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In this paper, we present a case study of Qishenkeli (QSKL) to research TCM’s underlying molecular mechanism, based on drug
target prediction and analyses of TCM chemical components and following experimental validation. First, after determining
the compositive compounds of QSKL, we use drugCIPHER-CS to predict their potential drug targets. These potential targets
are significantly enriched with known cardiovascular disease-related drug targets. Then we find these potential drug targets
are significantly enriched in the biological processes of neuroactive ligand-receptor interaction, aminoacyl-tRNA biosynthesis,
calcium signaling pathway, glycine, serine and threonine metabolism, and renin-angiotensin system (RAAS), and so on. Then,
animal model of coronary heart disease (CHD) induced by left anterior descending coronary artery ligation is applied to
validate predicted pathway. RAAS pathway is selected as an example, and the results show that QSKL has effect on both rennin
and angiotensin II receptor (AT1R), which eventually down regulates the angiotensin II (AngII). Bioinformatics combing with
experiment verification can provide a credible and objective method to understand the complicated multitargets mechanism for
Chinese herbal formula.

1. Introduction

Coronary heart disease (CHD) remains the single leading
cause of death for adults worldwide [1]. Effective prevention
and therapy for CHD poses a major challenge to the
entire medical community. There exists a strong demand to
continue searching for both safe and efficacious products to
combat this emerging health epidemic. Traditional Chinese
medicine (TCM) has fought against CHD and its related
diseases for more than 1000 years and has accumulated
thousands of herbal formula as well as clinical literatures, it
has been considered to have huge potential as an information
source and starting point for the development of CHD
products [2]. Meanwhile, more and more patients all over the
world take TCM as a complementary and alternative avenue
to treat CHD.

However, how herbal formula work and what are their
drug targets are still unclear by now. Many studies have

focused on active monomer of herbs to explain their ther-
apy mechanism [3], but apparently there are significantly
different characteristics between active monomer and herbal
formula as whole. Active monomer may have a clear target,
such as receptors, enzymes, ion channels, transmembrane
signal transduction molecules, mostly acting on single-tar-
get, but Chinese herbal formula composed of diverse, com-
plex components, its comprehensive pharmacological effects
is accumulated by many active monomers through multi-
channel and multitargets [4]. How to determine the multi-
targets from such a complex biological process is a challenge
to TCM.

Coronary heart disease (CHD) is now a heavy burden on
the society and families in both industrialized and developing
countries, and some herbal formula present a definitely
clinical effect on it, so it presents a better example and context
for investigating the efficacy and the drug targets in TCM.
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The ancient TCM Qishenkeli (QSKL), prepared from
a basic formula of six Chinese herbs (Radix Astragali
Mongolici, salvia miltiorrhiza bunge, Flos Lonicerae, Scro-
phularia, Radix Aconiti Lateralis Preparata, and Radix
Glycyrrhizae, etc.) is widely produced in China in accor-
dance with the China Pharmacopoeia standard of quality
control [5] and is commonly used in routine treatment
of CHD of clinical practice in China. It contains large-
scale epidemiological survey in the randomized controlled
clinical trials proved that it has a definite effect on improving
heart function [6], while a lot of studies are carried out
to investigated in active monomers among them and made
great progress, for example, Astragalus Polysaccharide (APS,
monomer of Radix Astragali Mongolici) is found has effect
on cardiac chymase activities [7], tanshinone IIA (monomer
of salvia miltiorrhiza bunge) is found in cardioprotective
effects and attenuating myocardial hypertrophy [3], but as
mentioned before, monomer pharmacological effects cannot
present overall efficacy of the whole formula, studies involved
all the compounds are rarely carried out.

In recent years, people develop some bioinformatic
methods to infer drug target interactions [8–13]. These
methods provide opportunities to reveal the underlying
molecular mechanism of TCM. Recent advances on the
databases cataloging chemical components of herbs and the
interactions between drugs and targets enhance the feasibility
of predicting the herbs drug targets.

DrugCIPHER-CS is an efficient drug target prediction
method which is recently presented by Zhao and Li [14],
and in this paper, we use it to predict the potential targets
of QSKL’s compositive compounds. This method is based on
the principle that (i) drugs with similar chemical structure
tend to bind functionally related proteins and (ii) functional
relationship between the proteins can be measured by their
distance in the protein interaction network. For a query
drug, each protein in the protein interaction network will
be assigned a score by DrugCIPHER-CS which describes the
importance of the protein to the activity of the drug, and
proteins with high scores will be hypothesized as this query
drug’s potential targets.

