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ABSTRACT: A synthetic approach toward densely substituted
enantiopure cyclic sulfinamides possessing up to four consecutive
stereogenic centers was developed based on a completely
diastereoselective Sy2' cyclization/tert-Bu cleavage sequence.
Diastereospecific transformation of the obtained scaffold into
chiral S derivatives such as sulfoximines and sulfonimidamides is
demonstrated.

G eneral utility of sulfinamides' may be largely obscured by
the amount and versatility of synthetic applications”
developed around Ellman’s and Davis’ chiral auxiliaries (Figure
1). Yet the sulfinamide moiety has also found use in asymmetric
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Figure 1. Utility of enantiopure sulfinamides.

synthesis as an integral part of organocatalysts’ and ligands in
metallocatalysis.* Although underappreciated® as structural
fragments in drug discovery, sulfinamides have been established
as a convenient synthetic platform® for more medicinally
acknowledged sulfonamides and chiral S"-compounds. In
particular, recently developed stereoselective methodologies
toward increasingly more popular’ sulfoximines and sulfonimi-
damides rely on enantiopure sulfinamides as synthetic
precursors.” The fact that the general value of enantiopure
sulfinamides has been long recognized is eloquently demon-
strated by the sheer effort dedicated to their preparation over the
years.”

However, despite a considerably wide scope existing entries
are generally'® inapplicable to cyclic structures. Hence the
library of known enantiopure cyclic sulfinamides so far is limited
to six- and five-membered congeners. Whereas the former have
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functionalization
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been approached' ' via hetero Diels—Alder reaction of N-sulfinyl
dienophiles, the latter have been obtained'” exclusively from
Ellman’s sulfinamide derivatives (Scheme 1a) exploiting the
lability of the t-Bu-substituent. Thus, the susceptibility of the t-
Bu-group to radical scission was used in the synthesis of benzo-
fused scaffolds.'** Radical Syi substitution at the S-atom directly
delivers sulfinamides with configurational inversion at the S-

Scheme 1. Entries toward Enantiopure Five-Membered
Cyclic Sulfinamides
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stereocenter (eq 1, Scheme 1a). The rest of the known methods
are based on stereoretentive acid-induced cleavage of S-tert-
butylated sulfoximines. The sulfoximines in turn have been
synthesized via [3 + 2] cycloaddition of N-sulfinyl imines with
benzynes (eq 2),"*”° AgNO;-catalyzed cyclization'*" of ynol
ethers (eq 3), and base-mediated cyclization'*® of acetylenes (eq
4, Scheme 1a).

The common feature of the listed approaches consists of the
limited capacity to introduce new stereocenters due to
unsaturation dictated by the structure of the substrate. On the
other hand, denser stereodefined substitution would be not only
highly desirable by modern diversity-oriented synthesis"® but
also rather realistic considering the richness of chemistry™
around Ellman’s auxiliary. Therefore, we envisioned a trans-
formation starting with a novel S-exo-trig cyclization of
sulfinamides 1 to sulfoximines 2 (Scheme 1b). The intended
S-allylation via Sy2’ substitution would simultaneously install a
new stereocenter and a synthetically useful vinyl handle.
Subsequently, already well precedented t-Bu-removal would
deliver sulfinamides 3 potentially accommodating up to four
consecutive stereocenters. Previous success'* in S-alkylation of
N-alkyl t-Bu-sulfinamides added soundness to the hypothesis
and encouraged us to put it to practical scrutiny.

