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Abstract

Eukaryote genomes contain many noncoding regions, and they are quite complex. To understand these complexities, we

constructed a database, Genome Composition Database, for the whole genome composition statistics for 101 eukaryote

genome data, as well as more than 1,000 prokaryote genomes. Frequencies of all possible one to ten oligonucleotides were

counted for each genome, and these observed values were compared with expected values computed under observed

oligonucleotide frequencies of length 1–4. Deviations from expected values were much larger for eukaryotes than

prokaryotes, except for fungal genomes. Mammalian genomes showed the largest deviation among animals. The results of

comparison are available online at http://esper.lab.nig.ac.jp/genome-composition-database/.
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Introduction

Noncoding regions are the major part of eukaryote ge-
nomes, and most of them are believed to evolve neutrally

(Kimura 1983). Under this assumption, we expect that

the frequency of a particular short oligonucleotide, or

DNA word, of 10 bp or shorter should be primarily deter-

mined through accumulation of neutral mutations, and

the total set of frequencies of all DNA words of certain

length should follow some simple statistical rules. Oligonu-

cleotide frequencies of one genome can provide a useful
mechanism of genome comparison (Karlin 2005), including

phylogeny reconstruction (Takahashi et al. 2009). Most

frequently, such comparisons are based on a dinucleotide

composition model (Karlin and Mrazek 1997; Gentles and

Karlin 2001) or on self-organizing maps (Abe et al.

2003). It may be better to examine longer oligonucleotide

compositions. We created a series of statistical models

predicting the frequencies of word of up to 4 nt in a ge-
nome. We retrieved all available complete eukaryote and

prokaryote genomes, constructed such models for them,

and compared the actual word frequencies with those

predicted by the models to determine the discrepancy.

Here, we present a database, called Genome Composi-

tion Database (GCD), which shows how accurately each ge-

nome can be approximated by a model. The GCD also

provides the sequences of over- and underrepresented

DNA words. The unique point of this database is that it
allows to compare compositional complexity of genomes

and to analyze over- or underrepresentation of particular

oligonucleotides.

Materials and Methods

Available complete genomes were collected from NCBI

(http://www.ncbi.nlm.nih.gov/; Wheeler et al. 2007),

Ensembl (http://uswest.ensembl.org/; Flicek et al. 2012), Uni-

versity of California–Santa Cruz (http://genome.ucsc.edu/;

Fujita et al. 2011), FlyBase (http://flybase.org/; McQuilton

et al. 2012), and WormBase (http://www.wormbase.org/;
Harris 2010). Genome sequences of a total of 1,228 species

(101 eukaryotes, 1,043 eubacteria, and 84 archaea, as of
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June 2010) were used to construct the database. For every
genome, we created a series of five composition models:

uniform (composition of A, C, G, and T are set to be all

25%), mononucleotide, dinucleotide, trinucleotide, and tet-

ranucleotide. Each composition model is based on the total

size and word frequencies of an actual genome.

The uniform composition model has just one parameter—-

genome size. The mononucleotide model has two

parameters—genome size and GC content. We use both
DNA strands to perform the word counting, so the number

of G bases is always same with number of C, same for A and

T, and each DNA word has the same frequency with its

reversed complementary counterpart. Among the 16 dinu-

cleotides, there are 12 that differ from their reversed com-

plementary dinucleotide and 4 that are identical to their

reversed complementary one (CG, GC, AT, and TA). There-

fore, the first group of dinucleotides can be described with
six frequencies (12/2) and the second—with four. Subtract-

ing one, and adding the genome size, we obtain ten param-

eters for the dinucleotide model. In case of trinucleotide

frequencies, none of the trinucleotides are identical to their

reversed complementary counterpart, so the model has 43/2

5 32 parameters. In tetranucleotide case, there are 16

tetranucleotides that are identical to their reversed comple-

mentary counterparts, so the tetranucleotide model has
(44 � 16)/2 þ 16 5 136 parameters.

For a genome G of total length M and a DNA word w,

a composition model can be used to compute p(w), which

is the probability of observing w at any particular position in

the genome. For example, the uniform composition model

gives

pðwÞ5 1

4L
; ð1Þ

where L is the length ofw. The mononucleotide composition

model predicts

pðwÞ5
YL
i5 1

FðwiÞ þ F½CðwiÞ�
2M

; ð2Þ

where wi is the ith nucleotide of w, F(x) is the observed

frequency of x in the genome sequence, and C(x) is the

complementary sequence to x. Using the same principle,

p(w) from dinucleotide, trinucleotide, and tetranucleotide

composition models can be computed.