This paper presents an idea that multi targets for
herbs should be investigated by combing bioinformatics and
experimental verification to finally determine drug targets.
Firstly, herbal components are investigated by data mining
from database; secondly, bioinformatics is applied to predict
the drug target for all compounds based the principle of that
similar structural has similar function, then bioinformatics
including GO function analysis are used to look for the
pathway that the proteins belong. Finally, experimental
verification is taken to confirm how and what the herbs work
on the body, thus to provide a credible method to investigate
the complicated multitargets mechanism for herbs.

2. Methods

2.1. Drug Targets Prediction. In this paper, we use drug-
CIPHER-CS to predict drug targets of QSKL’s compositive
compounds. DrugCIPHER-CS recently presented by Zhao
and Li [14] achieves good prediction performance and can

infer drug targets in the genome wide scale. This method
is based on the hypotheses that (i) drugs with similar
chemical structure usually bind functionally related proteins
and (ii) functional relationship between the proteins can
be measured by their distance in the protein interaction
network. Given a set of known drug- (drug-space) target
(target-space) interactions, for a query drug and a candidate
target gene, drugCIPHER-CS will measure the likelihood
of their interaction based on the correlation between the
query drug’s structure similarity vector with the drug space
and the candidate gene’s functional similarity vector with
the target space. For a query compound, drugCIPHER-
CS will prioritize the proteins in the protein interaction
network (i.e., candidate proteins) according to the order of
the decreasing drug target interaction likelihood, and the
candidate proteins with high likelihood will be hypothesized
as the potential drug targets (Please refer to paper [14] for
more details of DrugCIPHER-CS).

Here, known drug target interactions are obtained from
DrugBank database (version: May, 2011) [15]. We only
use those drug-target interactions whose drugs are FDA-
approved and have InChI identifiers [16] and whose targets
are human genes/proteins. In total, we obtain 4299 interac-
tions between 1109 drugs and 1138 targets. The chemical
structure similarity is calculated based on compounds’
MOLPRINT 2D descriptors and Tanimoto coefficient [17].
The human protein interaction network is constructed
by integrating the protein interaction data from HPRD
(release 9.0) [18], BioGRID (version: 3.0.66) [19], IntAct
(version: 20100628) [20], MINT (version: 20100505) [21],
DIP (version: 20100614) [22], and PDB provided by Gibson
and Goldberg [23]. In total, there are 102131 interactions
between 11654 proteins in the protein interaction network.

2.2. Degree and betweenness Centrality in the Protein Interac-
tion Network. A protein’s degree is defined as the number of
its direct interaction partners in the protein interaction net-
work. The betweenness centrality of protein n is computed
as

B(n) =
(∑

s /=n /= t(σst(n)/σst)
)

((N − 1)(N − 2)/2)
, (1)

where σst denotes the number of the shortest paths between
protein s and protein t in the protein interaction network,
σst(n) denotes the number of the shortest paths across
protein n between protein s and protein t, and N is the total
number of proteins in the protein interaction network.

Both degree and betweenness centrality can measure
a protein’s topological importance in the network. The
larger a protein’s degree/betweenness centrality is, the more
important the protein is in the protein interaction network.

2.3. CHD Model Preparation. CHD is induced by direct
coronary ligation as described before [24]. Briefly, Sprague-
Dawley (SD) rats are anaesthetized with pentobarbital
sodium (1%, 50 mg kg−1 intraperitoneally). The trachea of
each rats is intubated per orally with a plastic tube connected
to a respirator (Kent Scientific 325, China) set at a stroke
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volume of 3 mL kg−1, respiratory ratio: 2 : 1, and a rate
of 80 strokes min−1. After left thoracotomy and exposure
of the heart, the left anterior descending coronary artery
(LAD) is ligated with a 5–0 polypropylene suture (Surgipro,
CT, USA) directly proximal to its main branching point.
Control groups are made following an identical procedure
but without the actual tying of the polypropylene suture.
Thereafter, the thorax is closed and as soon as spontaneous
respiration is sufficient, the rats are extubated and are al-
lowed to recover under a heated lamp. They are fed a stand-
ard diet and water and are maintained on a 12-hour Light-
and-dark cycle. After ECG testing, rats that averaged QT-
interval prolongation in three precordial leads are included
in the study. The QSKL group is treated for 28 days by
daily oral gavage with total daily dosages of 508 mg/kg of the
concentrated QSKL (Beijing university of Chinese Medicine,
Beijing, China) dissolved in water. The control and model
groups receive the same volume water via oral gavage as
the QSKL vehicle. At the end of the study, all animals are
anaesthetized using pentobarbital sodium following an
overnight fast. Blood samples are collected via abdominal
aorta puncture, place on ice, and allow to clot. After centrif-
ugation, serum is collected, aliquoted, and stored at −80◦C
until analysis of each indicator within a short period of time.

