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Abstract

Premature termination codons (PTCs) cause a large proportion of inherited human genetic 

diseases. PTC-containing transcripts can be degraded by an mRNA surveillance pathway termed 

nonsense-mediated mRNA decay (NMD). However, the efficiency of NMD varies; it is inefficient 

when a PTC is located downstream of the last exon junction complex (EJC). We used matched 

exome and transcriptome data from 9,769 human tumors to systematically elucidate the rules of 

NMD targeting in human cells. An integrated model incorporating multiple rules beyond the 

canonical EJC model explains approximately three-quarters of the non-random variance in NMD 

efficiency across thousands of PTCs. We also show that dosage compensation may mask the 

effects of NMD. Applying the NMD model identifies signatures of both positive and negative 

selection on NMD-triggering mutations in human tumors and provides a classification of tumor 

suppressor genes.

Introduction

The nonsense-mediated mRNA decay (NMD) pathway is an mRNA surveillance system that 

protects eukaryotic cells by reducing the production of harmful truncated proteins translated 

from premature termination codon (PTC) bearing transcripts1. In addition, NMD is involved 

in post-transcriptional regulation of global gene expression2. PTC-introducing variants 

cause human genetic diseases3, making NMD an important modulator of disease outcome. 

In particular, NMD can both protect against disease4 and aggravate disease phenotypes5. 
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Therefore, a complete understanding about how the NMD machinery selects which 

transcripts to degrade is crucial for predicting the phenotypic consequences of nonsense 

mutations in humans.

The canonical model for how PTC-containing transcripts are recognized in mammalian cells 

is the exon junction complex (EJC) model, which was defined by introducing PTCs into 

reporter genes6,7. EJC proteins are deposited at exon-exon junctions by the splicing 

machinery but, after nuclear export, are stripped off mRNAs by the translating ribosome. If a 

PTC is present at least 50 nucleotides (nt) upstream of the last exon junction, an EJC will 

remain bound after the pioneering round of translation has terminated8. The interaction 

between termination factors and the downstream EJC subsequently triggers NMD9.

While the EJC model is well supported, exceptions have been reported10,11,12, highlighting 

the possible relevance of an alternative “faux 3′ UTR” model for mammalian cells. This 

model was originally defined in yeast, where a very long 3′ UTR triggers NMD13,14, and 

also applies to Drosophila and Caenorhabditis elegans15,16. One further exception to the 

canonical EJC model has been observed with individual examples of human genes bearing 

PTCs close to the start codon, rendering them insensitive to NMD17,18, even with 

downstream EJCs present. It was hypothesized that 5′ proximal PTCs circumvent NMD by 

re-initiating translation downstream, or, alternatively, that the proximity to poly(A) binding 

protein in a closed mRNA loop inhibits NMD17,19. It is not clear how widely these 

exceptions from the canonical EJC model apply beyond the few transcripts in which they 

were discovered.

To systematically test the general validity of these proposed rules for NMD efficiency and to 

discover new NMD rules requires a global and unbiased approach. A recent study examined 

the effects of germline protein-truncating variants from 635 individuals on allele-specific 

mRNA expression20, providing support for the canonical EJC model but suggesting 

additional rules are also likely to be important21. We hypothesized that human cancer 

genomes and their matched transcriptomes are a useful resource to discover and test these 

additional rules. Cancer exomes can, in some instances, harbor hundreds of somatic single 

nucleotide variants (SNVs), including new PTCs, most of which are passenger mutations 

with little consequence for the tumor cells22. Here we systematically elucidate the rules 

governing NMD in human cells using the nonsense variants from nearly 10,000 human 

tumors and are able to explain ~3/4 of the non-random variance in NMD efficiency. 

Applying the model identifies both positive and negative selection on NMD-inducing 

somatic mutations in human tumors and provides a classification of human tumor suppressor 

genes.

Results

To systematically examine determinants of NMD efficiency we compiled a dataset of 

somatic nonsense mutations from 9,769 cancer patients with available exome sequences, 

copy number alteration (CNA) and mRNA expression data from The Cancer Genome Atlas 

(TCGA) (Fig. 1). We considered 27 cancer types separately (Supplementary Fig. 1b), further 

subdividing them into 94 subtypes by clustering based on global gene expression patterns 
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(Methods). The NMD efficiency of each nonsense mutation was estimated as the fold-

change in mRNA expression level compared to the median expression of wild-type 

transcripts of the same gene in the same cancer subtype (Supplementary Fig. 1a). We applied 

stringent filters to ensure absence of CNA, high frequency of the somatic variants in each 

tumor, high expression levels and low variation of the wild-type gene across samples 

(Methods). This resulted in 2,840 high-confidence nonsense mutations with NMD efficiency 

estimates in 1,900 different genes originating from 1,271 patients (median = 1 nonsense 

mutation per patient, 25 patients with >10 nonsense mutations).

