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Abstract

Background: Transcriptional networks coordinate adipocyte differentiation and energy metabolism in rodents. The
level of fiber and starch in diets with adequate energy content fed to young cattle has the potential to alter intramuscular
adipose tissue development in skeletal muscle. Post-weaning alterations in gene expression networks driving
adipogenesis, lipid filling, and intracellular energy metabolism provide a means to evaluate long-term effects of nutrition
on longissimus muscle development across cattle types.

Results: Longissimus lumborum (LL) from Angus (n = 6) and Angus X Simmental (A X S; n = 6) steer calves (155 + 10 days
age) fed isonitrogenous high-starch (HiS; 1.43 Mcal/kg diet dry matter; n = 6) or low-starch (LoS; I.19 Mcal/kg diet dry
matter; n = 6) diets was biopsied at 0, 56, and |12 days of feeding for transcript profiling of 31 genes associated with
aspects of adipogenesis and energy metabolism. Intake of dietary energy (9.44 + 0.57 Mcal/d) across groups during the
study did not differ but feed efficiency (weight gain/feed intake) during the first 56 days was greater for steers fed HiS.
Expression of PPARG increased ca. 2-fold by day 56 primarily due to HiS in A x S steers. Several potential PPARG-target
genes (e.g., ACACA, FASN, FABP4, SCD) increased 2.5-to-25-fold by day 56 across all groups, with responses (e.g., FASN,
FABP4) being less pronounced in A x S steers fed LoS. This latter group of steers had markedly greater blood plasma
glucose (0.99 vs. 0.79 g/L) and insulin (2.95 vs. 1.17 pg/L) by day |12, all of which were suggestive of insulin resistance.
Interactions were observed for FABP4, FASN, GPAM, SCD, and DGAT?2, such that feeding A % S steers high-starch and
Angus steers low-starch resulted in greater fold-changes by day 56 or |12 (GPAM). Marked up-regulation of INSIG/ (4-
to-8-fold) occurred throughout the study across all groups. SREBF| expression, however, was only greater on day |12
namely due to LoS in A X S steers. The lipogenic transcription factor THRSP was 6-to-60-fold greater by day 56 primarily
due to HiS in A x S steers, constituting the greatest response among all genes.

Conclusion: Results involving gene markers of mature adipocytes (e.g., PPARG, THRSP, SCD) provided evidence of
intramuscular adipose tissue differentiation during the early portion of the growing phase. The resulting gene networks
underscored a central role for PPARG in controlling transcription of genes which are known to co-ordinately regulate
adipocyte differentiation and lipid filling in non-ruminants. Unlike rodents, INSIG| appears to play an important role in
cattle muscle adipogenesis. We propose that a network of transcription regulators and nuclear receptors including
PPARG-target genes, INSIG I, and THRSP, coordinate activation of adipocyte differentiation and lipid filling at an early age.
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Background

Most biological traits are complex, i.e. they are under the
control of an interacting network of genes, each with a
small effect, and of environmental factors such as nutri-
tion [1]. Metabolic regulation in complex organisms relies
partly on transcriptional control as a long-term mecha-
nism affecting the level of expression of key enzymes [2].
In rodents, there is high correlation between mRNA
expression of target genes and recruitment of lipogenic
transcription factors or nuclear receptors and their co-reg-
ulatory proteins to promoter regions, suggesting that gene
expression analysis is useful for inferring transcriptional
activity [3]. Transcriptional regulation of hepatic lipo-
genic gene expression, adipogenesis, and skeletal muscle
fatty acid oxidation in rodents is under control of sterol
regulatory element binding factor 1 (SREBF1) [4] and the
ligand-activated nuclear receptors PPARy (PPARG) and
PPARS (PPARD) [5,6]. Less is known regarding the molec-
ular events during skeletal muscle growth in livestock spe-
cies such as cattle and pigs [7]. However, recent work has
begun to explore large-scale transcriptomic adaptations in
skeletal muscle of cattle in response to plane of nutrition
(e.g., normal vs. underfeeding) or age [8-11]. Although
mRNA expression is one of multiple factors to be consid-
ered when studying the complex molecular networks
working simultaneously in tissues of varying cell types
(e.g., myocytes, non-differentiated stem cells, pre-adi-
pocytes, adipocytes [7]) like skeletal muscle, it provides
valid information to aid in designing more detailed func-
tional studies.

Young steer calves are relatively more efficient at convert-
ing nutrients to muscle gain [12,13]. Weaning calves at an
earlier age than the conventional 205 days is a manage-
ment practice that has shown to enhance growth rate,
modify carcass composition, and modify meat quality
[14-16]. Exposing them to high-starch diets at an early vs.
conventional age could increase the likelihood that they
reach their genetic potential to marble (i.e., deposit intra-
muscular fat). To our knowledge, no studies have been
conducted to examine the influence of dietary starch level
at an early age on gene networks regulating pivotal path-
ways for desired phenotypes of economically-important
traits. High-starch/low-fiber diets, through shifting the
pattern of end-products of ruminal fermentation towards
greater propionate, provide readily-available sources of
energy (i.e., glucose) for growing muscle in early-weaning
management systems [12,13]. A previous study with
early-weaned Angus x Simmental steers reported greater
intramuscular fat and backfat thickness at the end of the
growing phase in animals fed a high-starch vs. high-fiber
diet [17]. Energy available for gain was ca. 35% greater in
steers fed the high-starch diet, which undoubtedly con-
tributed to enhanced fat deposition.

http://www.biomedcentral.com/1471-2164/10/142

The central hypotheses of the present study were that adi-
pogenic and energy metabolism gene networks in longis-
simus lumborum (LL) muscle tissue during rapid post-
weaning growth would be altered to different extents by
genotype as well as feeding diets that varied in level of
starch but provided similar amounts of energy for gain.
Thus, specific objectives were to study mRNA expression
of selected genes associated with insulin signaling and
glucose transport, fatty acid uptake and activation, intrac-
ellular fatty acid transport, de novo fatty acid synthesis,
esterification, desaturation, transcriptional regulation of
adipogenesis and differentiation, and energy metabolism
(Table 1). These genes potentially compose a large inter-
active network [6,7] controlling metabolism in cells of
cattle LL tissue.

Results and discussion

Animal performance

A primary objective was to manipulate the profile of rumi-
nal fermentation products (e.g., increase propionate)
through feeding diets with different levels of starch and
fiber. Classical studies showed that intravenous infusions
(14-day) of propionate or glucose (relative to saline, ace-
tate, or lactate) into steers promoted greater in vitro incor-
poration of glucose, acetate, and lactate into
subcutaneous adipose tissue lipid [18]. This response was
accompanied by greater fatty acid synthetase (FASN),
acetyl-CoA carboxylase-a. (ACACA), and ATP-citrate lyase
(ACLY), as well as unchanged malate dehydrogenase 2,
NAD (mitochondrial) (MDH2) activity primarily when
glucose was infused. The relative potency of substrates for
inducing lipogenesis in ruminant adipose tissue was pro-
posed to be glucose > propionate > lactate > acetate [18].

