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Abstract. The aim of the present study was to identify genes 
that may serve as markers for breast cancer prognosis by 
constructing a gene co‑expression network and mining modules 
associated with survival. Two gene expression datasets of 
breast cancer were downloaded from ArrayExpress and genes 
from these datasets with a coefficient of variation >0.5 were 
selected and underwent functional enrichment analysis with 
the Database for Annotation, Visualization and Integration 
Discovery. Gene co‑expression networks were constructed 
with the WGCNA package in R. Modules were identified from 
the network via cluster analysis. Cox regression was conducted 
to analyze survival rates. A total of 2,669 genes were selected, 
and functional enrichment analysis of them revealed that they 
were mainly associated with the immune response, cell prolif-
eration, cell differentiation and cell adhesion. Seven modules 
were identified from the gene co‑expression network, one of 
which was found to be significantly associated with patient 
survival time. Expression status of 144 genes from this module 
was used to cluster patient samples into two groups, with a 
significant difference in survival time revealed between these 
groups. These genes were involved in the cell cycle and tumor 
protein p53 signaling pathway. The top 10 hub genes were 
identified in the module. The findings of the present study 
could advance the understanding of the molecular pathogen-
esis of breast cancer.

Introduction

Breast cancer is the most common type of cancer in women, 
accounting for 25% of all cases (1). Risk factors include lifestyle 
(including smoking or diet), genetics and medical condi-
tions. A number of treatment methods are now available for 

breast cancer, including surgery, radiotherapy, chemotherapy, 
hormone therapy and targeted therapy. However, certain 
patients have a poor prognosis and the molecular mechanisms 
underlying this remain unclear. Prognostic factors include 
disease stage and grade, recurrence of the disease, and the age 
and health of the patient.

With advances in technology and the accumulation of 
research results, certain molecular markers associated with 
breast cancer have been well studied. Tumor protein p53 muta-
tions are poor prognostic factors in breast cancer (2). MYC 
proto‑oncogene and bHLH transcription factor‑driven accu-
mulation of 2‑hydroxyglutarate are associated with poor breast 
cancer prognosis (3). Prostaglandin‑endoperoxide synthase 2 
expression predicts worse breast cancer prognosis (4). Ki‑67 has 
been associated with disease‑free survival, but its prognostic 
value remains to be validated (5). Matrix metalloproteinase‑8 
gene variation may influence breast cancer prognosis and can 
have an inhibitory effect on cancer metastasis  (6). A gene 
signature involved in tumor‑immune interactions may provide 
a more accurate prognostic tool (7). Zhang et al (8) performed 
a meta‑analysis and demonstrated that overexpression of 
C‑X‑C motif chemokine receptor 4 was significantly associ-
ated with lymph node status and distant metastasis, indicating 
poor overall and disease free survival. SRY‑box 4 overexpres-
sion is a biomarker for malignant status and poor prognosis in 
breast cancer patients (9). A number of other novel biomarkers 
have also been also identified, including chromobox homolog 
1 (10), HOX transcript antisense intergenic RNA (9) and ante-
rior gradient 3 (11). Nevertheless, more prognostic genes are 
required to further improve treatment decisions and thus the 
quality of life of patients with breast cancer.

Microarray technology has been widely used to iden-
tify biomarkers of breast cancer  (12,13), allowing for the 
large‑scale screening of molecular markers. In the present 
study, two gene expression datasets were obtained to reveal 
prognostic genes (14,15). One dataset was used with the aim 
of identifying genes associated with the distant metastasis of 
lymph‑node‑negative primary breast cancer (14); the other 
was used to identify genes involved in response and survival 
following taxane‑anthracycline chemotherapy in breast 
cancer (14). The two datasets were combined to construct a 
gene co‑expression network and analyze survival time to iden-
tify novel biomarkers associated with breast cancer prognosis.
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Materials and methods

Raw data and pre‑treatment. Two gene expression datasets, 
GSE2034 (14) and GSE25066 (15), were downloaded from 
ArrayExpress (https://www.ebi.ac.uk/arrayexpress/). Dataset 
GSE2034 included 286 breast cancer samples and dataset 
GSE25066 included 508 breast cancer samples. The two gene 
expression datasets were obtained using Affymetrix GPL96 
platform.

Normalization was performed with rma from the affy 
package (16) in R (R 3.2.0; https://www.r‑project.org/) and 
then log2 conversion was applied. Probes were mapped onto 
genes according to annotation files. Probes mapping to the 
same gene were averaged as the expression level for the 
gene.