We validated our findings in two additional data sets (Fig. 1): somatic small indels that result 

in a downstream out-of-frame PTC in the TCGA tumor samples (3,151 indel-induced PTCs 

in 1,957 genes from 1,156 patients after filtering) and heterozygous germline nonsense 

variants in 452 lymphoblastoid cell lines from the Geuvadis study20 where the NMD 

efficiency was quantified as allele-specific mRNA expression of the reference over the 

variant allele21 (1,784 high-confidence PTCs in 487 unique loci after filtering on read 

counts).

The standard EJC-model applies widely to human genes

The EJC-model postulates that translation termination at least 50 nt upstream of an exon 

junction triggers NMD6,7. Comparing the NMD-efficiency of PTCs located upstream of the 

last EJC versus PTCs inside the last exon (Fig. 2b,e; Supplementary Fig. 1c,d) shows that 

NMD is, overall, indeed inefficient in the latter case (1.7% vs. 84.7% NMD efficiency – 

calculated as observed NMD efficiency over maximum observable NMD efficiency using 

our NMD model (Methods), p < 2.2 × 10–16). We also observe a sharp decrease towards a 

complete NMD insensitivity over the 50 nt boundary upstream of the last exon, demarcating 

the physical location of the EJC (2.2% vs. 84.7% NMD efficiency, p = 5.3 × 10–5). Thus, a 

downstream EJC is a widespread signal for efficient NMD in many human genes. 

Consistently, intronless transcripts that bear PTCs are not degraded by NMD 

(Supplementary Fig. 1f), as expected from their lack of deposited EJCs.

Next, we examined whether the yeast/Drosophila “faux 3′ UTR” model11–14 also applies 

to human cells, meaning that a long 3′ UTR would be sufficient to trigger NMD even in the 

absence of EJCs. When examining PTCs located downstream of the last exon junction or in 

intronless genes we did not observe a correlation of NMD efficiency to PTC proximity to the 

transcript 3′ end (Supplementary Fig. 1e,f, p = 0.92, t-test for significance of Pearson R). 

This conclusion is also upheld when using frameshift-inducing indels in TCGA or germline 

truncation variants (Supplementary Fig. 1g,h, p > 0.54). Thus, while faux 3′ UTR-related 

mechanisms may be important in individual cases23,24, they do not appear to be a prevalent 

influence on NMD efficiency in human cells. Consistently, a study in HeLa cells did not 

observe a relationship between transcript 3′ UTR length and mRNA turnover rates in 

transcripts targeted by the key NMD factor UPF125.

However, transcripts harboring an intron within the 3′ UTR show a different trend, where 

PTCs in the second-last exon do not trigger NMD despite the presence of a downstream 

exon junction (7% efficient NMD for PTCs in penultimate exon vs. 81% in the upstream 

exons, p = 0.045; 12% vs. 81% for frameshift indels, p = 0.006; Fig. 2c,e, Supplementary 

Lindeboom et al. Page 3

Nat Genet. Author manuscript; available in PMC 2017 March 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 2a). This suggests that EJCs in 3′UTRs are generally less capable of interacting with 

the termination machinery to initiate NMD, and the NMD-triggering EJC appears to be the 

one located at the second-last splice site.

Start-proximal PTCs avoid NMD by reinitiating translation

Previously, PTCs introduced into the first half of exon 1 of the β-globin gene were shown 

not to reduce mRNA abundance18, suggesting that the NMD machinery did not recognize 

these transcripts. Our cancer genome data support the generality of this result, with a 

widespread decrease in NMD efficiency when PTCs are located in close proximity to the 

start codon (Fig. 2d,e, 35% vs. 93% NMD efficiency for PTCs within 200 nt of the start 

codon vs. >200 nt from the start codon, p < 2.2 × 10–16; Supplementary Fig. 2b,c). PTCs 

located in the first 100 coding nts are rarely targeted for NMD, followed by a gradual 

increase in NMD efficiency up to 200 nt from the start codon (Fig. 2d,e). This start-proximal 

NMD insensitivity is not explained by the canonical EJC model of NMD because the 

downstream EJCs fail to trigger NMD. The same conclusion is reached analyzing somatic 

frameshift data (Supplementary Fig. 2b, p = 5.5 × 10–12) and allele-specific expression of 

germline variants (Supplementary Fig. 2c, p = 0.0001). Two mechanisms have been 

proposed to account for the examples of NMD insensitivity in transcripts with start-proximal 

PTCs: transcript stabilization by an interaction between the poly(A) binding protein C1 

(PABPC1) and the translation termination machinery19 or a bypass of NMD by the re-

initiation of translation at a downstream AUG codon17.