Despite the well-defined greater rates of lipogenesis in
subcutaneous adipose tissue of cattle [19], work also has
shown greater intramuscular adipose FASN activity in 16—
18 month-old steers fed high-starch (i.e., corn grain) vs.
low-starch diets (i.e., corn silage) [20]. Intramuscular adi-
pose tissue from steers fed the high-starch diet incorpo-
rated more glucose than acetate into glyceride-fatty acids
and this response was augmented by age [20]. Due to glu-
coneogenesis in liver, both propionate and lactate can
indirectly modulate adipose tissue lipogenesis through
increased glucose synthesis, availability, or both. The glu-
cogenic effect of high-starch diets is often accompanied by
an enhanced insulin response [21], a well-known adipo-
genic/lipogenic signal in rodents [22]. There is some indi-
cation, however, that insulin in mature cattle is not as
effective in increasing in vivo rates of lipogenesis in sub-
cutaneous adipose as it is in rodents [23]. The responsive-
ness to insulin and abundance of insulin receptors
increases dramatically as preadipocytes undergo terminal
differentiation into adipocytes [7].
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Table I: Description of genes analyzed in skeletal muscle tissue.
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Gene symbol! Cellular localization

Biological process

ACACA Cytoplasm

ACLY Cytosol

ACSLI Plasma and ER membranes
AGPATI ER membrane

CD36 Plasma membrane

DGATI ER membrane

DGAT2 ER membrane

FABP4 Cytosol

FADS2 ER membrane

FASN Cytosol

G6PD Cytosol

GPAM Cytosol, mitochondria
INSIGI ER membrane

INSR Plasma membrane

IRSI Cytosol

LPINI Nucleus, ER, cytosol
LPIN2 ER, cytosol

LPIN3 ER, cytosol

MDH2 Mitochondrial matrix
PPARD Nucleus

PPARG Nucleus

PPARGCIA Nucleus

PPARGCIB Nucleus

PRKAAI Cytosol

PRKAA2 Cytosol

SCAP ER membrane, Golgi

SCD ER membrane

SLC27A1 Plasma and ER membranes
SLC2A4 Plasma membrane, cytosol
SREBFI Golgi and ER membranes, nucleus
THRSP Nucleus

Fatty acid biosynthesis

Citrate metabolic process

Fatty acid metabolism

Phosphatidic acid biosynthesis

Fatty acid metabolism

Triacylglycerol metabolism

Triacylglycerol metabolism

Fatty acid binding, transport

Unsaturated fatty acid synthesis

Fatty acid biosynthesis

Pentose-phosphate shunt

Triacylglycerol biosynthesis

Lipid metabolism, cell proliferation

Insulin receptor signaling

Insulin receptor signaling

Phosphatidic acid hydrolysis, transcription
Phosphatidic acid hydrolysis

Phosphatidic acid hydrolysis

Tricarboxylic acid cycle, malate metabolic process
Fatty acid beta-oxidation, transcription
Induction of adipocyte differentiation, transcription
Fatty acid beta-oxidation, transcription factor
DNA-dependent regulation of transcription
Fatty acid biosynthesis, signal transduction
Fatty acid biosynthesis, signal transduction
SREBP target gene transcription activation
Fatty acid biosynthesis

Fatty acid transport

Glucose transport, glucose homeostasis
Transcription regulation

Lipid metabolic process

IEntrez Gene, National Center for Biotechnology Information (NCBI)

All steers in our study consumed increasing amounts of
feed as the study progressed (Additional File 1), a
response associated with increasing concentrations of
plasma hydroxybutyrate (BHBA; Additional File 1), glu-
cose, and insulin between days 56 and 112 (Figure 1).
Despite the greater energy content (ca. 20%) in the high-
starch (HiS) vs. low-starch (LoS) diet, calculated energy
intake did not differ significantly during the study (Table
2). However, it was evident that the greater feed intake by
Angus x Simmental (A x S) steers fed LoS led to numeri-
cally greater amounts of energy consumption partly
explaining greater blood glucose and insulin on day 112
(Figure 1). In general, the high-starch diet was most effica-
cious in terms of growth and performance during the first
56 days of the study regardless of steer type (Table 2). In
addition, the high-starch diet resulted in numerically-
greater feed efficiency and lower residual feed intake dur-
ing the feeding period. Marbling score on day 112 was
greater in Angus steers but was not affected by diet. Previ-
ous early-weaned studies with A x S steers showed that
feeding high-starch diets containing ca. 35% to 60% more
net energy for gain (NE) than low-starch diets resulted in

greater body weight, daily rates of gain, and greater feed
efficiency despite similar rates of feed intake [17,24]. It is
not surprising in our study that the overall diet effect (i.e.,
for the 112 day study) was non-significant on most per-
formance measures because NE intake due to HiS and
LoS did not differ (Table 2; Additional File 1).

Performance responses, including feed intake, energy
intake, and residual feed intake from the subset of steers
used for transcript profiling was comparable to the whole
group of animals in the entire experiment (Additional File
1) suggesting that the steers randomly chosen for tran-
script profiling were representative of the entire group.
Furthermore, each steer served as its own control because
of the repeated sampling over time. Similar approaches
for transcript profiling studies of skeletal muscle tissue
have been used previously [8,11].

Previously, high-starch vs. low-starch diets fed to early-
weaned A x S steers (n = 19-20/diet) for 100 days resulted
in moderately greater intramuscular fat (3.6% vs. 3.2%)
measured via ultrasound [17]. Our steers fed LoS, how-
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Figure |

Blood serum concentrations of glucose and insulin
during the growing phase in Angus or A X S steers (n
= 6/type) fed a high-starch (HiS, n = 3/type) or low-
starch (LoS, n = 3/type) diet. Asterisks denote (P < 0.05):
*Time effect; **Diet effect; ***Steer type effect. Glucose had
(P < 0.05) a diet x steer type interaction effect. Insulin had (P
< 0.05) diet x steer type and diet X steer type X day interac-
tions. Superscripts denote differences (P < 0.06) among
treatments at specific time points.

ever, consumed greater overall amounts of energy than
those fed LoS in the study of Schoonmaker et al. [17]. We
were unable to obtain reliable measurements of marbling
at 56 days of feeding but mRNA expression data discussed
in the subsequent sections is indicative of diet effects on
adipogenesis and lipid filling. Because the vast majority of
metabolic enzymes in mammals are regulated at the tran-
scriptional level [2], measurement of mRNA for multiple
genes and their networks in a pathway should expand our
understanding of muscle and fat development [7] in

http://www.biomedcentral.com/1471-2164/10/142

response to nutrition, genotype, and their interaction
[9,11].