2.4. Echocardiographic Assessment of LV Function. Echocar-
diography is used to detect Left ventricular end-systolic
diameter (LVEDs), Left ventricular end-diastolic diameter
(LVEDd), ejection fraction (EF), fractional shortening (FS),
and other indicators. A PST 65A sector scanner (8-MHz
probe) is used, which generates two-dimensional images at
a frame rate ranging from 300 to 500 frames/s. LV dimension
(LVD) is measured by M model, and fractional shortening
(FS%) is calculated by the following equation:

FS% =
[

LVEDd− LVEDs
LVEDd

]
∗ 100%. (2)

2.5. Preparation and Dose Consideration of Concentrated
QSKL. The QSKL used in this study is manufactured by
Beijing university of Chinese medicine (Beijing, China) using
the six Chinese herbs at a composition of 460 g Radix
Astragali Mongolici, 230 g salvia miltiorrhiza bunge, 160 g
Flos Lonicerae, 160 g scrophularia, 140 g Radix Aconiti
Lateralis Preparata, and 90 g Radix Glycyrrhizae. Briefly, the
residue of Radix Astragali Mongolici is mixed with all salvia
miltiorrhiza bunge, Flos Lonicerae, scrophularia, and Radix
Glycyrrhizae, follow by extraction with hot water (twice, 2 hr
each). The water extract is then concentrated to form a paste,
and the ethanol is added for 24 hr, the filtration is collected
to form the final product. Based on the recommended daily
human dosage of 20 g/d, according to the equivalent conver-
sion between animal and people by body surface area, dosage
of 508 mg/kg is chosen in present study.

2.6. Biological Parameter Detection

2.6.1. Measurement of Serum Indicators by Elisa. Levels of se-
rum indicators (appeared in predicting target) are quantified
in duplicate using commercial ELISA kits (Abcam Inc.,

Cambridge, MA, USA). Each assay is performed following
the kit instructions. Standards at a series of concentrations
are run in parallel with the samples. The concentrations in
the samples are calculated in reference to the corresponding
standard curves and expressed as ng/mL.

2.6.2. Measurement of Indicators by Western Blot. The serum
are homogenised in RIPA buffer (50 mM TrisHCl pH7.4,
150 mM NaCl, 2 mM EDTA, 1% NP-40, 0.1% SDS) and total
protein is extracted from this homogenate. The protein
concentration in each sample extract is measured using a
protein assay kit (Pierce; Rockford, IL, USA) and then is
adjusted to the same value in all samples with 2X 4% SDS
sample buffer. The samples are boiled for 5 min followed
by loading on a 7.5% SDS-PAGE gel (30 mg protein/10 mL
per well) for electrophoresis using a Bio-Rad mini gel
apparatus at 100 V for 2 hours. The fractionated protein
on the gel is transferred onto a NC membrane (Millipore)
and electrophoresed at 300 mA for 90 min. The membrane is
first probed with AT1R primary antibody (antiangiotensin
II type 1 receptor antibody, ab18801, Abcam, 1 : 500) and
secondary antibody (donkey polyclonal secondary antibody
to rabbit IgG-HRP, ab97064, Abcam, 1 : 5000), and then
treated with ECL (ECL Plus western blotting detection
reagent, GE Healthcare) for 1 min at room temperature.
The bands in the membrane are visualized and analyzed
using UVP BioImaging Systems. After obtaining the AT1R
blot density, the membrane is then treated using restore
western blot stripping buffer (Thermo Scientific) to remove
the AT1R signal, followed by probing with glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) primary antibodies
(GAPDH mouse monoclonal IgG, ab8245, Abcam, 1 : 2000)
using the same process as the AT1R antibody to get the AT1R
and GAPDH blot densities. The final reported data are the
normalized AT1R band densities by GAPDH.