The model expectation of the frequency of word w in
both strands of the modeled genome is then given as

follows:

EðwÞ52MpðwÞ: ð3Þ

Then, we can define the deviation of the observed fre-

quency from the expected frequency:

dðwÞ5 FðwÞ � EðwÞ: ð4Þ

Because each of the composition models assumes inde-

pendence of different genome positions from each other,

E(w) follows the binomial distribution, and its variance

can be computed as follows:

r2
EðwÞ 5 2MpðwÞ½1 � pðwÞ�: ð5Þ

The standard deviation of E(w) is its square root.

FIG. 1.—Histograms of relative abundances of all oligonucleotides of 8 bp in human genome, according to the five composition models. The R

value computed for each model is used as a horizontal scaling factor. The vertical red line corresponds to the expected frequency. The words placed to

the left of the line are underrepresented and to the right—overrepresented.

Table 1

R Value Comparison for Selected Species

Model

Uniform Mono Di Tri Tetra

Escherichia coli E24377A 9.5 9.4 7.6 5.3 3.2

Saccharomyces cerevisiae

(baker’s yeast)

18.7 9.0 6.2 5.0 3.4

Arabidopsis thaliana (thale cress) 72.7 33.6 23.7 18.6 13.9

Drosophila melanogaster (fruit fly) 59.7 41.3 29.9 23.1 19.3

Oryzias latipes (medaka) 165.9 115.8 71.2 49.5 37.3

Anolis carolinensis (lizard) 251.1 188.9 130.4 110.0 92.1

Mus musculus (mouse) 343.9 309.0 219.0 145.1 122.8

NOTE.—This table compares the R values of E. coli, yeast, plant, fruit fly, fish, lizard,

and mouse, respectively, for each of the five models we used, based on words of 8 bp.
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We then can define the relative abundance of w, under
this particular model, as follows:

rðwÞ5 dðwÞ
rEðwÞ

: ð6Þ

This r(w) is 0 for DNA words, occurring in the genome

with exactly the same frequency, as predicted by the com-
position model. r(w) is positive when the actual frequency is

larger than expected by the model. In such cases, we de-
scribe that w is overrepresented in the genome, according

to this model. When the actual frequency is smaller

than expected by the model, r(w) is negative, and w is

underrepresented.

Now we can summarize the overall magnitude of over- or

underrepresentation of all DNA words of length L in the

genome (using a particular composition model of choice)

as follows:

FIG. 2.—Comparison of R values based on oligonucleotides of 5 bp and all five composition models. (A) Eukaryote genomes (all available in public

databases by October 2010). (B) Representative prokaryote (both eubacteria and archaea) genomes.
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R5rrðwÞ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rw2W ½rðwÞ � �r�2

4L

s
; ð7Þ

where W is the set of all DNA words of length L and
�r5 Rw2WrðwÞ

4L :

Because R is the standard deviation of a sample of all r(w)

for a particular word length L, the unit of R is the same with

that of r(w), which is rE(w) (standard deviation of the word
frequency, predicted by the model). For each w, RrE(w) gives

the relative number of occurrences of w, which would make

w averagely rare or abundant.

R is computed for a particular genome, composition

model, and L and summarizes the ability of the composition

model to predict the frequencies of words of length L in the

genome. Large R implies that many w’s have large absolute

values of r(w), which means that their actual frequencies are

far from those expected by the model. Thus, a large value of

R signifies that the model’s ability to describe the actual ge-

nome is poor.

A good composition model has small value of R, with R
being 0 for the perfect model. An example of such perfect
model is the L-bp composition model used to predict the

frequencies of words of the same length L bp or shorter.

For instance, the dinucleotide composition model has the

exact information about dinucleotide frequencies, so it gives

perfect predictions for 1-bp or 2-bp word frequencies, re-

sulting in R value of 0.

For the longer words, R is typically much larger than 0 for

nonrandom sequences. On the other hand, when a random
sequence is modeled using any composition model, the

FIG. 3.—Average R values for different groups of organisms, with standard deviations, using five different composition models. Standard deviation

for each value is displayed.