Transcriptional regulatory networks of adipogenesis in LL
Several growth factors in blood such as insulin, insulin-
like growth factor-1 (IGF-I), growth hormone, thyroid
hormones (i.e., triiodothyronine), as well as vitamins
[25], are required to stimulate proliferation of pre-adi-
pocytes [7]. Classical studies in cattle demonstrated sub-
cutaneous adipocyte hyperplasia between 4 and 7 months
of age [26], and between 11 and 17 months of age [27].
There also are well-defined age-related increases in subcu-
taneous adipose ACLY, glucose-6-phosphate dehydroge-
nase (G6PD), ACACA, and FASN activity in growing
crossbred steers fed high-starch vs. low-starch diets, which
correlated with in vitro lactate and acetate incorporation
into lipid [19,23]. During rapid post-weaning growth it is
possible that a population of pre-adipocytes exits the pro-
liferative phase and enters terminal differentiation [7].

PPARG networks

PPARG role in marbling deposition could be crucial
because in non-ruminants most pro-adipogenic factors
seem to function at least in part by activating PPARy
expression or activity [22]. Up-regulation of PPARy is suf-
ficient to induce adipocyte differentiation in vitro and no
factor has been discovered that promotes adipogenesis in
the absence of PPARy [22]. Terminal differentiation of
adipocytes requires up-regulation of mRNA of fatty acid
binding protein 4 (FABP4), G6PD, FASN, and ACACA,
among others, which are under the control of PPARy
[7,28]. Additional PPARG-target genes [7,22] analyzed in
the present study included: ACLY, CD36 molecule
[thrombospondin receptor] (CD36), diacylglycerol O-
acyltransferase homolog 1 and 2 (DGAT1 and 2), stearoyl-
CoA desaturase (SCD), mitochondrial glycerol-3-phos-
phate acyltransferase (GPAM), insulin induced gene 1
(INSIG1), insulin receptor (INSR), insulin receptor sub-
strate 1 (IRS1), solute carrier family 2 [facilitated glucose
transporter] member 4 (SLC2A4), solute carrier family 27
[fatty acid transporter] member 1 (SLC27A1), and sterol
regulatory element binding transcription factor 1
(SREBF1).

Recent in vitro studies showed that bovine perimuscular
pre-adipocytes induced to differentiate with insulin and
glucocorticoids had greater mRNA expression of PPARG,
SREBF1, FABP4, acyl-CoA synthetase long-chain family
member 1 (ACSL1), and FASN after 2 days in culture com-
pared with control [29]. Further, PPARG and FABP4
expression remained elevated through 8 days in culture,
suggesting both were essential to sustain the differentia-
tion program or that they are abundantly expressed in
mature adipocytes [29]. In our study, overall expression of
PPARG mRNA increased ca. 2-fold by day 56 primarily
due to the large increase in A x S steers fed HiS. Expression
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Table 2: Animal performance in response to a high-starch (HiS) or low-starch (LoS) diet during a 112-d growing phase.

Treatments
HiS LoS P value

Item Angus AXxS Angus AXxS SEM Diet Steer type Diet x Steer type
Body weight (kg)
Birth 399 40.5 36.3 40.1 1.6 0.23 0.20 0.34

Initial, d 0 165 177 135 195 15 0.36 0.26 0.39

d 56 243 254 196 268 14 0.27 0.02 0.07

Final, d |12 331 352 294 373 16 0.61 0.01 0.10
ADG (kg/d)

O0to56d 1.40 1.38 1.08 1.32 0.07 0.02 0.15 0.09

56to 112d 1.56 1.73 1.74 1.86 0.08 0.11 0.11 0.75

Otoll2d 1.48 1.56 1.41 1.59 0.07 0.77 0.10 0.47
Dry matter intake (kg/day)

O0to56d 6.34 6.24 5.88 7.79 0.42 0.23 0.06 0.04

56to 112d 745 742 8.04 9.56 0.52 0.03 0.18 0.17

Otoll12d 6.73 6.75 6.77 8.56 0.45 0.07 0.04 0.05
NE intake (Mcal/day)'

0to56d 9.07 893 6.99 9.27 0.56 0.16 0.09 0.06

56to 112d 10.6 10.6 9.57 1.4 0.67 0.8l 0.21 0.21

Otoll12d 9.77 9.67 8.13 10.2 0.57 0.36 0.12 0.09
Residual feed intake -0.63 -1.58 1.22 1.10 0.62 0.006 0.41 0.52
Feed efficiency? (kg/kg)4

Oto56d 0.22 0.22 0.18 0.17 0.02 0.04 0.68 0.75

56to 112d 0.21 0.24 0.22 0.19 0.0l 0.29 0.86 0.14

Otoll12d 0.22 0.23 0.21 0.18 0.01 0.09 0.77 0.35
Day |12 ultrasound

Marbling score 437 3.97 4.90 4.05 0.24 0.21 0.06 0.39

Back fat (mm) 0.21 0.16 0.14 0.13 0.03 0.16 0.43 0.62

Muscle depth (mm) 534 51.8 53.0 48.9 33 0.6l 0.52 0.74

I Estimated from actual dry matter intake (kg/day) x calculated NEg (1.19 or 1.43 Mcal/kg diet dry matter for HiS or LoS).

2ADG/feed intake.

of several of its potential target genes (e.g., ACACA, FASN,
FABP4, SCD) increased to a much greater extent (Figure 2,
3, 4). Similar responses were observed recently in high-
marbling Wagyu x Hereford vs. low-marbling Piedmon-
tese x Hereford heifers at 7 months of age relative to 3
months of age [11].

Among all potential PPARy target genes, we found a
highly-positive and significant correlation between FABP4
and PPARG regardless of steer type or diet (Additional File
2) which is suggestive of an increase in PPARy activity. We
recently presented direct evidence, via use of the PPARy
agonist rosiglitazone, that SREBF1, FASN, ACACA and
potentially FABP4 and thyroid hormone responsive
(SPOT14 homolog, rat) (THRSP) are PPARG target genes
in the bovine [30]. Some of the above genes remained ele-
vated through day 112 regardless of diet or steer type.
Along with PPARG, the expression patterns of FASN,
FABP4, SCD, ACLY, THRSP, and DGAT2 clustered
together into the most up-regulated group of genes (Addi-
tional File 1). This observation together with the correla-
tion data (Additional File 2) for FASN, SCD, ACLY, and

DGAT2 with PPARG, in particular, provides additional
evidence that they likely are PPARG downstream genes in
cattle. Considering the essential role of PPARy in adipo-
genesis [7], we speculate that these genes could be consid-
ered an essential subset for adipocyte differentiation and
lipid filling. Previous work showed intramuscular adi-
pocyte hyperplasia (i.e., proliferation) occurring at 11
through 17 months of age [27]. Increased adipocyte
number in our study encompassing steers ca. 4-8 months
of age is supported by some of the measured genes which
are highly abundant in adipose compared with other tis-
sues in mammals (e.g. PPARG, DGAT2, FABP4, SCD; [7]),
and also by the increase in total fatty acid concentration in
muscle tissue over time (Additional File 1).