The investigation began with the cyclization of the iodide 1a-I
(Table 1). Gratifyingly, deprotonation of la-I with non-

Table 1. Optimization of Reaction Conditions”

(o] o
HN’g‘t-Bu Base % silica gel H’\I:S-}""//
R N Hal eSoIvent ) By +Bu DCM R™
_ el e T (R L
R :;h::lethyl R\_.\\>=\ R\I\Il:l
L 4a 5a _
2a 4a Sa 3a
Entry Hal Base Solvent  (%)”  (%)” (%)”  (%)°
1 I NaH THF 60 5
2 I LiIHMDS?  THF 20 5 20
3 I NaHMDS?  THF 64 4 60
4 I KHMDS? THF 18 36
5 I NaHMDS?  Et,0 62 4
6 I NaHMDS?  DCM 79
7 I NaHMDS?  Toluene 80 75
8 1 NaHMDS* Toluene 8S 80
9 Br NaHMDS* Toluene 84 80
10 Cl NaHMDS* Toluene 71
11 Cl KOH DMA 26 57

“Performed on 0.15 mmol scale with 2.2 equiv of base in 15 mL of
solvent. ”'H NMR yield measured against mesitylene as internal
standard. “Isolated yield. “In THF. “In toluene.

nucleophilic NaH indeed led to the requisite sulfoximine 2a in
moderate yield accompanied by the isomeric 4a (entry 1). More
importantly 2a was formed as a single diastereomer, and its
structure could be unambiguously determined by X-ray
crystallographic analysis. Configuration of the S-atom in 2a
was apparently retained with respect to the precursor 1a-I, while
the newly installed vinyl opposed the ¢t-Bu-group. On the other
hand, independent conversion of 2a to 4a upon exposure to
NaH ascertained that deprotonation at the allylic position
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should be responsible for the observed isomerization. While
attempting chromatographic purification of 2a, we also
determined that the intended t-Bu-cleavage leading to
sulfinamide 3a is quite facile and can be accomplished with as
weak an acid as silica gel. Therefore, the outcome of subsequent
cyclization experiments was assessed by 'H NMR and
sulfinamide 3a was isolated only in selected entries.

In order to explore the counterion effect we switched to
hexamethyldisilamide bases conveniently available as THF
solutions (Table 1, entries 2—4). Reaction with LiHMDS
reflected the usual'® propensity of sulfinamides for N-alkylation
manifested in formation of azetidine Sa. While KHMDS
produced a dramatically increased amount of isomerization,
NaHMDS performed similarly to NaH. The degree of
NaHMDS aggregation has been reported to depend significantly
on the solvent.'® Therefore, we speculated that excessive basicity
leading to poorly separable 4a could be mitigated by weaker
coordinating media (entries S—7). Although Et,O failed to
improve the situation, DCM and toluene performed equally well
affording 2a with markedly improved yields without formation
of 4a. Additional improvement was obtained by complete
exclusion of THF from the reaction media utilizing NaHMDS in
toluene (entry 8). Thus, the yield of the intermediate 2a was
increased to 85% and subsequent t-Bu-cleavage delivered
sulfinamide 3a with 80% yield. Finally, bromide la-Br was
found to be an equally competent substrate in the cyclization
(entry 9), while chloride 1a-Cl displayed slightly inferior
behavior (entry 10). Interestingly, the selectivity of cyclization
with 1a-Cl could be largely reversed in favor of N-alkylation
(entry 11).

In view of the limited stability of allylic iodides, the scope of
the transformation was explored using bromide substrates 1-Br
(Scheme 2). Excellent reactivity was observed in the case of
monoalkyl substituted 1a—d-Br. Aryl containing precursors le—
g-Br were also efficiently converted to the corresponding
sulfinamides 3e—g. The crystal structure'” obtained for 3e
decisively confirmed the stereoretentive character of the t-Bu-
cleavage. Notably, the developed standard conditions were
successfully applied in a gram-scale synthesis of 3g. However, for
reasons not fully understood heteroaryl-containing sulfinamides
3h,i were obtained with considerably lower yields. Quaternary
centers in 3j,k and additional substitution at the double bond in
31 were found to be a small hurdle for the transformation.
Importantly, no loss of enantiopurity could be detected in the
corresponding conversion of 1k-Br to 3k. Furthermore, the
crystal structure obtained for 3k mirrored syn S-O and vinyl
alignment already established for 3e. Successful preparation of
sulfinamide 3m conformed well to our declared aim at densely
substituted structures.