2.6.3. Measurement of Indicators by Immunohistochemistry
(IHC). An avidin-biotin-peroxidase complex commercial
method (R&D) is used for immunohistochemistry. Briefly,
4-mm-thick paraffin wax sections are mounted on slides,
which are dried for 30 minutes in an oven (60–70◦C)
and deparaffinized in xylene. The slides are then placed in
changes of ethanol for 2 minutes each. Washing in buffer
solution is performed between steps. The slides are then
placed in 3% hydrogen peroxide for 15 minutes. And then are
subsequently incubated in avidin block for 15 minutes, biotin
block for 15 minutes, primary antibody (Ang II antibody,
Phoenix Pharmaceuticals Inc. or Anti angiotensin II type 1
receptor antibody, ab18801, Abcam) for 12 hours at 4◦C,
and biotinylated secondary antibody for 1 hours. The reagent
incubation is performed with streptavidin peroxidase for
15 minutes. A 1-minute Mayer’s hematoxylin counterstain
is used. The slides are dehydrated, cleared with xylene,
and mounted with permanent mounting medium. Finally,
integral optical density (IOD) of pictures is analyzed by
IPP6.0 software.

2.7. Statistical Analysis. Data analyses are performed by one-
way ANOVA using SAS 9.2 statistical software (SAS Institute,
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Figure 1: The protein interaction network consists of top 0.1%
candidate target genes.

NC, USA). P < 0.05 was considered statistically significant.
Results are presented as mean values with their standard
deviation.

3. Results

3.1. Drug Target Prediction and Analyses. In order to reveal
the underlying molecular mechanism of QSKL, we firstly
use bioinformatic method to infer the targets of its chemical
components.

By use of literature curation, we determine QSKL’s 231
compositive compounds. Then we use drugCIPHER-CS
method [14] to infer their potential targets (Supplemen-
tary Table 1 avaliable online at doi: 10.1155/2012/698531).
drugCIPHER-CS published recently by Zhao and Li achieves
good performance for predicting the targets of drugs
and can infer targets in the genome-wide scale [14]. For
each compositive compound, drugCIPHER-CS prioritizes its
candidate targets according to the order of the decreasing
possibility being targeted by the compound. When we choose
top 1% candidate targets, we obtain 3725 candidate target
genes for 207 compositive compounds which have clear
chemical structures. Average, one target gene is shared by
6.5 compounds. When we choose top 0.1% predicted targets,
we obtain 639 target genes. Average, one gene is targeted by
3.6 compounds. As shown in Figure 1, there are 510 protein
interactions between these 639 top 0.1% candidate targets
(Figure 1).

By comparing with the known cardiovascular disease-
related drug targets (i.e., the known targets of drugs whose
ACT code uses “C” as the first level) in DrugBank [15], we
find both top 0.1% and top 1% candidate targets are signif-
icantly enriched with known cardiovascular disease-related
targets (upper-tailed P value of hypergeometric cumulative
distribution is 2.03E−10 for top 0.1% and 2.05E−08 for top

1% candidate targets). And the corresponding enrichment
extent of top 0.1% candidate targets is higher than that of
top 1% targets.

After obtaining the potential targets for the QSKL’s chem-
ical components, we analyze the enriched KEGG biological
pathways [25] (version: 2009.11) among these potential
targets. In total we find 16 significantly enriched pathways
among top 0.1% candidate targets (Table 1), including
the pathways of neuroactive ligand-receptor interaction,
ami-noacyl-tRNA biosynthesis, calcium signaling pathway,
glycine, serine and threonine metabolism, Renin-angiotensin
system, and so on. The importance of Neuroactive ligand-
receptor interaction in the development and progress of
cardiovascular disease processes such as CHD is well known,
The key protein in this pathway such as Adrenergic receptor,
Angiotensin receptor, Calcitonin receptor-like, Neurotensin
receptor are closely related to the cardiac function. The
pathway of Aminoacyl-tRNA biosynthesis plays a important
roles in cardiovascular angiogenesis [26], The relationship
between calcium signaling pathway and CHD is confirmed,
and calcium antagonists have been widely used in clinical to
inhibit extracellular calcium influx, reducing the concentra-
tion of intracellular calcium and lower myocardial contrac-
tility [27]. Glycine, serine, and threonine metabolism mainly
provide the ATP for myocardial contractility [28]. Renin-
angiotensin system plays a central role in the deterioration
of cardiovascular function [29].