We observed interaction effects (including tendencies) on
the mRNA expression patterns of FABP4, ACLY, FASN,
SCD, GPAM, and DGAT2. Hierarchical clustering analysis
clearly highlighted differences in expression of these genes
across steer type and diet combinations (Additional File
1). All these genes had the opposite response between
steer types when fed the two diets particularly on day 56,
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Figure 2

mRNA expression patterns of genes associated with ligand-dependent transcriptional control of adipocyte dif-
ferentiation and ligand-dependent activation of lipogenesis (PPARG), and transcriptional regulation of lipogen-
esis (THRSP, SREBFI, INSIGI) in Angus or A x S steers (n = 6/type) fed a high-starch (HiS, n = 3/type) or low-
starch (LoS, n = 3/type) diet. Fold-change expression during the growing phase is expressed relative to day 0. Pooled SEM:
PPARG, 0.5; THRSP, 8.8; INSIGI, 0.9; SREBFI, 0.2. Asterisks denote (P < 0.05): *Time effect; **Diet effect; ***Steer type effect;
*#+*Tendency (P = 0.13) for diet effect. SREBF| and THRSP had significant (P < 0.05) diet X steer type and diet X steer type X
day interactions. Superscripts denote differences (P < 0.05) among treatments at specific time points. #P = 0.10, LoS-A X S vs.

LoS-Angus, HiS-Angus, HiS-A x S.

e.g., feeding HiS to A x S steers resulted in the greatest
response compared with A x S steers fed LoS. Also, Angus
steers responded with greater values for most of these
genes when LoS was fed (Figures 3, 4). There was a clear
time effect on all the lipogenic genes (e.g., ACACA, FASN,
SCD) with peak expression at 56 days and a moderate
decrease thereafter. At 112 days, few of these genes had
significant differences between groups, with an overall
tendency for Angus steers to have greater values. In gen-
eral, these data agree with marbling scores measured at
112 days showing greater responses in Angus steers.

The common trend for decreased mRNA expression after
56 days seems to suggest that the initial adipogenic
response through 56 days did not influence intramuscular
fat deposition by 112 days. There is evidence of positive
correlations between mRNA expression of certain lipo-
genic genes/transcription regulators and intramuscular fat
content in crossbred cattle [11]. However, it was intrigu-
ing that A x S steers fed HiS, with numerically lower mar-
bling score at day 112, had the same pattern of expression

among all adipogenic genes compared with Angus steers
fed LoS, which in the end had numerically greater mar-
bling scores. It also is noteworthy that A x S steers fed LoS
had lower temporal expression of most genes driving adi-
pogenesis (Figure 2, 3, 4) without discernable effects on
marbling scores. Potential carry-over effects of high-starch
diets on intramuscular fat content need to be evaluated
during the finishing phase and/or at slaughter.

SREBFI networks

SREBP1 is a pro-adipogenic factor regulating transcrip-
tional cascades primarily in rodent liver [4]. The transcrip-
tion factor binds specific DNA domains [4] eliciting
transcription of genes involved in lipid and cholesterol
metabolism. A direct crosstalk with PPARy or via genera-
tion of a lipid PPARy-ligand whose identity is still
unknown has been proposed as an additional mechanism
during adipocyte differentiation [31]. We have evidence
that SREBF1 is a PPARy-target gene in bovine cells [30].
The role of SREBP1c on lipid homeostasis in rodent cells/
tissues (primarily hepatocytes) has been well-established
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mRNA expression patterns of genes associated with insulin signaling (INSR, IRS), insulin-stimulated glucose
uptake (SLC2A4), cytosolic NADPH generation (G6PD), malate-aspartate shuttle (MDH2), cytosolic acetyl-
CoA synthesis from citrate (ACLY), and de novo fatty acid synthesis (ACACA, FASN) in Angus or A X S steers (n
= 6/type) fed a high-starch (HiS, n = 3/type) or low-starch (LoS, n = 3/type) diet. Fold-change expression during the
growing phase is expressed relative to day 0. Pooled SEM: INSR, 0.1; IRS/, 0.2; SLC2A4, 0.2; G6PD, 0.6; MDH2, 0.2; ACLY, 0.7;
ACACA, 0.5; FASN, 1.2. Asterisks denote (P < 0.05): *Time effect; **Diet effect; ***Steer type effect; ***Tendency (P < 0.13) for
diet x steer type % day interaction. IRS/ and FASN had (P < 0.05) a diet X steer type interaction. FASN had (P < 0.05) a diet X
steer type X day interaction. Superscripts denote differences (P < 0.05) among treatments at specific time points.

[7,32]. At normal levels of expression in murine liver,
SREBP1c activates expression of ACLY, G6PD, ACACA,
FASN, SCD, and GPAM leading to synthesis of palmitic
acid, oleic acid, and formation of triacylglycerol (TAG)
[32]. Similar responses have been reported in murine adi-
pose tissue [33]. Recent data, however, casts some doubt
on the essentiality of SREBP1 for regulation of rodent adi-
pocyte lipogenic gene expression [34].

In our study, mRNA of SREBF1 was significantly greater
between 56 and 112 days in all groups except A x S steers
fed HiS (Figure 2). mRNA of INSIG1 had greater up-regu-
lation by 56 days and remained elevated through 112
days in all groups except A x S steers fed HiS. The overall
increase in expression of SREBF1, at least through the sec-
ond portion of the feeding phase, is additional indication
of an enrichment [22] of intramuscular adipocytes. Induc-
tion of adipogenesis in bovine bone marrow stromal cells
led to greater SREBF1 mRNA several days after they were
induced to differentiate [35]. It could be possible that
changes in SREBF1 expression exert some level of control
over intramuscular lipogenesis in growing cattle, but the
substantial and sustained increase in expression of
INSIG1 along with its high mRNA abundance relative to
SREBF1 (Additional File 1) are indicative of low activity of

SREBP1. Furthermore, a recent study in rodents found
that lipogenic gene expression in adipose tissue was inde-
pendent of SREBP1 [34]. Together, these observations cast
doubt on the essentiality of this transcription factor in cat-
tle intramuscular fat accumulation.

INSIG1 mRNA in murine adipose tissue is induced by
activation of PPARy but it occurs relatively late in the adi-
pogenic program, preceded by peak of PPARG and
SREBF1 mRNA expression [36]. In fact, both PPARG and
SREBF1 activate transcription of INSIG1 and regulate its
expression during adipogenesis [36]. The primary func-
tion of INSIG1 in adipose tissue or liver is to block
processing of SREBP1 [33]. However, it is believed that
concomitant increase in the activation of INSIG1 and
SREBP1 is a counterbalance mechanism ("brake") to pre-
vent uncontrolled SREBP1 action, i.e. lipogenesis [33,37].
Up-regulation of INSIG1 transcription in adipocytes effec-
tively down-regulated expression of PPARG and SREBF1,
essentially blocking differentiation of pre-adipocytes [33].
Thus, an increase in expression of INSIG1 provides a feed-
back signaling mechanism to restrict both lipogenesis and
adipogenesis. Our data, however, do not seem to support
such a mechanism in bovine muscle because the response
in INSIG1 expression was greater in Angus steers, which
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mRNA expression patterns of genes associated with intracellular activation of fatty acids to acyl-CoA (ACSLI),
glycerol-3-phosphate acylation (GPAM), acylglycerol-phosphate acylation (AGPATI), diacylglycerol formation
(LPIN2), intracellular fatty acid transport (FABP4), acylation of diacylglycerol and formation of TAG (DGAT2),
and desaturation (SCD, FADS2) in Angus or A X S steers (n = é/type) fed a high-starch (HiS, n = 3/type) or low-
starch (LoS, n = 3/type) diet. Fold-change expression during the growing phase is expressed relative to day 0. Pooled SEM:
ACSLI, 0.2; GPAM, 0.3; AGPAT I, 0.1; LPIN2, 0.1; FABP4, 4.2; DGAT?2, 3.8; SCD, 1.8; FADS2, 0.2. Asterisks denote (P < 0.05): *Time
effect; **Diet effect; ***Steer type effect; ****Tendency (P = 0.08-0.11) for diet X steer type X day interaction; ****Tendency
(P = 0.11-0.13) for steer type effect. ACSLI and GPAM had (P < 0.05) diet x steer type X day interactions. FABP4 and DGAT2
had (P < 0.05) diet x steer type interactions. Superscripts denote differences (P < 0.05) among treatments at specific time