Comparing the reading frame of the first AUG downstream from the PTCs shows NMD 

insensitivity in transcripts with an in-frame AUG downstream of the PTC (Fig. 2a,e, 1.9% 

vs. 57% NMD efficiency, p = 3.4 × 10–4; Supplementary Fig. 2d,e), suggesting that 

translation re-initiation is a widespread mechanism for evading NMD in human genes. The 

distance between the original start codon and the PTC is a strong predictor for the start-

proximal NMD insensitivity, while the distance to the downstream AUG or the Kozak 

sequence strength of the downstream AUG does not affect the NMD efficiency 

(Supplementary Fig. 2f,g). However, we observe that efficiency of NMD is still reduced for 

start-proximal PTCs even in those cases when there are no in-frame downstream AUG 

codons (57% vs. 93% NMD efficiency), suggesting that other mechanisms can result in 

NMD bypass. Shorter distances between the best match of the PABPC1 motifs and the PTCs 

in a hypothetical looped mRNA conformation did not associate with lower NMD efficiency 

(Supplementary Fig. 2h-k).

Long exons and the distance to stop codon attenuate NMD

While the start codon proximity and the presence of downstream EJCs explain a substantial 

part of the variance in NMD efficiency, we hypothesized that there could be additional rules 

governing whether a nonsense mRNA is targeted by NMD. To elucidate these, we first 

factored out the known effects of the start proximity and the presence of downstream EJCs 

on the NMD efficiency (Supplementary Fig. 3f,g). Moreover, we filtered out possible 

sources of systematic bias in gene expression by a procedure based on principal component 

analysis26 (Methods).
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Next, we used Random Forest (RF) regression to predict NMD efficiency using a large set of 

gene features of plausible importance for NMD. Overall, eight different features contributed 

to NMD (p < 0.05, RF permutation test; features listed in Supplementary Table 1 and 2, 

significant features are listed in Supplementary Table 3). As a trivial example that serves as a 

validation of our methodology, the estimate of NMD efficiency is higher when the variant 

allele frequencies in the tumor are higher (Supplementary Fig. 3a); our further Random 

Forest analyses control for this covariate, while searching for rules that govern NMD.

We found a significant reduction of NMD efficiency when PTCs are located in exceptionally 

long exons (Fig. 3a, 61% vs. 98% NMD efficiency, p < 4.8 × 10–9, for exons >400 nt). In 

these long exons, we found that the NMD efficiency is best explained by the distance 

between the PTC and the downstream exon junction (Fig. 3b). It is conceivable that the large 

distance between the stalled ribosome and the EJC results in reduced physical contact with 

the ribosome-bound UPF1, leading to lower degradation rates.

In addition to PTCs in long exons, we also found an unexpected association between 

reduced NMD efficiency and the distance from the PTC to the normal translation 

termination site (Fig. 3c, 99% vs. 67% NMD efficiency in the top 20% longest PTC-to-stop 

distances, p = 1.3 × 10–7). This is observed after controlling for the start-proximal NMD 

evasion and the presence of downstream EJCs or long exons. Prior to mRNA decay, the 

activated UPF1 helicase translocates to the 3′ end of the mRNA to remodel the messenger 

ribonucleoprotein (mRNP), while scanning and unwinding the RNA at slow speeds of 

<1bp/s27. It is conceivable that UPF1 translocation may become rate-limiting for NMD 

when the distance between the PTC and the normal termination site is large. These new rules 

validated for frameshift indels and by using Geuvadis allele-specific expression of germline 

variants (Supplementary Fig. 3).