Also, we research the functional distribution of these
candidate targets (Table 2). The significantly enriched
gene ontology (GO) functional annotations [30] (version:
20111103) of these targets include cellular amino acid
metabolic process, biosynthetic process, small molecule
metabolic process, cellular nitrogen compound metabolic
process and circulatory system process, indicating the QSKL
intervening in these pathological progresses. These enriched
pathways and GO functional annotations provide important
clues for understanding the molecular mechanism of QSKL.

In addition, by checking the degree and betweenness
centrality of these candidate target genes in the protein
interaction network, we find these candidate targets are sign-
ificantly depleted with the proteins with the highest degree
or betweenness centrality (Table 3). And the depletion extent
for top 0.1% candidate targets is larger than that for top
1% candidate targets. That is, these QSKL’s candidate target
genes do not tend to be topologically the most important
in the protein interaction network. This result is consistent
with Hase et al.’s conclusion that known human drug targets
tend to be less connected nodes in the network [31]. The
TCM with multiple chemical components targets multiple
less-connected nodes, which may produce greater synergetic
efficacy and fewer side effects.

3.2. Experimental Validation

3.2.1. Model Evaluation. 28 days after surgery, echocardiog-
raphy showed that EF and FS values in the model group were
significantly different (P < 0.05). EF value of ligation rats
in model group dropped down to 49.03% compared with
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Table 1: Significantly enriched KEGG biological pathways among top 0.1% candidate target genes of QSKL compositive compounds.

KEGG pathway number and name P valuea Coverageb

hsa04080 neuroactive ligand-receptor interaction 1.17E − 10 0.1358

hsa00970 aminoacyl-tRNA biosynthesis 1.54E − 08 0.3171

hsa04020 calcium signaling pathway 1.34E − 06 0.1348

hsa00260 glycine, serine, and threonine metabolism 3.90E − 04 0.2258

hsa04614 renin-angiotensin system 7.51E − 04 0.2941

hsa00290 valine, leucine, and isoleucine biosynthesis 1.09E − 03 0.3636

hsa00590 arachidonic acid metabolism 1.12E − 03 0.1552

hsa00350 tyrosine metabolism 4.42E − 03 0.1522

hsa04260 cardiac muscle contraction 1.02E − 02 0.1125

hsa00330 arginine and proline metabolism 1.07E − 02 0.1296

hsa04270 vascular smooth muscle contraction 1.13E − 02 0.0960

hsa00250 alanine, aspartate, and glutamate
metabolism

1.22E − 02 0.1613

hsa04144 endocytosis 2.32E − 02 0.0802

hsa04115 p53 signaling pathway 3.69E − 02 0.1014

hsa00071 fatty acid metabolism 4.09E − 02 0.1190

hsa00591 linoleic acid metabolism 4.11E − 02 0.1379
aA pathway is significantly enriched with candidate target genes when its corresponding upper-tailed P value of hypergeometric cumulative distribution is
smaller than 0.05. The pathways are ranked according to the order of the increasing P values. bThe coverage for each pathway is referred to as the fraction of
candidate target genes among all the pathway member genes.

Table 2: Significantly enriched GO term among top 0.1% candidate target genes of QSKL compositive compounds.

GO term ID GO term name P valuea

GO:0006520 Cellular amino acid metabolic process 1.99E − 13

GO:0009058 Biosynthetic process 4.32E − 09

GO:0044281 Small molecule metabolic process 2.55E − 08

GO:0034641 Cellular nitrogen compound metabolic process 2.27E − 07

GO:0003013 Circulatory system process 1.40E − 06

GO:0006399 tRNA metabolic process 6.43E − 06

GO:0007267 Cell-cell signaling 1.60E − 04

GO:0006950 Response to stress 1.88E − 04

GO:0006412 Translation 3.70E − 04

GO:0042592 Homeostatic process 4.40E − 04

GO:0055085 Transmembrane transport 4.90E − 04

GO:0071941 Nitrogen cycle metabolic process 7.37E − 04

GO:0007568 Aging 7.90E − 04

GO:0006810 Transport 9.10E − 04

GO:0050877 Neurological system process 2.35E − 03

GO:0006461 Protein complex assembly 1.75E − 02

GO:0019748 Secondary metabolic process 1.99E − 02

GO:0065003 Macromolecular complex assembly 4.30E − 02
aThe top 0.1% candidate target genes are significantly enriched with genes annotated with a GO term when its corresponding upper-tailed P value of
hypergeometric cumulative distribution is smaller than 0.05. These GO terms are ranked according to the order of the increasing P values.

control group, suggesting a steady CHD model is established.
After treated by QSKL for 28 days, the EF value recovers by
37.62% compared with model group (Figure 2).