Functional enrichment analysis. Gene Ontology (GO) anno-
tation and pathway enrichment analysis were performed 
with DAVID (Database for Annotation, Visualization and 
Integration Discovery; http://david.abcc.ncifcrf.gov/) (17).

Gene co‑expression network and modules. The gene 
co‑expression network was constructed with the WGCNA 
package (18) in R. The adjacency coefficient aij was calculated 
as follows:

Where xi and xj are vectors of expression value for gene i 
and j; cor represents the Pearson's correlation coefficient of the 
two vectors; aij is the adjacency coefficient and is acquired via 
exponential transform of Sij.

WGCNA method takes topological properties into consid-
eration to identify modules from gene co‑expression networks. 
Therefore, this method not only considers the association 
between the two connected nodes, but also takes associated 
genes into account. It calculates the weighting coefficient Wij 
from aij as follows:

Wij considers the overlap between neighbor genes of genes 
i and j. Modules were identified via hierarchical clustering of 
the weighting coefficient matrix, W.

Survival analysis. Cox regression was performed with hub 
genes from the modules to identify survival‑associated 
genes, and Kaplan‑Meier survival was used to compare the 
survival time of different groups, which were performed 
with the Survival package in R (https://cran.r‑project.
org/web/views/Survival.html). P<0.05 was considered to indi-
cate a statistically significant difference. Pearson's correlation 
was performed by cor function in R (19).

Results

Gene expression data. A total of 13,191 genes were identified 
in the GSE2034 and GSE25066 datasets, for which box plots 
are presented in Fig. 1. According to the box plots, the average 
total mRNA expression level in each sample was consistent, 
indicating that a good performance of normalization was 
achieved for both datasets.

Functional enrichment analysis. A total of 2,669 genes with 
coefficient of variation (CV) >0.5 were selected. Functional 
enrichment analysis revealed that they were associated 
primarily with immune response, cell proliferation, cell differ-
entiation and cell adhesion (Table I).

Prognostic genes. Two gene co‑expression networks were 
constructed for the two datasets by WGCNA (Fig. 2). Seven 
modules were identified from the network of GSE2034 via 
hierarchical clustering of the weighting coefficient matrix, W 
(Fig. 3). The modules were termed the red, blue, green, black, 
brown, yellow and turquoise modules.

The degree, k, for each gene in the module was calcu-
lated and the P‑value of Cox regression between each gene 
and survival was also determined. Next, the correlation 
between k and ‑log10 (P) was calculated. The yellow module 
exhibited significant correlation with survival time in dataset 
GSE2034 (P=9.3x10‑13) (Fig. 4A), which was also observed 
in dataset GSE25066 (P=9.3x10‑6) (Fig.  4B). Besides, 
survival‑associated genes (P<0.05 in Cox regression) were 
significantly over‑represented in the yellow module in both 
datasets (Fig. 5). Therefore, the yellow module was consid-
ered to be significantly associated with breast cancer patient 
survival, which should be further investigated to understand the 
association between survival time and critical gene expression.

The 144 genes from the yellow module were used in the 
cluster analysis of samples from dataset GSE2034, which 
separated the patient samples into two groups based on the 
expression of these genes (Fig. 6). A significant difference in 
survival time was observed between the two groups (P=0.008; 
Fig. 7). Functional enrichment analysis indicated that the 
144 genes from the yellow module were involved in cell cycle, 
oocyte meiosis, the tumor protein p53 signaling pathway and 
progesterone‑mediated oocyte maturation (Table II).

The top 10 hub genes from the yellow module were 
selected (Table  III) and included cyclin B2 (CCNB2), 
ubiquitin‑conjugating enzyme E2C (UBE2C), protein regulator 
of cytokinesis  1 (PRC1), cell division cycle  20 (CDC20), 
abnormal spindle microtubule assembly (ASPM), forkhead 
box  M1 (FOXM1), kinesin family member  4A (KIF4A), 
nucleolar and spindle associated protein  1 (NUSAP1), 
pituitary tumor‑transforming 1 (PTTG1) and centrosomal 
protein 55 kDa (CEP55). All of these genes were significantly 
associated with survival time in the two datasets.

Discussion

Two gene expression datasets of breast cancer were obtained 
and the 2,669 differentially expressed genes with a CV >0.5 
were selected. These genes were implicated in the immune 
response, cell proliferation and cell migration. These functions 
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were closely associated with the development and metastasis 
of cancer. A breast‑cancer‑specific gene co‑expression network 

was constructed for dataset GSE2034, from which 7 modules 
were identified. The yellow module was closely associated with 

Table I. Top 15 significantly over‑represented biological pathways.