mRNA turnover and sequence motifs modulate NMD efficiency

An additional feature used by the model was mRNA half-life. Transcripts with a short 

mRNA half-life have a reduced NMD efficiency (74% vs. 1.2% NMD efficiency when 

mRNA half-life <1 hour, p = 6.3 × 10–8, Fig. 3d; Supplementary Fig. 3h,i) and this effect is 

also observed using mRNA half-life measurements from a different cell type (HeLa vs. B-

cells; Supplementary Fig. 3k). These transcripts are already rapidly degraded and enhanced 

degradation by NMD is likely to only have a small effect on the steady-state mRNA level. In 

addition, genes with higher wild-type expression levels tend to exhibit more efficient NMD 

when containing a PTC (Supplementary Fig. 3j); of note, our analyses exclude the lowly 

expressed genes (≤5 transcripts-per-million, TPM) where the ability to detect NMD may be 

overwhelmed by technical noise (Methods). As mRNA half-life and gene expression level 

correlate, it is likely that the reduced NMD efficiency in lowly expressed genes is 

confounded by shorter mRNA half-lives to some extent. We thus explicitly factored out the 

expression levels from the NMD efficiency measure prior to further analysis, and found a 

similar trend (Supplementary Fig. 3l,m), implying that short mRNA half-life is 

independently associated with inefficient NMD. Expression level estimates of lowly-

expressed, rapid-turnover genes are noisier, thus increasing the observed variability of NMD 
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efficiency after adjusting for expression levels. However after pooling the points into five 

expression level bins a robust association is evident (Fig. 3d; Supplementary Fig. 3k).

We next tested whether known28 and de novo inferred RNA-binding protein motifs 

(Methods) explain a significant portion of the remaining variance in NMD efficiency. We 

found nine significant motifs (Supplementary Fig. 4), of which four validated in both 

independent data sets – the binding sites for SRSF1, PABPN1, SNRPB2 and ACO1 (Fig. 3e; 

p < 0.10 in Geuvadis and in frameshifts; pooled p-value < 0.005; see URLs, Methods). 

Existence of these motifs in proximity to a PTC or in the wild-type 3′ UTR is associated 

with substantially altered NMD efficiency (15%–48%) in either direction, and we find they 

may also regulate mRNA degradation in the absence of PTCs (Supplementary Fig. 5a-c; 

individual examples are discussed in Supplementary Note).

As remodeling of mRNA-protein complexes is necessary for NMD, we also tested whether 

sequence composition (dinucleotide frequencies) and mRNA secondary structure (RNA-

RNA interaction probability per nt; Methods) impact NMD efficiency. However, we found 

neither factor to be associated with NMD efficiency (Supplementary Table 2), consistent 

with a high in vivo efficiency of the UPF1 helicase in translocating through structured 

RNA27. In addition, transcript features such as sequence conservation or the stop codon 

identity of either the PTC or wild-type stop codon did not affect NMD after controlling for 

other features (not shown). Examined independently, codon usage biases associated with 

efficient translation show a marginally significant association with lower NMD efficiency 

(79% vs. 62% NMD efficiency in the top 20% most biased genes, p = 0.04; Supplementary 

Fig. 5d,e), in agreement with previous yeast data29. This effect is subtle and restricted to the 

most biased genes, consistent with previous estimates of the prevalence of selected codon 

usage30. Finally, gene expression is known to be potentially regulated by NMD in wild-type 

genes when transcripts contain a 3′ UTR intron or a translated upstream open reading frame 

in their 5′ UTR31. We found that such transcripts exhibit normal NMD efficiencies when 

additionally targeted for PTC-induced NMD (not shown).

NMD model explains ~3/4 of the variance in efficiency

To quantify how much variance in the efficiency of NMD can be predicted using the rules 

and features described above, we used Random Forest regression to compare the explained 

variance in NMD efficiency to the maximum observable variance, given the noise in the data 

(correction for attenuation; Methods). The regression model explains 74% of the variance in 

NMD efficiency by drawing on the general NMD features we have defined above (Fig. 4a). 

We next investigated how much every feature contributes to the prediction to uncover the 

impact of each NMD rule. Adding the most significantly contributing features one-by-one 

shows that the canonical EJC model is the most important predictor of NMD, accounting for 

nearly 1/2 of the observed variance in NMD efficiency. Start-proximal NMD evasion and 

inefficient NMD in long exons further explain 17% and 4% of the remaining variance, 

respectively. The mRNA half-life and the distance between the PTC and the wild-type stop 

codon each explain 1.6%, while the identified motifs account for 0.1% of the variance not 

explained by all previous features.
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The amount of explained variance (R2) is a compound measure of the accuracy of each 

predictor and also of its global coverage of individual examples (PTCs). This can manifest 

as a low R2 for very strong predictors with limited genomic coverage. For example, the 50-

nt boundary rule is highly accurate in our data, meaning that all examples of PTC that fall 

into this portion of the gene indeed show a near-complete NMD insensitivity. However, the 

rule covers only a small part of the gene sequence and is thus not pertinent for many 

occurrences of PTCs in actual transcripts. Similarly, individual RNA binding protein motifs 

may have a large effect on NMD efficiency (Supplementary Note), but their relatively rare 

occurrence means they have only a subtle contribution to genome-wide prediction accuracy.

