap tests perform best for binary inputs, and that the
areamir test performs best for continuous input. When us-
ing broader annotations, such as those generated with scan-
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Figure 3. enrichMiR analysis suggests a role of miR-129-5p upon PTX treatment in neurons. An enrichMiR analysis was performed on the 5’000 highest
expressed genes of a DEA generated from RNA-sequencing data of hippocampal neurons treated with PTX versus control (44). (A) Enrichment plot
depicting the ranking of miRNAs by enrichment and p-value as assessed with the siteoverlap test on the TargetScan rat conserved annotation. Each dot
depicts one miRNA family, coloured by the expression of its top expressed member in hippocampal neurons (44). The size of the dot indicates the number
of predicted significantly downregulated target genes of each miRNA. (B) CD plot indicating a downregulation of miR-129–5p targets using the ScanMiR
rat annotation (split by best site type, ‘no site’ indicating genes without a canonical 7mer or 8mer binding site). (C) An enrichMiR analysis of genes
belonging to the GO-Term ‘Calcium channel complex’ against the same background of expressed genes as used before (44) employing the siteoverlap test
and the Targetscan rat conserved annotation reveals a significant enrichment of miR-129 targets in this gene set.

MiR, we instead recommend the lmadd test. Of note, most
tests are incorrectly calibrated, yielding a higher FDR than
the one reported. This means that enrichment results should
be interpreted as supportive evidence or to generate hy-
potheses for further studies rather than as conclusive ev-
idence. The potential for enrichMiR to detect functional
post-transcriptional regulators in various settings depends
of course largely on the availability and accuracy of pre-
compiled binding site collections. We expect those databases
to get more accurate and comprehensive in the future. Due
to its flexible nature, enrichMiR can also easily include such
novel binding site collections for target enrichment analy-
ses. We for instance included the additional option to per-
form RNA-binding protein (RBP) target enrichment based
on the oRNAment database (46) (see Supplementary Fig-

ure S10 for an example RBP target enrichment analysis).
Finally, we expect that with the generation of more detailed
transcript level quantifications upon cellular stimulation,
miRNA target enrichment analyses based on transcript
level target annotations will become increasingly important.
We hope that the enrichMiR suite will assist researchers, es-
pecially those with a wet-lab background, in choosing can-
didates for functional studies following initial screening ex-
periments.

DATA AVAILABILITY

The enrichMiR R package is available at https://github.
com/ETHZ-INS/enrichMiR and the shiny web application
at https://ethz-ins.org/enrichMiR/ (without login require-
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ments). Scripts and functions used to generate the results
and plots of this paper are available at: https://github.com/
ETHZ-INS/enrichMiR paper.
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Supplementary Data are available at NAR Online.
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Schlenska-Lange,A., Klein,C.A., Keller,A. and Kirsch,S. (2021)
Single-cell microRNA sequencing method comparison and

https://github.com/ETHZ-INS/enrichMiR_paper
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkac395#supplementary-data


Nucleic Acids Research, 2022, Vol. 50, Web Server issue W289

application to cell lines and circulating lung tumor cells. Nat.
Commun., 12, 4316.

37. Wang,N., Zheng,J., Chen,Z., Liu,Y., Dura,B., Kwak,M.,
Xavier-Ferrucio,J., Lu,Y.-C., Zhang,M., Roden,C. et al. (2019)
Single-cell microRNA-mRNA co-sequencing reveals non-genetic
heterogeneity and mechanisms of microRNA regulation. Nat.
Commun., 10, 95.

38. Fuchs Wightman,F., Giono,L.E., Fededa,J.P. and de la Mata,M.
(2018) Target RNAs strike back on MicroRNAs. Front. Genet., 9,
435.

39. Kleaveland,B., CY,S., Stefano,J. and DP,B. (2018) A network of
noncoding regulatory RNAs acts in the mammalian brain. Cell, 174,
350–362.

40. Shi,C.Y., Kingston,E., Kleaveland,B., Lin,D.H., Stubna,M.W. and
Bartel,D.P. (2020) The ZSWIM8 ubiquitin ligase mediates
target-directed microRNA degradation. Science, 370, eabc9359.

41. Han,J., LaVigne,C.A., Jones,B.T., Zhang,H., Gillett,F. and
Mendell,J.T. (2020) A ubiquitin ligase mediates target-directed
microRNA decay independently of tailing and trimming. Science,
370, eabc9546.

42. Schratt,G. (2009) MicroRNAs at the synapse. Nat. Rev. Neurosci., 10,
842–849.

43. Rajman,M. and Schratt,G. (2017) MicroRNAs in neural
development: from master regulators to fine-tuners. Development,
144, 2310–2322.

44. Rajman,M., Metge,F., Fiore,R., Khudayberdiev,S., Aksoy-Aksel,A.,
Bicker,S., Ruedell Reschke,C., Raoof,R., Brennan,G.P., Delanty,N.
et al. (2017) A microRNA-129-5p/Rbfox crosstalk coordinates
homeostatic downscaling of excitatory synapses. EMBO J., 36,
1770–1787.

45. Turrigiano,G. (2012) Homeostatic synaptic plasticity: local and
global mechanisms for stabilizing neuronal function. Cold Spring
Harb. Perspect. Biol., 4, a005736.

46. Benoit Bouvrette,L.P., Bovaird,S., Blanchette,M. and Lécuyer,E.
(2020) oRNAment: a database of putative RNA binding protein
target sites in the transcriptomes of model species. Nucleic Acids Res.,
48, D166–D173.