ID	 Description	 P‑value	 Adjusted P‑value

GO:0006955	 Immune response	 2.19x10‑63	 3.27x10‑61

GO:0006952	 Defense response	 2.15x10‑57	 2.80x10‑55

GO:0006950	 Response to stress	 1.57x10‑56	 1.96x10‑54

GO:0007166	 Cell‑surface receptor signaling pathway	 1.20x10‑55	 1.43x10‑53

GO:0008283	 Cell proliferation	 1.06x10‑49	 1.09x10‑47

GO:0002682	 Regulation of immune system process	 6.12x10‑42	 4.82x10‑40

GO:0016477	 Cell migration	 7.58x10‑40	 5.66x10‑38

GO:0045321	 Leukocyte activation	 1.90x10‑39	 1.32x10‑37

GO:0006954	 Inflammatory response	 3.92x10‑38	 2.66x10‑36

GO:0048584	 Positive regulation of response to stimulus	 6.10x10‑38	 4.05x10‑36

GO:0042127	 Regulation of cell proliferation	 1.72x10‑37	 1.10x10‑35

GO:0030154	 Cell differentiation	 3.01x10‑34	 1.70x10‑32

GO:0048869	 Cellular developmental process	 2.06x10‑33	 1.14x10‑31

GO:0007155	 Cell adhesion	 7.77x10‑33	 4.22x10‑31

GO:0022610	 Biological adhesion	 1.11x10‑32	 5.90x10‑31

Adjusted P‑value: Use the multiple comparisons in General Linear Model ANOVA, the adjusted P‑value indicates which factor level compari-
sons within a family of comparisons (hypothesis tests) are significantly different.

Figure 1. Box plots of normalized gene expression data of two datasets. (A) GSE2034 (286 samples) and (B) GSE25066 (200 samples randomly selected from 
the total 508 samples). The average total mRNA expression level in each sample was consistent, indicating that a good performance of normalization was 
achieved. The x‑axis represents the gene expression level; the y‑axis represents the samples.

Figure 2. Gene co‑expression networks for datasets GSE2034 (left) and GSE25066 (right). The x‑axis represents the degree of the node, k, while the y‑axis 
represents proportion of genes with degree of k, p (k).
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Figure 4. Scatter plots of the degree and P‑value of Cox regression in datasets (A) GSE2034 and (B) GSE25066. The x‑axis indicates the degree of regression, 
the y‑axis indicates the P‑value. Each circle represents a gene.

Figure 3. Seven modules identified from the gene co‑expression network. Cluster analysis result is shown above and module identification shown below.
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survival time and, as such, the 144 genes from yellow module 
were investigated further. These genes were primarily involved 
in the cell cycle and tumor protein p53 signaling pathway. The 
top 10 hub genes were identified in the yellow module, all of 
which were associated with poor patient prognosis.

The majority of the 10 critical genes in the yellow module 
are associated with the cell cycle. CCNB2 is an essential compo-
nent of the cell‑cycle regulatory machinery  (20). Elevated 
CCNB2 expression in invasive breast cancer is associated with 
unfavorable clinical outcomes (21). UBE2C is required for the 

degradation of mitotic cyclins and for cell‑cycle progression, and 
is involved in cancer progression. UBE2C is highly expressed 
in breast microcalcification lesions (22). The prognostic value 
of UBE2C has been validated in several studies  (23‑25). 
microRNA‑196a post‑transcriptionally upregulates UBE2C 
and promotes cell proliferation in breast cancer (26). Inhibition 
of UBE2C reduces proliferation and sensitizes breast cancer 
cells to radiotherapy and chemotherapy (27), suggesting that 
it could serve as a potential therapeutic target. CDC20 is a 
regulatory protein in the cell cycle. Overexpression of CDC20 

Figure 6. Cluster analysis using the degree of expression of 144 survival‑associated genes for the samples in the GSE2034 dataset.

Figure 5. Survival‑associated genes in each module. The x‑axis indicates the module, the y‑axis indicates the significance of over‑representation.
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Figure 7. Survival curves for the two groups of breast cancer patient samples clustered according to expression of the 144 genes.

Table III. Top 10 hub genes in the yellow module.