Table 2

Underrepresented Oligonucleotides of 10 bp, Example from Human Genome

Rank Oligonucleotide

Actual Observed

Frequency

Frequency Predicted

by the Model

Deviation from the Expected Frequency,

in Model’s Standard Deviations

1 tataaaaaaa (tttttttata) 45,933 115,110 �203.9

2 aaattttttc (gaaaaaattt) 29,389 89,480 �200.9

3 tttttttggg (cccaaaaaaa) 19,774 72,956 �196.9

4 aaaaattttt 103,832 185,936 �190.4

5 ttttttggga (tcccaaaaaa) 14,119 60,161 �187.7

6 aaaatttttc (gaaaaatttt) 33,460 89,480 �187.3

7 aaaaaaatat (atattttttt) 80,964 153,706 �185.6

8 aaaaaatttc (gaaatttttt) 34,571 89,480 �183.6

9 aaaaattttg (caaaattttt) 33,265 87,274 �182.8

10 aaaaaatttg (caaatttttt) 33,454 87,274 �182.2

NOTE.—Showing ten most underrepresented oligonucleotides, according to the tetranucleotide composition model. Both the actual and the expected frequency are given for

both DNA strands combined, so each word’s frequency is identical with that of its reversed complementary counterpart (given in parentheses).
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actual variances of the word frequencies are the same with

the variances predicted by the model; therefore, R is close to

1 in this case (approaching 1 as the sequence becomes

longer).

This is also the case for semirandom sequences, where
the deviation from uniform randomness is at most as com-

plex (controlled by at most as many parameters) as the

model used to analyze the sequence. For example, a semi-

random GC-biased sequence can be accurately modeled by

the nucleotide composition model, or any more complex

model, but not by the uniform composition model. The

R values obtained with the uniform composition model

for such sequence are much larger than 1, whereas other
models still produce R close to 1. Thus, the R values directly

reflect compositional complexity of the sequence.

Figure 1 illustrates this by showing the example histo-

grams of relative abundances for all words of length 8

in the human genome, using five different models. The

strange bimodal-looking shape of the uniform model histo-

gram results from the extreme depletion of CpG dinucle-

otide in mammalian (including human) genomes. Any 8-bp
word containing CpG will appear as strongly underrepre-

sented when comparing the actual frequencies with those

predicted by the uniform model. So, all such words contrib-

ute to the left peak on the histogram, whereas words with-

out CpG form the other peak, in agreement with the

model.

We computed R for all five composition models for avail-

able complete genomes, both eukaryotes and prokaryotes.
Table 1 shows R values for seven representative species. We

then extracted unusually rare and unusually abundant

words, which we define as those having jr(w)j . R. These

DNA words, together with the corresponding statistics, are

available for viewing and downloading at the GCD online.

Next, we analyzed the spacing patterns of individual DNA

words in complete genomes. Looking at all occurrences of

a particular DNA word in the genome, we can extract the
distances between the genomic locations of every two

neighboring occurrences and use this set of distances as

a spacing data set for this particular word. Sample param-

eters (mean, standard deviation, skewness, and kurtosis) are

computed for such data set. What would be the physical

meaning of those parameters? The mean distance approx-
imately equals to the genome size divided by total number

of occurrences, so it correlates with the reciprocal of the

word frequency. Standard deviation shows how evenly is

a particular word distributed in the genome. Skewness

shows whether extremely unusual spacing values for this

word tend to be large or small. Kurtosis shows if the word

tends to form clusters and the density of those clusters

relative to the distance between them.
Taking a particular parameter for all words of length L, we

get a sample of 4L values. The nature of this sample would

characterize the genome as a whole. Furthermore, selecting

only subset of DNA words with parameters falling into

particular ranges, we can extract interesting DNA words.

In order to verify the models and better understand the

parameters, we constructed a range or semirandom se-

quences using a random sequence generator (Kryukov K,
unpublished data). Each semirandom sequence was based

on particular real genome used as template (e.g., the human

genome): It had the same size with the template genome,

and it imitated N-bp composition of the template genome,

with N ranging from 1 to 4. Thus, we constructed four semi-

random genomes based on a single actual genome se-

quence. We used genomes of five species as templates:

human,Anolis carolinensis (lizard), Xenopus tropicalis (frog),
Oryzias latipes (fish), and Drosophila melanogaster (fruit fly).