3.2.2. Predicting Pathway Validation. The importance of neu-
rohormonal activation in the development and progress of
cardiovascular disease processes such as CHD is well known,

and the renin-angiotensin system plays a central role in this
[32].The chronically activated renin-angiotensin aldosterone
system (RAAS) is believed to contribute significantly to the
deterioration of cardiovascular function, Inhibitors of it have
been routinely used to treat patients with CHD [29]. In this
paper, RAAS are selected as example and context to validate
predicting pathway. Critical indicators in RAAS pathway are
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Control

(a)

Model

(b)

QSKL

(c)

Figure 2: The cardiac function in different groups. Control groups showed a high EF value, while abnormal ventricular wall movement in
model group is seen, in QSKL group, EF value recovers in some extent.

Table 3: The depletion analyses of proteins with the highest degree/betweenness centrality among top 0.1% and top 1% candidate target-
genes.

Lower-tailed P values of hypergeometric cumulative distribution

Top 0.1% candidate targets Top 1% candidate targets

The proteins with the highest degreea 4.97E − 07 3.89E − 06

The proteins with the highest betweenness centralitya 4.97E − 07 3.24E − 05
aThe proteins with the highest degree/betweenness centrality are referred to as those with top 5% degree/betweenness centrality in the protein interaction
network.

detected to test the accuracy of the predicting pathway, we
carry out series experiments to validate them including Elisa,
IHC, and westernrblot.

The western blot of renin shows that at the end of the
study, the serum renin in model group increases by 45%
(P < 0.05) compared with control, after treated by QSKL
for 28 days, the level of renin shows a 22.76% reduction
compared with model group (P < 0.05), which had no
statistical significance when compared to the control
(Figure 3(a)).

Both Elisa and IHC results show that the levels of Ang
II in model group upregulated by 27.88% compared with
control (P < 0.05), after treated by QSKL for 28 days, a
16.59% reduction are detected in QSKL group compared

with model (P < 0.05),which almost return to the level of
the control (Figures 4 and 5, Table 4).

AT1R is thought to be a better target to cure the CHD.
The AT1R in model group up regulated by 59.00% compared
with control. In QSKL group, its level decreases by 42.12%
compared with model, which has no significant difference
with control (Figures 3(b), 4, and 5). The level of serum al-
dosterone (ALD) in each group does not show any signifi-
cant difference.

4. Discussion

At present, monomer in herbs is usually applied to explain
the pharmacological efficacy of a whole Chinese herbal
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Figure 3: QSKL significantly lowers rennin and AT1R in CHD rats. (a) Rennin levels in different group; (b) AT1 levels in different group.
Data are analyzed by one-way ANOVA. P < 0.05 indicates statistical significance. Results are presented as mean values with their standard
deviation (n = 20). ∗Differed significantly from model (P < 0.05).

Table 4: The change in indicators related to renin-angiotensin-aldosterone system (mean values with their standard deviation, n = 20).

Control Model QSKL

Mean SD Mean SD Mean SD

Ang II (×10−6 μg/mL) 165.59∗ 21.352 211.28 19.853 176.71∗ 17.661

ALD (×10−3 μg/mL) 208.85 47.953 220.32 20.608 236.49 32.965

QSKL: Qishenkeli; ∗mean values are significantly different from model (∗P < 0.05).

formulation. In fact, it did not present the multitarget
characteristic of the multi component Chinese herbal for-
mulation. If the multi targets can be predicted according
to chemical structure of its composition through the bioin-
formatics, and experiments to verify the results, things will
be go easy and concise to confirm herbs pharmacological
mechanisms.

With the development of high-throughput drug screen-
ing and structural analysis technology, the chemical com-
positions of formulation are gradually revealed, mature
database of the chemical composition of Chinese herbs
are gradually established, and the identification of the
chemical structure makes it possible to predict drug targets
by investigating the relations between the drug and the
biomarkers proteins. As the development of system biology,
bio formations technique becomes more and more mature.
Its advantages are very applicable to the complex correlativity
study of compound in herbs and the drug targets.