We reasoned that one explanation for why we observe residual variance in NMD efficiency 

could be compensatory changes in gene expression (feedback regulation) masking the 

effects of increased mRNA decay rates. For example, the expression level of a gene 

containing an NMD-triggering PTC could be rescued by compensatory up-regulation of the 

non-mutated allele. In Drosophila, it has been estimated that 50% of genes exhibit some 

degree of dosage compensation (DC) when heterozygously deleted32, while in humans this 

effect still remains to be assessed in a systematic manner.

Cancer genomics data present an opportunity to globally assess the DC of human genes. In 

the absence of DC, somatic copy number alterations (CNA) are expected to have a strong 

effect on gene expression levels33. We thus compared the estimates of copy number gains 

and losses in tumors (from SNP arrays) to changes in gene expression (by RNA-Seq) across 

9,769 cancer patients from the TCGA study. Next, we contrasted the 20% of genes with the 

strongest evidence of dosage-sensitivity (highest correlation of CNA to expression; 

putatively non-compensated), with the 20% of genes with least evidence of dosage-

sensitivity (low correlation; Methods). We can predict NMD efficiency four-fold more 

accurately for dosage-sensitive genes (Fig. 4b; R2 = 85% vs. 29%, p = 0.0051). This 

suggests that feedback regulation of a gene may account for a certain part of the unexplained 

variance in NMD efficiency (Fig. 4b).

Negative selection acts on NMD-inducing somatic mutations

Having systematically determined influences on NMD efficiency in human cells, we next 

examined possible roles in carcinogenesis. Positive selection on cancer-promoting driver 

mutations is well established in cancer genomes22. However, negative (purifying) selection 

against detrimental mutations has proven difficult to detect34. We reasoned that accounting 

for the variability of NMD-efficiency amongst PTCs should provide more power to detect 

purifying selection in cancer genomes.

To test for purifying selection on classes of genes we quantified the ratio of nonsense 

mutations in NMD-sensitive to NMD-insensitive regions of each gene, after normalizing for 

the local synonymous mutation rate (Fig. 5a,b). This showed that nonsense mutations are 

depleted in NMD-sensitive regions compared to the NMD-insensitive last exon and first 250 

nt (2.2-fold depletion, p = 0.01, Fig. 5c) in oncogenes and also in a set of human essential 

genes (1.8-fold depletion in the NMD-sensitive regions, p = 0.04, Fig. 5d). Next, we 

examined which other gene functional categories show depletion of NMD-triggering 

nonsense mutations. The top scoring Gene Ontology term was “regulation of cell 
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proliferation” (Fig. 5e). Other significant categories implicate the spliceosome, cell 

migration, angiogenesis and the endosome (Fig. 5e, odds ratio > 2, p < 3.2 × 10–4), 

suggesting their importance for the fitness of cancer cells. Thus, accounting for variation in 

the ability of PTCs to trigger NMD suggests widespread purifying selection against 

detrimental mutations during the evolution of human tumors.

Positive selection for NMD and tumor suppressor genes

In contrast to oncogenes, the inactivation of tumor suppressor genes promotes tumor 

proliferation and survival. NMD of PTC-containing transcripts should therefore be 

positively selected during tumor development35. Indeed, PTCs are enriched in regions of 

tumor suppressor genes predicted to trigger NMD (2.1-fold increase, p = 0.003, Fig. 5f). To 

systematically investigate how NMD contributes to the somatic inactivation of individual 

tumor suppressor genes, we quantified how often an NMD-triggering PTC is accompanied 

by the deletion of the other allele, leading to a complete inactivation (Supplementary Table 

4). A principal component analysis on the NMD and somatic deletion frequencies shows 

three broad clusters of tumor suppressors (Fig. 5g), which suggest a classification of 

mechanisms of inactivation.

First, ~1/3 of the examined tumor suppressors exhibit NMD combined with frequent 

heterozygous deletion, leading to biallelic inactivation (Fig. 5g-h, bold circles) as expected 

for haplosufficient tumor suppressors inactivated by a classical ‘two-hit’ mechanism. A 

second cluster containing ~35% of the analyzed tumor suppressor genes undergo deletion 

less frequently in patients carrying a PTC (Fig. 5g, asterisks), suggesting that a heterozygous 

inactivation already has functional consequences in some cases (haploinsufficiency). 