points.

had greater marbling scores at 112 days. In addition,
Angus steers fed LoS had the greatest increase in expres-
sion of INSIG1 as well as numerically highest marbling
scores and total fatty acids in muscle tissue (Additional
File 1). INSIG1 is a PPARy target gene in the mouse [36]
and previous data from our laboratory provided evidence
of the same in the bovine [30]. These findings point to a
crucial role for PPARy in controlling intramuscular lipo-
genesis in cattle. The pattern of INSIGI expression
together with its apparent regulation via PPARy suggest
that this gene might be a pro-lipogenic rather than anti-
lipogenic factor as inferred in the mouse [36].

THRSP networks

THRSP is another important gene during adipocyte differ-
entiation in rodents and is partly regulated by thyroid hor-
mone [28,38,39]. In rodents, thyroid hormone exerts
sustained up-regulation of THRSP expression [28,38,39]
and can by itself increase rates of lipogenesis in rodent
adipose tissue. Both insulin and thyroid hormone can act
synergistically in promoting the overall process of adipo-
genesis in rodents [40]. In pigs, however, it is believed that
thyroid hormone acts synergistically with other growth
factors such as insulin-like growth factor-1 to promote adi-
pocyte differentiation [7]. A microarray study previously

identified THRSP, in addition to SCD, FABP4, and
SREBF1, as one marker gene preferentially expressed in LL
of Japanese Black vs. Holstein steers [41]. The former are
widely-known to possess extremely high capacity for mar-
bling. More recently, THRSP mRNA in LL was highly cor-
related (0.94) with intramuscular fat content in high-
marbling Wagyu x Hereford but not in low-marbling
Piedmontese x Hereford heifers [11]. Both thyroid hor-
mone and insulin are positively and significantly corre-
lated with feed intake, body weight, and average daily gain
in cattle [42]. Insulin and high-carbohydrate diets
induced THRSP mRNA in rodent liver [38] and adipose
tissue [39].

Among novel results, we observed dramatic up-regulation
by day 56 of THRSP transcription (Figure 2). A recent
study reported marked THRSP in LL of crossbred Wagyu x
Hereford vs. Piedmontese x Hereford heifers but at 25 to
30 months of age relative to 3 months of age [11]. The
former had greater (10.7% vs. 5.3%) carcass intramuscu-
lar fat at slaughter. In our study, the increase in THRSP
was not affected by dietary starch in Angus steers while in
A x S steers fed HiS it resulted in a tremendous up-regula-
tion of its mRNA abundance. As observed for classical adi-
pogenic genes, A x S steers fed LoS had greater THRSP
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expression by 56 days but the magnitude of increase was
lower compared with other groups. By 112 days, THRSP
expression was only numerically greater compared to the
pre-experimental value. In other groups, mRNA abun-
dance of THRSP was maintained at >15-fold through day
112 compared with day 0. Insulin and thyroid hormone
act synergistically to enhance THRSP-driven lipogenesis in
rodent adipose, a mechanism that seems to be in line with
the well-defined parallel increases in blood insulin and
thyroid hormone during rapid growth in cattle [21,42].
We found positive correlations between both insulin and
glucose with THRSP expression but only in Angus cattle
regardless of diet (Additional File 2). For the most part,
correlations between mRNA abundance of THRSP and
expression of lipogenic genes and PPARG were positive
and significant regardless of diet or steer type (Additional
File 2). More detailed studies will have to be conducted in
the future to determine the role, if any, of thyroid hor-
mone alone or in combination with other hormones or
growth factors in the process of adipogenesis during rapid
cattle growth.

Despite the well-defined effect of thyroid hormone on
rodent lipogenesis it also down-regulates SREBF1 mRNA
expression, both in mouse liver [43] and human adipose
tissue [44]. This effect might partly explain the contrasting
expression patterns of SREBF1 and THRSP in A x S steers
(Figure 2). Sustained up-regulation in expression of
THRSP in LL of growing cattle would partly overcome the
need for SREBF1 expression and activation of lipogenesis
because ACACA and THRSP, at least in murine liver, are
co-expressed [38] thus, THRSP regulation of ACACA in
muscle cannot be discounted.

Insulin signaling in LL inferred by gene expression, blood
metabolites, and insulin

Short-term in vitro studies with bovine myogenic cells
have demonstrated greater INSR and IRSI protein,
marked phosphorylation of IRS1, as well as greater pro-
tein of downstream effectors (phosphoinositide-3-
kinase,SLC2A4) within minutes of insulin stimulation
[45,46]. Insulin effectively stimulates muscle glucose oxi-
dation and adipogenesis [22,47], partly through up-regu-
lation of IRS1 transcription [48] and through activation of
downstream signaling cascades including transcription
factors (SREBF1), nuclear receptors (e.g., PPARG,
PPARGC), and their gene targets (e.g., FABP4, FASN).

Among INSR and IRS1, only the latter had an overall tem-
poral increase in expression, with a pattern similar in all
groups except Angus steers fed LoS, which had a decrease
in expression throughout the study (Figure 3). The greater
temporal expression pattern of SLC2A4was significant
only for A x § steers fed LoS. Both, IRS1 (~7% of total
genes; Additional File 1) and SLC2A4 (~8% of total genes)
were among the most abundant genes measured in our
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experiment, suggesting an important role in LL. Among
isoforms of IRS, expression of IRS1 appears essential for
the induction of adipogenesis mediated by insulin in
rodents [22]. The pattern of expression of IRS1 in our
experiment does not support such a role for this gene in
cattle LL. Angus steers fed LoS, which at 112 days had
numerically greater marbling score (Table 2) and total
fatty acids in muscle tissue (Additional File 1), had the
lowest increase in expression of IRS1 and lowest plasma
insulin. The low insulin together with low glucose in LoS-
fed Angus indicates that they were more insulin sensitive.
The opposite was observed for A x S steers fed LoS, which
had the lowest numerical marbling score (Table 2) and
lowest increase in expression of lipogenic genes despite
having the largest increase in expression of IRS1. These
results seem to cast doubt on an essential role of IRS1 in
adipogenesis/lipogenesis.