The resulting 20 semirandom genomes were added into the

GCD.

Results

Figure 2 shows the comparison of R values for 101 eukary-

ote genomes used in this study, as well as representative
prokaryote genomes, computed for 5 bp oligonucleotides.

Table 3

Overrepresented Oligonucleotides of 10 bp, Example from Human Genome

Rank Oligonucleotide

Actual Observed

Frequency

Frequency Predicted

by the Model

Deviation from the Expected Frequency,

in Model’s Standard Deviations

1 acacacacac (gtgtgtgtgt) 1,161,477 9,207 12008.1

2 tgtgtgtgtg (cacacacaca) 1,169,668 12,946 10166.1

3 cctgtaatcc (ggattacagg) 835,133 6,999 9898.3

4 ctgtaatccc (gggattacag) 825,499 7,235 9619.4

5 aaaaaaaaaa (tttttttttt) 5,951,413 380,529 9031.2

6 ctgggattac (gtaatcccag) 802,262 7,934 8917.5

7 tgtaatccca (tgggattaca) 856,563 11,024 8053.0

8 taatcccagc (gctgggatta) 839,950 10,726 8006.5

9 gattacaggc (gcctgtaatc) 628,774 7,004 7429.1

10 tgcagtgagc (gctcactgca) 580,240 7,705 6522.3

NOTE.—Showing ten most overrepresented oligonucleotides, according to the tetranucleotide composition model.

GCD on Genome Composition and Their Initial Analyses GBE
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Such R values represent how well different composition

models can predict 5-bp composition of the genome. Panel

A shows all eukaryote genomes and panel B shows repre-

sentative prokaryote genomes. Supplementary figure 1

(Supplementary Material online) shows comparison of all

prokaryote genomes included in this study. R values of five
composition models are displayed as differently colored

areas. As can be seen, R varies greatly among species

and groups of species. Mammals are compositionally more

complex than nonmammal vertebrates, land vertebrates are

more complex than fishes, and fishes are more complex than

most invertebrates and plants, which are still more complex

than fungi and protists. Compositional genome complexity

of prokaryotes, represented by R values, is comparable with

that of fungi.

Figure 3 shows the average R values for different groups

of organisms, with standard deviation. Under all five com-

position models, statistically significant difference is ob-
served between the R values of mammals and

nonmammal vertebrates (Mann–Whitney P , 0.001, see

supplementary table 1, Supplementary Material online for

test results). Statistically significant difference is also ob-

served between nonmammal vertebrates and invertebrates.

Interestingly, R values of invertebrates are close to those of

FIG. 4.—Euclidean distances between composition vectors (oligonucleotide frequencies) of sample data sets and complete vertebrate genomes for

three composition models (dinucleotide, trinucleotide, and tetranucleotide). (A) When sampled data set is human genome. One thousand samples were

used, where each sample consisted of 481 sequences of 262 bp each (for a total size of each sample same with the UCE data set), taken from the

random locations in the complete human genome. Also, panel (A) shows the standard deviations of the distances. (B) The composition of the UCE data

set is compared with that of complete vertebrate genomes. (C) The composition of human miRNA seed sequences is compared with that of complete

vertebrate genomes.
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plants and significantly higher than those of fungi, protists,

or prokaryotes (archaea and eubacteria). In terms of R val-

ues, fungi genomes are more similar to those of prokaryotes

than those of other eukaryotes.

Significantly, over- and underrepresented DNA words

may be biologically important. Tables 2 and 3 show the par-
tial lists of under- and overrepresented words of 10 bp in

human genome, using tetranucleotide composition model.

The complete lists of under- and overrepresented words, for

every of the included genomes, for each of the five compo-

sition models, and for DNA words of up to 10 bp for eukar-

yotes and 8 bp for prokaryotes, are available at the GCD

online. Both the actual and the expected frequency are

given for both DNA strands combined, so each word’s fre-
quency is identical with that of its reversed complementary

counterpart (given in parentheses).