Examples include NF1 (Fig. 5h), where haploinsufficiency is known to contribute to 

cancer36. Lastly, there is a smaller cluster of tumor suppressors that are frequently mutated 

by PTCs, but whose transcripts are likely ineffectively degraded by NMD as most of their 

sequence is predicted to be NMD-insensitive (Fig. 5g-h, triangles). Here the truncated 

protein could be partially functionally inactive, degraded, or act as a dominant negative.

Finally, we examined the prevalence of NMD-mediated inactivation events in an extended 

list of putative tumor suppressors proposed previously based on an excess of predicted loss-

of-function mutations37. For nine such genes with sufficient PTCs in our data (n ≥ 50), we 

do not find evidence for frequent two-hit inactivation mechanisms via simultaneous NMD 

and gene deletion (Supplementary Fig. 6a,b) consistent with these novel cancer genes acting 

as haploinsufficient tumor suppressors37.

Discussion

In this study we have used the data from close to ten thousand tumors to provide a 

systematic and unbiased evaluation of the rules that govern the efficiency of premature stop 

codons in triggering NMD in human cells. Elucidating these rules is important for the 

interpretation of clinical genetic data because, as we have illustrated for human tumors, 

nonsense mutations that do or do not trigger changes in mRNA levels can have very 

different functional consequences.
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Our analyses confirmed the canonical EJC model as the most important individual 

determinant of NMD efficiency. However, they also identified other features important for 

predicting NMD efficiency genome-wide or in individual transcripts. Moreover, we suggest 

rapid mRNA turnover and dosage compensation as possible reasons why, even if NMD is 

triggered, the overall expression level of an mRNA may remain unchanged. The additional 

features important for predicting NMD genome-wide effects included distance to the start 

codon exon length and the presence of individual protein binding motifs both close to a PTC 

and elsewhere in an mRNA.

The rules that we determined using somatic nonsense mutations from human tumors 

(summarized in Fig. 6a) were validated using an independent set of tumor frameshift 

mutations and also an independent set of germline variants in human lymphoblastoid cell 

lines20. These rules are thus likely to apply widely across human tissues and diseases.

Finally, we showed that by accounting for variation in NMD we could detect both 

widespread positive and negative selection during the evolution of human tumors. Positive 

selection on cancer-promoting driver mutations is widely appreciated as contributing to 

cancer. Quantifying such positive selection on NMD-triggering vs NMD-evading PTCs 

allowed us to classify known and putative tumor suppressor genes (Fig. 6c). Purifying 

selection against detrimental somatic mutations has, to our knowledge, previously only been 

detected for the mitochondrial genome34, while we have shown widespread purifying 

selection against nonsense mutations that trigger NMD in both oncogenes and the general 

set of essential genes in human (Fig. 6b). This has important implications for understanding 

tumor evolution because it supports the notion that subclones are eliminated during tumor 

progression because they carry detrimental mutations38.

Taken together, this study provides important mechanistic insight into NMD and tumor 

evolution, as well as a broader framework for predicting the effects of nonsense variants in 

human disease.

URLs

Method for pooling p-values, http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.49.4686.

Online Methods

Data acquisition

Somatic nonsense and frameshift mutations aligned to hg19/GRCh37 for available exome 

sequences of tumors (n = 9,769) together with matching mRNA sequencing data were 

downloaded on 20-04-2015 from The Cancer Genome Atlas (TCGA) data portal. Copy 

number alteration (CNA) and nonnegative matrix factorization (NMF) clustering data (based 

on mRNA levels) for these tumor samples were downloaded from the Broad Institute TCGA 

Genome Data Analysis Center Firehose pipeline ‘analyses__2014_10_17’. A frameshift 

mutation results in the translation of an out-of-frame peptide, which will often lead to the 

incorporation of a premature stop codon. We took the frameshifted sequence to calculate 
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when the translation would prematurely stop (median distance frameshift to PTC = 47 nt) 

and used these PTCs as a separate validation dataset. Germline nonsense mutations with 

corresponding allele-specific expression values for 462 lymphoblastoid cell lines from the 

Geuvadis RNA-sequencing project were downloaded from EBI ArrayExpress under 

accession E-GEUV-1.

Dominant isoforms

The mutations were re-annotated to dominant isoforms in the ‘knownGene’ database 

provided in the ‘June2011’ bundle at the TCGA data portal. A gene had a dominant isoform 

if the expression level of the isoform with the highest expression is at least two times higher 

than the second-highest expressed isoform42, or if the gene had a single annotated isoform. 