The importance of adipose PPARy to maintain systemic
(muscle and adipose) insulin sensitivity in non-rumi-
nants has been convincingly demonstrated [6]. Blood
insulin and glucose were clearly greater in A x S steers fed
LoS, particularly during the second half of the growing
phase (Figure 1), which could be taken as an indication of
reduced insulin sensitivity. These cattle were unique
because they consumed the greatest amounts of dry mat-
ter and energy but their growth and feed conversion effi-
ciency rates did not differ substantially from other
animals (Table 2; Additional File 1). Clustering analysis of
gene expression patterns underscored the marked differ-
ences in mRNA expression induced by feeding a low-
starch diet to these animals (Additional File 1). Insulin
resistance in A x S steers fed LoS also is supported by the
lower temporal response of PPARG-target genes (e.g.,
ACACA, FABP4) pointing to lower activity of PPARy,
which could be caused by reduced insulin signaling.

The above data are intriguing and, to some extent, coun-
terintuitive. Low-starch diets should not reduce insulin
sensitivity as suggested by data from Angus steers in which
feeding LoS led to lower plasma insulin. However, results
with A x S steers fed LoS agree with a previous study show-
ing that intramuscular fat tissue from steers fed a low- vs.
high-starch diet was less sensitive to insulin-stimulated
glucose use for lipogenesis [49]. An insulin-resistant state
in A x S steers fed LoS can partly help explain the lack of
response in expression of adipogenic genes ACACA,
FASN, FABP4, GPAM, and DGAT?2 throughout the study
(Figure 3, 4; Additional File 1) despite greater overall fold-
change in SREBF1 mRNA at 112 days (Figure 2; Addi-
tional File 1). Transcriptional regulation of SREBFI in
most non-ruminant models is sensitive to insulin, which
under times of carbohydrate excess leads to stimulation of
fatty acid synthesis and TAG deposition both in adipose
[31] and liver [32]. The decrease in insulin sensitivity also
may explain the lower expression of THRSP in A x S steers
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Major trends in mMRNA expression at 56 days on experimental diets and summary network analysis among
genes. The complete network including currently-known relationships among genes in non-ruminants from the Ingenuity Path-
way Analysis® knowledge base is available in Additional File |. The PPARG relationships depicted are based on the relative
responses found in the present study and do not represent actual fold-changes in expression as those are depicted in Figure 2—
4. Relationships dealing with insulin and glucose signaling via INSR, SLC2A4, IRS1, and their link with PPARG were from the Inge-
nuity Pathway Analysis® knowledge base and have been discussed to some extent in the review by Fernyhough et al. [6]. Other
relationships from the Ingenuity Pathway Analysis® knowledge base include those encompassing genes associated primarily with
energy metabolism. Genes with black-colored background had fold-changes in mRNA expression > 2-fold in at least one time
point in all groups. Genes with grey-colored background appear central for transcriptional regulation of adipogenesis and
energy metabolism. Together with clustering analysis (Additional File 1), data suggest that PPARy activity through up-regulation
of FABP4, DGAT2, FASN, and SCD is crucial for adipogenesis. The transcription factor THRSP was dramatically up-regulated by

the high-energy diet regardless of steer type and might constitute an important transcription regulator of adipogenesis.

fed LoS, because insulin is essential for its full expression
[40]. Overall, our data suggest that low-starch diets
induced insulin resistance in LL of A x S steers and high-
lights a difference in response to diet between pure bred
and crossbred cattle. Further research with greater number
of cattle seems warranted to examine more directly insulin
sensitivity in LL under these or similar nutritional man-
agement schemes.

Intracellular LL tissue energy metabolism

Nuclear receptors and co-activators involved in energy metabolism
During rapid muscle growth the energetic costs associated
with protein deposition and intramuscular lipogenesis in
LL tissue are expected to increase, as shown by enzymatic

activity measurements over time [9,19,23]. PPARD is a
poorly-studied nuclear receptor with a potentially impor-
tant role in skeletal muscle energy metabolism. PPARD
mRNA is several fold more abundant than PPARa in
murine skeletal muscle and effectively performs the same
function, i.e. activation of fatty acid oxidation [50]. The
co-activators peroxisome proliferator activated receptor
coactivator-lo. (PPARGC1A) and -1B (PPARGCIB) also
are involved in stimulating oxidative metabolism in skel-
etal muscle [51]. Only Angus steers fed LoS had a signifi-
cant increase in transcript abundance of PPARD
(Additional File 1). PPARGCIA was characterized by a
blunted temporal response in all groups except Angus
steers fed HiS, which had a large increase by 112 days
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(Additional File 1). PPARGC1B was consistently up-regu-
lated in steers fed HiS (Additional File 1). We found a pos-
itive correlation (except in Angus steers fed LoS) between
both PPARGC1A and PPARGCI1B with ACSL1, encoding a
protein showing to channel fatty acids towards oxidation
in heart muscle tissue [52]. ACSL1 had a significant
increase in expression over time in all groups except
Angus steers fed LoS (Figure 4).

The role of ACSL1 in fatty acid oxidation is likely con-
founded in our study because in adipose tissue this pro-
tein channels fatty acids toward synthesis of TAG, while in
muscle it channels fatty acid toward oxidation [53]. The
core biopsy tissue in our experiment contained both adi-
pocytes and muscle cells. However, the blunted response
in expression of this gene in Angus fed LoS, with greater
marbling score, are suggestive of a more prominent role
for ACSL1 in channeling fatty acids toward oxidation in
cattle muscle cells. This is supported by the positive corre-
lation between ACSL1 with PPARGC isoforms [51].

Activation of PPARD in vitro has been associated with
increased fatty acid oxidation through an AMPK-depend-
ent mechanism [54]. AMPK is a heterodymeric enzyme
that functions as an intracellular "fuel gauge" that moni-
tors changes in energy status, and it is activated upon an
increase in AMP/ATP ratio essentially reducing anabolic
pathways such as lipogenesis [55]. The catalytic subunits
of AMPK are encoded by protein kinase, AMP-activated,
alpha 1 and 2 catalytic subunits (PRKAA1 and PRKAA2).
These two genes did not respond to dietary starch (Addi-
tional File 1). Interestingly, PRKAA2 expression within
each steer type had the opposite pattern compared with
PPARD. Furthermore, PRKAA2 expression during the
study increased only in A x S steers but not in Angus.