Finally, transformation of epimers epi-la-Br and epi-1d-Br
addressed the influence of stereocenters next to the N-atom. The
respective sulfinamides iso-3a and epi-3d were obtained with the
anti arrangement of the vinyl and a-N-substituent contrary to 3a
and 3d. Complementary to the case of 3k, this observation
concludes that the new stereocenter must be controlled solely by
the initial configuration at the S-atom placing the vinyl syn to S—
O in an entirely stereospecific manner. Of additional note may
be the attempt to expand the cyclization scope to the 6-exo-trig
mode using homologous substrate 6. Despite favorable all
equatorial positioning of substituents in the speculative S-
alkylation product, only the five-membered N-alkylation 7 was
obtained. This result suggests that the dominant S- instead of N-
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alkylation in the case of substrates 1 is most likely determined by
the typical kinetic preference'® for five-membered cycles.
Analysis of the acquired data allowed us to devise a
stereochemical model accounting for the net stereochemical
outcome of the transformation (Scheme 3)."” The envelope
geometry of the transition state proposed for the cyclization step
may be derived from the crystal structures obtained for
sulfoximines 2a and 2g. Nucleophilic Si attack of the S-lone
pair on the double bond of 1 leads to the favored TS1 and
consequently to 2 with the vinyl opposed to the ¢-Bu-group.
Subsequent stereoretentive removal of the latter affords
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sulfinamides 3 with the observed syn vinyl and S—O arrange-
ment. Conversely, Re attack would result in congested TS2
featuring pronounced steric clash between the ¢-Bu-group and
the halomethylene unit of 1. Hence, the corresponding anti vinyl
and S—O alignment has not been detected in either sulfoximines
2 or sulfinamides 3.

Since the chemistry of cyclic sulfinamides like 3 is scarcely
presented in literature, we decided to screen the behavior of the
obtained scaffold in relevant synthetic transformations using 3g
as a typical representative (Scheme 4). Thus, chemoselective S-
oxidation®® delivered sulfonamide 8, which belongs to the class
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Scheme 4. Synthetic Modifications of the Product Scaffold
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of medicinally privileged y-sultams.”’ Another modification at
the S-atom resulted in sulfenimine 9 in the course of a
Pummerer-like reaction.”” The reactivity of the double bond was
probed in reductive ozonolysis cleanly affording 10. In spite of
the previously noted base-induced isomerization of 2a, N-
alkylation of 3g leading to 11 could be accomplished with a
synthetically useful yield. As an alternative option to utilize the
double bond in 3g we considered Simmons—Smith cyclo-
propanation.”’ Surprisingly, the respective fairly standard
conditions delivered sulfoximine 12 as the major product rather
than the expected cyclopropane. The single comparable example
of such atypical reactivity was reported by Zercher et al. and
regarded primarily as an undesirable synthetic obstacle.”*
Meanwhile, intrigued by the chemo- and stereospecificity
observed in the formation of 12 we plan to explore this valuable
transformation in greater detail. Further modifications of 3g
included diimide reduction” to 13, which in turn was smoothly
converted to the tertiary sulfinamide 14. Finally, electrophilic
NH transfer under reported conditions*®
specific formation of sulfonimidamide 15 with anticipated
configurational retention at S-atom as confirmed by X-ray

resulted in stereo-

crystallographic analysis.

In summary, the transformation presented herein opens
access to enantiopure sulfinamide scaffold 3 via a facile
cyclization—deprotection sequence. The cyclization proceeds
with retention of configuration at the S-atom and stereospecific
introduction of the additional vinyl substituent, while
subsequent mild deprotection completely preserves the installed
stereochemical arrangement. These features enable synthesis of
densely substituted structures accommodating up to four
consecutive stereocenters. Complementary to the existing
methods'® our methodology considerably enriches the library
of yet underexplored cyclic sulfinamides. Moreover, disclosed
additional modifications at S- and N-atoms as well as at the vinyl
handle suggest the promising potential of the obtained scaffold
in synthetic and medicinal chemistry. Specific relevance for the
latter is demonstrated by preparation of y-sultam 8, sulfoximine
12, and sulfonimidamide 15.
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