Dominant isoforms were selected per tumor type to ensure that the RNA-Seq signal of other 

isoforms of the same gene would not mask changes in expression caused by premature stop 

codons leaving 15,890–16,506 dominant transcripts, depending on the tumor type.

Quantifying NMD efficiency

NMD efficiency in the TCGA datasets was quantified by comparing the mRNA expression 

level in transcripts-per-million (TPM) of a PTC bearing transcript to the median mRNA 

expression level of the same transcript in tumor samples where the PTC was absent. To 

minimize interference from inter-tumor heterogeneity when calculating the median mRNA 

expression level for a transcript, we first separated the samples by tumor type and then used 

the most robust consensus NMF clustering (Broad GDAC Firehose) to further separate 

tumor samples. Within these clusters, a median mRNA expression value was calculated for 

every transcript from the samples that had no nonsense mutations, indel mutations or copy 

number variations overlapping this transcript. The mRNA expression level of every PTC-

bearing transcript was then divided by the median mRNA expression level of that transcript, 

which was –log2 transformed to get NMD efficiency values where 0 indicates no mRNA 

degradation and 1 complete heterozygous mRNA degradation by NMD.

NMD efficiency in the Geuvadis dataset was quantified by dividing the allele-specific 

expression of a PTC bearing allele by the reference allele. Allele-specific expression values 

were taken from the Geuvadis study20, which were determined as described in Pirinen et al.
43. In short, for every SNV the RNA-Seq reads were aligned to both the reference genome 

and the mutated genome, allowing for no mismatches. The –log2 transformed ratio of the 

reads mapping to the variant allele divided over the reference allele reads is here defined as 

NMD efficiency, where 0 indicates no mRNA degradation and complete heterozygous 

mRNA degradation approaches infinity. Compared to TCGA, the Geuvadis dataset contains 

six times fewer PTCs at unique loci, which is not enough data points for rigorous validation 

for NMD rules that only apply to a very small part of the gene sequence (Supplementary 

Figs. 2a and 3e).

While quantifying NMD efficiency with allele-specific expression has the major advantage 

that there is no need to compare different samples, it comes at the cost of having fewer data 

points to accurately approximate the expression level. Normal mRNA expression values are 

derived from all RNA-Seq reads aligning to any part of the transcript sequence, which can 
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be thousands of sequence reads. In contrast, allele-specific expression is based on only the 

sequence reads that overlap with the SNV. Therefore we investigated the rules of NMD with 

NMD efficiency measures derived from mRNA expression values (TGCA nonsense 

mutations, method 1) and validated the findings using an independent set of PTCs with 

mRNA expression values (TCGA frameshift induced PTCs, method 1) and also the allele-

specific expression derived NMD efficiency measures (Geuvadis nonsense mutations, 

method 2) to evaluate any method-related biases. The effect sizes of the characterized NMD 

rules supplied in the text are calculated by comparing the maximum observable NMD 

efficiency to the median NMD efficiency of the PTCs affected by the respective NMD rule. 

Here, the maximum observable NMD efficiency is defined as the median NMD efficiency of 

NMD inducing PTCs when taking the known rules into account and used as 100% NMD 

efficiency. Since we characterize NMD rules in a nested fashion throughout this manuscript, 

wherein we control for all previously examined effects while measuring the next one, the 

maximum observable NMD efficiency increases throughout this manuscript as new rules are 

added.

Variant filtering and noise reduction

Stringent filtering was applied on the TCGA data when calculating the NMD efficiency. 

PTC bearing transcripts were removed if they contained additional indel, nonsense or splice 

site disrupting (+/– 3 nt from an exon junction) variants or had overlap with a CNA. 

Furthermore, nonsense and frameshift mutations needed to be present at an allele frequency 

of 20% or higher. When calculating the median expression level of all transcripts to compare 

the expression of a PTC bearing transcript with, we excluded transcripts with a median 

expression level lower than five and transcripts with large variation in expression among the 

tumor samples (coefficient of variation > 0.5). A threshold of at least 10 wild-type 

measurements (samples) per transcript per NMF cluster was used to calculate an accurate 

median expression value. Lastly, to increase the power of the Random Forest regression to 

detect new NMD rules, we reduced variability in the expression data by removing hidden 

covariates with principal component analysis (PCA). Several studies have shown that PCA 

can successfully increase power to associate gene expression changes with SNVs by 

removing non-random sources of noise26,44. We applied PCA to the mRNA expression data 

and took out the first four principal components for every tumor type. These four 

components comprise sources of unwanted technical of biological variation, but not 

variation introduced by individual SNVs.