Angus steers fed LoS had a greater increase in expression
of PPARD and numerically greater increase in expression
of PRKAA1 compared with feeding HiS (Additional File
1). This might suggest that feeding LoS resulted in greater
utilization of preformed fatty acids for oxidation through
greater expression of PRKAA1. Increasing fatty acid oxida-
tion would be a means to spare glucose for de novo fatty
acid synthesis in intramuscular adipose tissue. This sug-
gestion is supported by the temporal expression of ACLY
in Angus steers fed LoS. In fact, this group had greater
increase in expression of FASN by 56 days and greater
concentrations of short-chain fatty acids in LL tissue
(Additional File 1). This mechanism in Angus steers fed
LoS is supported only by PPARD data, while remaining
genes potentially involved in fatty acid oxidation (e.g.,
PPARGCI1A and B, ACSL1) seem to indicate lower oxida-
tion of fatty acids. A factor that confounds interpretation,
as indicated above, is the different composition of cells
(i-e., adipocytes, muscle cells) in the core biopsy tissue.
Greater expression of ACSL1 is sometimes associated with
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insulin resistance due to direct effects of long-chain fatty
acyl-CoA [56]. An increase in the intracellular pool of
long-chain fatty acyl-CoA in A x S steers fed LoS is sup-
ported by the sustained up-regulation in CD36 (discussed
below; Additional File 1) and up-regulation of SLC27A1
by day 112. Both proteins are involved in uptake of pre-
formed long-chain fatty acids [57].

Intracellular energy sensors and insulin action

A hallmark of normal tissue insulin signaling is the
enhanced uptake of long-chain fatty acids through both
passive diffusion as well as protein-mediated transport
[57]. The fatty acid translocase FAT/CD36 plays a major
role in this process [57]. Both, contraction and insulin
appear to up-regulate muscle CD36 recruitment from
intracellular stores to the plasma membrane at least in
part through the action of AMPK [58]. Longitudinal
mRNA expression and mRNA abundance of CD36 and
PRKAA2 were greater in A x S steers regardless of diet, and
essentially followed the opposite pattern relative to Angus
steers (Additional File 1). Both genes exhibited the clear-
est effect of steer type on transcript expression among the
31 genes examined and their expression clustered together
(Additional File 1). Studies have shown that null muta-
tion of CD36 in mouse skeletal muscle leads to impaired
AMPK-stimulated (measured via PRKAA2 phosphoryla-
tion state) fatty acid oxidation in oxidative fibers [59].
Those previous results would imply that lower CD36 and
PRKAA2 mRNA expression in Angus steers potentially
serves as a mechanism to divert more long-chain fatty
acids taken up via SLC27A1 (greater in Angus steers; Addi-
tional File 1) towards TAG synthesis.

It could be possible that CD36 and PRKAA2 work in con-
cert with LPIN isoforms or as yet unidentified nuclear
receptors to regulate cellular fatty acid oxidation [60]. The
lipin 1 isoform (LPIN1) was shown to selectively activate
a subset of PPARGCIA-target pathways, including fatty
acid oxidation and mitochondrial oxidative phosphoryla-
tion in murine liver [61]. In our data, LPIN2 expression
was positively correlated with insulin in both Angus and
A x S steers fed HiS, suggesting that it might be associated
with adipogenesis.

Conclusion

Results involving gene markers of mature adipocytes (e.g.,
PPARG, THRSP, SCD) provided evidence of intramuscular
adipose tissue differentiation during the early portion of the
growing phase. Although ultrasound evaluation of intramus-
cular fat did not detect differences due to diet at the end of
the study, gene expression patterns suggest that dietary starch
level might alter pathways associated with intramuscular adi-
pose tissue development. This was most evident in A x S
steers fed high-starch vs. low-starch, which suggests that cat-
tle genetics also might be an important factor to consider
when developing management strategies to manipulate skel-

Page 11 of 15

(page number not for citation purposes)



BMC Genomics 2009, 10:142

etal muscle composition. The resulting gene networks (Fig-
ure 5) underscored a central role for PPARG in controlling
transcription of genes which are known to coordinately reg-
ulate adipocyte differentiation and lipid filling in non-rumi-
nants partly via insulin. Analysis also highlighted a putative
role of PPARD, in coordination with PPARGCIA and
PPARGCIB, in controlling intracellular energy metabolism.
Unlike non-ruminants, INSIG1 rather than SREBF1 appears
to play a more important role in cattle muscle adipogenesis.
We propose that a network of transcription regulators and
nuclear receptors including PPARG-target genes, INSIGI,
and THRSP, coordinate activation of adipocyte differentia-
tion and lipid synthesis.

More functional studies are clearly needed to determine
whether up-regulation in expression of transcription fac-
tors and nuclear receptors via diet at an early age can
induce precocious adipocyte differentiation and ulti-
mately determine intramuscular fat deposition in the car-
cass. There will be a need for dissecting intramuscular
adipose and muscle tissue so that cell-specific analysis can
be made. Other limitations of the study were the lack of
additional functional data (e.g., measurement of oxida-
tion or TAG synthesis), and actual carcass data. Despite
those limitations, our data provided novel insights into
longissimus lumborum energy sensing and lipogenic gene
networks as affected by dietary starch level and genotype.

Methods

Experimental animals and management, diets, and
sampling

The study utilized a subset of 12 animals selected from a
larger study encompassing 29 early-weaned (134 + 10 day
age at weaning) purebred Angus (n = 17) and Angus x
Simmental (n = 12) steers from the University of Illinois
beef cattle herd. After a 3-week adjustment period in
which all steers were fed the same corn silage-based diet
(850 g/kg corn silage and 150 g/kg wet distiller's grains,
as-fed basis), 6 Angus and 6 A x S steers from the larger
groups that were fed a high-starch (1.43 Mcal/kg diet dry
matter; n = 3/steer type) or low-starch (1.19 Mcal/kg diet
dry matter; n = 3/steer type) diet for 112 days after wean-
ing (i.e., growing phase) were chosen randomly for LL
biopsies. Dietary treatments in this study were specifically
designed to provide contrasting levels of starch and fiber
while providing sufficient energy, i.e. calculated net
energy of gain in diets HiS and LoS differed by ca. 20% but
was adequate in both cases to support > 1.5 kg body
weight per day [62]. Both diets were formulated to be iso-
nitrogenous. The low-starch/high-fiber diet contained (g/
kg dry matter) 350 corn silage, 200 corn gluten feed, 380
soyhulls, 30 cracked corn, and 30 soybean meal (490 g/kg
crude protein). The high-starch/low-fiber diet contained
(g/kg dry matter) 200 corn silage, 680 cracked corn, and
110 soybean meal (490 g/kg crude protein). Both diets
contained (g/kg dry matter) 10 limestone/dicalcium
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phosphate/mineral/vitamin/urea/dry molasses mixture.
Calculated dietary fiber content was 5.9% with HiS and
24% with LoS. Calculated NE for the low-starch/high-
fiber diet was 1.19 Mcal/kg dry matter and 1.43 Mcal/kg
dry matter for the high-starch/low-fiber diet. All diets were
offered on an ad libitum basis. Steers had an individual
electronic identification ear tag, and individual feed
intake data were collected using the GrowSafe® system
(GrowSafe Systems Ltd., Alberta, Canada). Residual feed
intake was calculated by regression [63] of actual dry mat-
ter intake against average metabolic body weight (body
weight?-75) and average daily gain (ADG).