Other than the reporting the general compositional

complexity, the GCD can be used to compute the distan-

ces between the composition vectors of various complete

genomes and submitted sequences (similar to the method

taken by Takahashi et al. 2009). We used this tool to an-

alyze three classes of human sequences: random sample
from the human genome, conserved sequences of un-

known function, and conserved functionally important

sequences. Although sequences from these three classes

are all found in the human genome, they have different

nature and evolutionary history, allowing interesting com-

parison. The UCE data set (human–mouse–rat ultracon-

served elements, 481 sequence, 126 kbp in total,

Bejerano et al. 2004) was used as the data set of con-
served sequences of unknown function. Human micro-

RNA (miRNA) seed sequences (1,100 sequences from

FIG. 4.—Continued
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miRBase, 7.7 kbp in total, Kozomara and Griffiths-Jones

2011) were used as functionally important conserved

sequences.
Figure 4A shows the average Euclidean distances be-

tween the composition vectors obtained from randomly

sampled human sequence and composition vectors of com-

plete vertebrate genomes. Each sample was chosen to have

the same number of sequences and average sequence

length with the UCE data set: 481 sequences, 262 bp

each. One thousand such samples were produced. Di-,

tri-, and tetranucleotide composition vectors are used for
comparison. As expected, primate genomes are the closest

to human sample, and more diverged species show progres-

sively larger distances, with some fluctuations.

Figure 4B shows the comparison for human–mouse–rat

ultraconserved elements. The compositional distances

between the UCE and the complete vertebrate genomes

appear to be relatively uniform among vertebrates and

much larger than those for the random human sample. In-

terestingly, these sequences appear to be compositionally
close to lizard, fish, and frog.

Figure 4C shows the compositional distances between

human miRNA sequence data set and complete vertebrate

genomes. Again the distances are uniformly large. Platypus

and the fishes are compositionally the closest to this data

set.

To further investigate the differences between these

three data sets, we computed the average distances by com-
bining the genomes into four groups (fig. 5). The distances

show a steep increase in case of random human sample (fig.

5A), while much more uniformity can be seen for UCE and

miRNA seed data sets (fig. 5B and C).

Figure 6 shows the plots for the pairs of spacing parame-

ters, taken for 8 bp oligonucleotides for six species—human,

FIG. 4.—Continued
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lizard, fish, fruit fly, yeast, and Escherichia coli. Although the

interpretation is difficult, more structure can be seen in the

plots of more complex organisms.

Figure 7 shows spacing plots for four random genomes

(generated using human genome as a template), the com-

plete actual human genome and the repeat-masked version
of the human genome. Repeat-masked is included because

complexity is often associated with repetitive sequences. In

case of the ‘‘Hs Random 1’’ sequence, discrete elements ap-

pear in the figure. Those elements correspond to the groups

of DNA words containing different number of GC. With GC

contents being the only parameter for constructing the se-

quence, DNA words with the same number of GC will have

exactly same compositional properties, blurred only by ran-
domness of the sequence. In case of ‘‘Hs Random 2’’ similar

grouping happens, this time depending on number of CpG

each particular word may contain. Going into more complex

semirandom sequence, the discreteness becomes less clear,

and the plots are getting closer to that for the real human

genome. Still significant difference remains between

the plots of semirandom and real sequences and very little

difference between the plots of repeat-masked and the
complete human genome.

Discussion

The GCD provides a convenient measure of relative com-

plexity of various genomes from statistical point of view.

A genome is compositionally simple if its composition can

be accurately described by a simple model. A set of R values
for various word length and models can tell us how complex

a particular genome is?

As figure 2 shows, R values become smaller with the

increase of model complexity—as expected, a more com-

plex model can describe genome composition more accu-

rately, which results in smaller discrepancy. We observe

that, generally speaking, R values are related to the general

complexity of the organism. Remarkably, even tetranucleo-
tide compositional models are unable to give good predic-

tions of 5-bp composition in case of complex genomes,

particularly for mammals and land vertebrates.

Figure 3 confirms that compositional complexity of

a genome is in good correlation with general complexity

of the organism. Mammalian genomes are significantly

more compositionally complex than genomes of any other

organisms. Compositional discrepancy R computed with dif-
ferent composition models seems to be useful as a measure

of compositional complexity of the genome.

The extremely rare and extremely abundant sequences, as

shown in tables 2 and 3, suggest the possible mechanisms of

creating compositional complexity. The most underrepre-

sented 10 bp DNA words (using tetranucleotide composition

model) seem to be found on the boundary of mononucleo-

tide repeats, particularly poly-A to poly-T boundary (words 1,
2, 4, 6, 7, 8, 9, 10 in table 2) also poly-A to poly-C (words 3

and 5 in table 2). This means that such boundary is much less

common, than suggested by the 4-bp composition.