In this paper, we take drugCIPHER-CS to predict the
target of QSKL which has been used for treating CHD
effectively for thousand years. Five pathways were predicted

as a main way that the QSKL may act on. RAAS was selected
to elaborate the pharmacological mechanism of QSKL. After
experimental verification, more than one target was verified
including renin, Ang II, AT1, which can elaborate the char-
acteristic of the milt-target of Chinese herbal formulation.

The chronically activated renin-angiotensin-aldosterone
system (RAAS) is believed to contribute significantly to
the deterioration of cardiovascular function. In the path-
way, angiotensin II has critical roles including the regula-
tion of blood pressure, vasoconstriction, increasing aldos-
terone secretion, amplifying sympathetic activity, increasing
sodium retention, as well as lots of other actions. It is
considered a factor in virtually every form of CHD, and
it is applied as a therapeutic target in hypertension and
chronic heart failure. Numerous researches focus on its
inhibitors to provide clinical drug for CHD. Among them,
Antagonists to AT1R and angiotensin-converting enzyme
inhibitors (ACEI) have been routinely used to treat patients
with CHD [33, 34]. Both experimental and clinical studies
have shown that ACEI, besides inhibiting the concentration
of Ang II, could have desirable effects by down regulating
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(a) (b) (c)

(d) (e) (f)

Figure 4: IHC results of Ang II and AT1R in control, model and QSKL group. (a) Cardiac Ang II expression in control group. (b) Upreg-
ulating cardiac Ang II expression in model group. (c) QSKL can reduce the level of the Ang II. (d) Cardiac AT1R expression in control group.
(e) Disorders in myocardial cells, upregulating cardiac AT1 expression in model group. (f) QSKL can decrease the level of the AT1.

the bradykinin [35], moreover, patients levels of angiotensin
II have a tendency to return to pre treatment levels after
long-term ACEI treatment [36]. Since ACEI do not seem
to have complete protective effects against the detrimental
effects of Ang II, AT1-receptor blockers may offer advantages
relative to ACEI by effectively blocking the AT1-receptor,
which mediates all known detrimental effects of Ang II. The
AT1R mediates the majority of classical biological functions
of Ang II [37] and plays a critical role in the control of
regulation of blood pressure, vasoconstriction, increasing
aldosterone secretion, amplifying sympathetic activity, and
so forth. All the AT1-receptor antagonists in routinely clinical
use are extremely well tolerated. Since AT1R blockers for
the treatment of cardiovascular disease seem very promising,
indeed, the AT1R has been regarded as an important target
for cardiovascular treatment. In our research, the QSKL can
significantly down regulated the level both Ang II and AT1R,
indicating a same efficacy as AT1 agonists. Besides, the QSKL
can lower the RAAS activation form the very beginning-
the renin. Renin is an aspartyl-protease enzyme produced
and activated within the juxtaglomerular (JG) cells of the
afferent arteriole in the kidney. Through Angiotensin I, it

can activate Ang II which is the primary biologically active
hormone of the renin-angiotensin system as referring before.
Renin secretion is the critical rate-limiting step in the activity
of the entire system [38]. Because of this, QSKL regulating
renin secretion are of particular interest and importance in
understanding its collaboration effect with Ang II as well
as understanding therapeutic targets for CHD. ALD seems
not to change, which is consistent with the published papers
[39]. “ALD breakthrough” is thought to be its important
mechanism.

To sum up, this paper presents an idea that the study
of multi target for Chinese herbal formula are carried
out based on the known chemical composition of herbs
both by bioinformatics and experimental verification. We
take the research of QSKL effect on CHD as an example.
And the results show it can act on CHD in multi targets,
especially in renin and AT1, eventually decrease the level of
the Ang II, which can treat CHD efficiently. From this, a
credible and objective method can be provided to understand
and confirm the complicated multi targets mechanism for
Chinese herbal formulation.
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Figure 5: Semiquantitative determination of Ang II and AT1R
expression with IHC in different groups. ∗Differed significantly
from model (P < 0.05).

But some problems still exist. For example, in predicting
drug targets, the distribution and metabolism of herbal for-
mulation in the body are not taken into consideration in our
research; we presume all components of herbal formulation
compounds are absorbed and utilized; improvement should
be made in our future work.
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