Steer weights were recorded on consecutive days before,
56, and 112 days after the start of treatments (i.e., 155 =+
10 day age). Individual-animal ADG and daily dry matter
intake were used to estimate feed conversion efficiency
(gain/feed, kg/kg; Table 2). Ultrasound images of LL area
were captured at 112 days of the growing phase using a
500V Aloka (Corometrics Medical Systems, Inc., Walling-
ford, CT) ultrasound with a 3.5-MHz transducer fitted to
a custom beef animal standoff. Data were analyzed with
AUSkey System Software (Animal Ultrasound Services,
Ithaca, NY). Commercial vegetable oil was applied to the
site of measurement to decrease sound wave attenuation
associated with hair coat.

Blood serum metabolites were analyzed following stand-
ard protocols at the Veterinary Diagnostics Laboratory,
College of Veterinary Medicine, University of Illinois.
Serum insulin concentration was quantified using a com-
mercial bovine insulin ELISA kit (cat# 10-1201-01, Mer-
codia AB, Uppsala, Sweden).

Muscle biopsies were collected at 0, 56, and 112 days rel-
ative to the start of feeding treatment diets (i.e., 155 + 10
day age) under a protocol (#05095) approved by the Uni-
versity of Illinois Animal Care and Use Committee. Spe-
cific details of the biopsy procedures can be found in
Additional file 1.

RNA extraction, RNA quality assessment, real time
quantitative PCR (qPCR), primer design and evaluation,
sequencing, internal control gene (ICG) evaluation, and
muscle tissue fatty acid analysis

Specific details of these procedures are presented in Addi-
tional File 1. Special attention was given to the selection
and evaluation of ICG for normalization of qPCR data.
Briefly, microarray data from LL muscle [64] were mined to
select potential ICG (Additional File 1) using established
protocols from our laboratories [65-67]. Genes selected
from the microarray data which had a stable expression
ratio (i.e, 1.0 + 0.2; sample/reference) included arrestin
domain containing 1 (ARRDC1), endothelial differentia-
tion, sphingolipid G-protein-coupled receptor, 1 (EDG1),
chromosome 20 open reading frame 196 (C200RF196),
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single stranded interacting protein 2 (RBMS2), and mito-
chondrial GTPase 1 homolog (MTG1). Previously-used
[8,68,69] genes for normalization of cattle skeletal muscle
tissue include actin beta (ACTB), glycerol-3-phosphate
dehydrogenase (GAPDH), and cyclophilin (PPIA, PPIB).
These transcripts were highly unstable (Additional File 1)
and would have been rejected from subsequent analysis
based on our initial criteria above. To the 5 genes were
included ribosomal protein S15a (RPS15A) and ubiqui-
tously-expressed transcript (UXT), which were previously
identified as suitable ICG in bovine mammary tissue [67],
and also ACTB and GAPDH. Absence of co-regulation
among these selected genes was evaluated through Ingenu-
ity Pathway Analysis® (Additional File 1). Expression stabil-
ity was evaluated using geNorm software http://
medgen.ugent.be/~jvdesomp/genorm/ following the pro-
cedures of Vandesompele et al. [70] described in Addi-
tional File 1. A similar approach was used recently with
gene expression data from cattle muscle [71]. Genes
selected as ICG based on absence of co-regulation (Addi-
tional File 1) and geNorm analysis (Additional File 1)
included RBMS2, RPS15A, UXT, and MTG1. The geometric
mean of these 4 genes was used to normalize gene expres-
sion data in the present study.

Statistical analysis

Growth performance, blood metabolites and insulin, LL
fatty acid concentration, and qPCR data were analyzed as
a factorial experiment, with diet and time as the two fac-
tors, using the MIXED procedure in SAS (SAS Institute)
with repeated measures [72]. Prior to statistical analysis,
normalized qPCR data were transformed [73,74] to fold-
change relative to day O (i.e., before animals were started
on experimental diets). To estimate standard errors at day
0 and prevent biases in statistical analysis, normalized
qPCR data were transformed to obtain a perfect mean of
1.0 at day O, leaving the proportional difference between
the biological replicate. The same proportional change
was calculated at all other time points to obtain a fold-
change relative to day 0. Fixed effects in the statistical
model for each variable analyzed (i.e., genes, blood
metabolites, performance) included diet, steer type, days
on experiment, diet x steer type, diet x days on experi-
ment, steer type x days on experiment, and diet x steer
type x days on experiment. Random effect was steer
within diet. An autoregressive covariate structure was used
[72]. All means were compared using the PDIFF statement
of SAS. Significance was declared at P < 0.06. Pearson cor-
relations among genes and performance variables within
steer type and diet combination were obtained using the
CORR procedure in SAS (Additional File 2).

Clustering analysis
Hierarchical (Additional File 1) and k-means (Additional
File 1) clustering was performed using fold-changes in

http://www.biomedcentral.com/1471-2164/10/142

mRNA expression for each steer type and diet combina-
tion on day 56 and day 112 relative to day 0 using Genesis
software [75].

Gene network analysis

Summary networks among genes (Figure 5; Additional
File 1) were developed using the web-based software
package Ingenuity Pathway Analysis® (http://www.inge
nuity.com; Redwood City, CA). The networks were gener-
ated using the respective gene identifiers and not the
actual fold-changes in expression which are already
depicted in Figure 2, 3, and 4. Connections among genes
were based on known relationships available in the Inge-
nuity Pathway Analysis® knowledge based. This is a pro-
prietary  manually-curated  database  containing
relationships from the published literature in rodents and
humans.
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Additional material

Additional File 1

Supplementary Materials and Methods and Results.

The file contains additional materials and methods (biopsy procedure;
RNA extraction, PCR, and primer design and evaluation; design and
evaluation of primers; selection and evaluation of internal control genes;
fatty acid analysis) accompanied by 6 tables which include performance
of all steers fed in the study (Table S1), qPCR primer information (Table
S2), validation (Table S3 and S4), qPCR performance (Table S5), and
muscle fatty acid analysis (Table S6). The file also contains an additional
13 figures depicting cellular location and relationships among genes stud-
ied (Figure S1), relative mRNA abundance among genes (Figure S2),
nutrient and energy intake of steers used for transcript profiling (Figure
§3), blood concentrations of selected metabolites (Figure S4), diagram of
approach used for selection of ICG (Figure S5), expression patterns of
potential ICG (Figure S6), IPA interactions among selected ICG (Figure
87), longitudinal pattern of potential ICG in muscle (Figure S8),
geNorm analysis of potential ICG (Figure S9), expression patterns of
selected genes (Figure S10, S11), hierarchical clustering of gene expres-
sion patterns (Figure 812), and k-means clustering of gene expression
patterns (Figure S13). For each figure a detailed legend is provided.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-142-S1.doc]
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Additional File 2

Excel file with correlations

The file contains Pearson correlations among all genes tested as well
as blood metabolites (non-esterified fatty acids [NEFA], BUN, glu-
cose, insulin) separated by steer type and diet combination (i.e., 4 sep-
arate sheets). Correlations were analyzed using PROC CORR of SAS
(SAS Inst. Inc. Cary, NC, release 8.0).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-142-S2 xls]
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