Among the top overrepresented words, there are poly-A

(word 5 in table 3), dinucleotide repeats (words 1 and 2 in

FIG. 5.—Average compositional distance (Euclidean distances

between the composition vectors) between sample data sets and

complete genomes grouped into four groups. Panels (A, B, and C)

correspond to panels (A, B, and C) of figure 4. Standard deviations of

the distances are shown for all cases.
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table 3), as well as fragments of sequence ‘‘gcctgtaatcc-

cagc’’ (words 3, 4, 6, 7, 8, 9 in table 3), which has about

800,000 occurrences in the human genome compared

with the expected number of about 7,000–10,000. This

sequence being unusual is already reported by Valle

(1993); however, no explanation for the cause was given.

Figure 4 shows the compositional distances between
three sequence data sets (human sample, UCE, and miRNA

seeds) and vertebrate genomes. Figure 5 summarizes the

distances for organism groups, including invertebrates.

Although in all three cases, the sequences are contained

in the human genome, the compositional distances of those

sequences to various genomes show very different pictures.

The random sample behaves as expected—the composi-

tional distance is increasing with the increase of divergence
from human. However, UCE and miRNA seed data sets show

more or less uniform compositional distances from various

vertebrate genomes. This suggests that those sequences be-

came conserved before the emergence of mammals. In case

of miRNA seed sequences, the composition distances to all

vertebrate genomes are more or less uniform, suggesting

those sequences were fixed much earlier than the emer-

gence of vertebrates. Composition of the UCE and miRNA

seed sequences is frozen and represents the composition of

the ancestoral genome, at the time where the fixation oc-

curred. The compositional distance from the current day ver-
tebrates is larger for miRNA seed data set because the

miRNA fixation occurred much earlier, so larger composi-

tional distance exists between the ancestoral genome and

current day genomes. Thus, this allows us to discuss the

composition of premammal vertebrate genome (in case

of UCE data set) and early animal genome (in case of miRNA

seeds).

Oligonucleotide spacing patterns, summarized as sample
parameters and displayed as scatterplots (figs. 6 and 7), pro-

vide a further interesting view into the compositional com-

plexity. It is apparent that the human genome is very

different from the semirandom sequences that imitate only

FIG. 6.—Plots of the spacing distribution parameters for six species, based on oligonucleotides of 8 bp. Each row represents one genome.

Different columns show plots for different pairs of parameters, from left to right: mean spacing (x axis) versus standard deviation (y axis), mean (x) versus

skewness (y), mean (x) versus log(kurtosis) (y), standard deviation (x) versus skewness (y), standard deviation (x) versus log(kurtosis) (y), and skewness (x)

versus log(kurtosis) (y). Each dot in the plot represents a particular 8 bp DNA word, so 48 words constitute the data set in each case.

Kryukov et al. GBE

510 Genome Biol. Evol. 4(4):501–512. doi:10.1093/gbe/evs026 Advance Access publication March 14, 2012



some compositional properties of the actual genome. Often

we attribute complexity to the abundant repetitive elements

in the vertebrate genome. However, the spacing scatterplots

for the repeat-masked human genome looks similar to those

of the complete genome and different from those based on
the semirandom sequences. It remains to be seen whether

the apparent complexity results from the isochore structure

of the mammalian genomes (Bernardi et al. 1985), from

decaying ancient repeats, or from some other mechanism.

The online GCD provides the means of comparing the

compositional complexity of various complete genome

and extracting unusual DNA words. The composition

parameters computed using five models, as well as histo-
grams, are available. Also spacing patterns, summarized

as parameter histograms and 2D scatterplots, are included.

In addition that database features a facility for submitting

a sequence data set and performing composition analysis

and comparison with various complete genomes.

Compositional models that we used in this study only uti-

lize the word frequencies as parameters. The natural next

challenge is to design an integrated composition model,
which would be based on both frequencies and spacing pat-

terns. Such model would better approximate the genome

and thus would allow focusing more closely on the real

source of complexity.

Supplementary Material

Supplementary figure 1 and table 1 are available at

Genome Biology and Evolution online (http://www.gbe.
oxfordjournals.org/).
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