Dataset	 Gene name	 Coefficient	 P‑value	 kTotal	 kWithin

GSE2034	 CCNB2	 0.3640	 0.0003	 14.7998	 12.4392
	 PRC1	 0.3868	 0.0005	 12.9603	 11.3677
	 UBE2C	 0.4281	 0.0006	 14.1236	 11.2433
	 ASPM	 0.3442	 0.0002	 12.9467	 10.9328
	 CDC20	 0.2339	 0.0065	 14.6847	 10.7527
	 FOXM1	 0.1988	 0.0168	 13.7352	 10.7131
	 CEP55	 0.3691	 0.0004	 12.6988	 10.6131
	 KIF4A	 0.2648	 0.0217	 12.1095	 10.3165
	 NUSAP1	 0.3931	 0.0012	 11.7988	 10.2885
	 PTTG1	 0.4027	 0.0019	 12.4981	 10.2449
GSE25066	 CCNB2	 0.323932	 0.3239	 0.0006	 9.4109
	 PRC1	 0.276034	 0.2760	 0.0023	 6.6109
	 UBE2C	 0.381925	 0.3819	 0.0003	 6.1036
	 ASPM	 0.207911	 0.2079	 0.0031	 4.9210
	 CDC20	 0.329027	 0.3290	 0.0000	 8.5936
	 FOXM1	 0.170967	 0.1710	 0.0091	 5.9345
	 CEP55	 0.304415	 0.3044	 0.0002	 6.3694
	 KIF4A	 0.568168	 0.5682	 0.0001	 3.1945
	 NUSAP1	 0.270014	 0.2700	 0.0061	 6.7332
	 PTTG1	 0.791755	 0.7918	 0.0000	 4.0029

Table II. KEGG pathways enriched in the 144 genes of the yellow module.

ID	 Description	 P‑value	 Adjusted P‑value

hsa04110	 Cell cycle	 5.22x10‑18	 3.13x10‑17

hsa04114	 Oocyte meiosis	 2.17x10‑9	 6.50x10‑9

hsa04115	 p53 signaling pathway	 2.46x10‑5	 4.91x10‑5

hsa04914	 Progesterone‑mediated oocyte maturation	 9.19x10‑5	 1.38x10‑4

p53, tumor protein p53. Adjusted P‑value: Using multiple comparisons in a general linear model analysis of variance, the adjusted P‑value 
indicates which factor level comparisons within a family of comparisons (hypothesis tests) are significantly different.
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predicts short‑term breast cancer survival  (22). ASPM is 
essential for normal mitotic spindle function and is a marker 
for vascular invasion, early recurrence and poor prognosis of 
hepatocellular carcinoma (28). Increased ASPM expression is 
also associated with enhanced tumor grade and lower survival 
rates of epithelial ovarian cancer (29). A significant correlation 
between the expression of the CCNB2 and ASPM proteins is 
reported (21), which may serve a role in the development of 
breast cancer.

FOXM1 is a transcriptional activator involved in cell 
proliferation, which is a downstream target and marker 
of HER2 overexpression in breast cancer  (30). FOXM1 
is implicated in the proliferation, migration and invasion 
of breast cancer cells (31,32) and serves a role in chemo-
therapy resistance  (33,34). KIF4A is an ATP‑dependent 
microtubule‑based motor protein that is involved in the 
intracellular transport of membranous organelles. KIF4A 
is implicated in doxorubicin‑induced apoptosis in breast 
cancer cells (35). NUSAP1 may be involved in tumorigen-
esis and in the processes of invasion and progression of 
breast cancer (36); it influences the DNA damage response 
by controlling the protein levels of BRCA1 (37). PTTG1 
exhibits tumorigenic activity in vivo and is highly expressed 
in various tumors; it is associated with endocrine therapy 
resistance in breast cancer (38). PTTG1 may promote tumor 
malignancy via the epithelial‑to‑mesenchymal transition 
and the expansion of the cancer stem cell population (39). 
CEP55 is also involved in breast cancer progression (40), 
possibly exerting an oncogenic function via regulation of 
the phosphoinositide‑3 kinase/protein kinase B pathway 
and midbody fate (41).

PRC1 encodes a protein involved in cytokinesis, specifically 
the polarization of parallel microtubules, whose expression 
level changes markedly in the different phases of the cell 
cycle. PRC1 has been demonstrated to be a substrate of several 
cyclin‑dependent kinases (CDKs); its alternative splicing 
results in multiple transcript variants (42,43). Although PRC1 
serves an important role in the cell cycle, its role in breast 
cancer remains unclear. The results of the present study indi-
cate that the role of PRC1 in the pathogenesis of breast cancer 
necessitates further study.

Gene co‑expression network analysis revealed several 
genes of prognostic significance in breast cancer. The majority 
of these genes have been validated by previous studies; 
however, the function of certain critical genes identified by 
gene co‑expression network analysis in breast cancer remains 
unclear, thus providing targets for further studies. These 
prospective studied may disclose novel biomarkers or provide 
targets for breast cancer therapies.
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