To accurately determine NMD efficiency based on allele-specific expression, we only 

included variants that had at least one variant read and at least ten mRNA-Seq reads in total. 

To prevent overfitting on highly prevalent nonsense mutations, we collapsed SNVs that were 

found in more than one individual, and used the median NMD efficiency for further 

analyses.

Data analysis

All analyses were performed in Python 2.7.2. and R 3.1.2 (R Core Team). PCA was done 

with the ‘FactoMineR’ package in R, where we modified the ‘reconst’ function to take out 

principal components. We used the ‘randomForest’ package for Random Forest regression, 
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and the ‘rfPermute’ package to compute p values for feature contribution. Unless stated 

otherwise, a two-tailed Mann–Whitney test was used to compute p-values. When p-values 

were pooled across multiple tests, a formula described previously (see URLs) was used. 

Briefly, p1, p2 and p3 are the three p-values to combine, ρ is their product p1p2p3, and the 

combined p-value is found thusly:

In Supplementary Figures 1-3, the blue lines show the fits to the data point using the R 

package ‘ggplot’, function geom_smooth. In cases with <1,000 points, this uses the R 

function loess with default parameters (linear fit, using the smoothing parameter width of 

0.75). In cases with ≥1,000 points, the R function gam is used, invoking a generalized 

additive model with smoothing terms represented by penalized regression splines. The 

shaded areas are 95% confidence interval of the fit.

In all figures, box plots are drawn using the defaults of the R package ggplot: the center line 

is the median of the data distribution, the notch around this line is the approximate 95% C.I. 

of the median, 1.58 * IQR / sqrt(n), the hinges are the 1st and the 3rd quartile, and the 

whiskers extend to the lowest/highest non-outlying values (those that are within 1.5 * IQR of 

the upper or the lower hinge).

Modeling NMD

Random Forest regression was used to identify gene features that influence NMD efficiency. 

Random Forest is a robust and easily interpretable machine learning approach that accepts 

mixed data types and internally controls for overfitting. To learn about new features that 

influence NMD efficiency, we first factored out the major rules of NMD that we found 

manually. In particular, we predicted NMD efficiency with a Random Forest regression 

having the knowledge whether the PTC was located on the last exon, 50 nt before the last 

exon, in proximity to the start codon and the allele frequency of the nonsense mutation 

(‘randomForest’ package, 1,000,000 trees, mtry = 1). We subtracted the predicted NMD 

efficiencies from the original values to remove the confounding effects of these known 

NMD rules. Next, we used Random Forest regression again to predict these adjusted NMD 

efficiencies from 2,390 gene features hypothesized to influence NMD efficiency 

(‘randomForest’ package, 100,000 trees, mtry = 13). Here, the 100 most important features 

(highest percentage increase in mean squared error) were used to determine which features 

contribute significantly at p < 0.05 to the NMD efficiency prediction (‘rfPermute’ package, 

10,000 trees, 1,000 permutations), resulting in eight significantly contributing features that 

were selected for further manual inspection.

To build our Random Forest model, we made a comprehensive table of different features that 

we hypothesized to influence NMD efficiency (Supplementary Tables 1 and 2). Sequence 

conservation of all vertebrates in ‘phyloP46way’ downloaded from the UCSC Genome 

Browser website was used to create the sequence conservation features. A basewise 

probability score for the mRNA secondary structure was computed with Rfold 0.1-2. 
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Optimal codon usage was used as a proxy for the translation efficiency and was computed 

by dividing the amount of optimal in-frame codons over the codon count. Optimal codons 

were defined as the ones corresponding to the tRNA genes with the highest copy number in 

the human genome45. Weeder 2.0 was used to discover de novo RNA motifs that influence 

NMD efficiency, by ranking the PTC bearing transcripts by NMD efficiency and comparing 

the top 10% to the bottom 10% of the transcripts for motif enrichment. De novo motifs were 

pooled with known RNA binding protein motifs from Ray et al.28 and used to scan mRNA 

sequences. Motifs that were found to be significantly contributing to the Random Forest 

were manually investigated to determine a threshold for the binding score. Mono- and di-

nucleotide frequencies were computed by counting the occurrence of the four nucleotides 

and all 64 dinucleotide combinations, respectively. The above described features were 

computed for the following regions of interest of each transcript: +/– 100 nt of the PTC, +/– 

100 nt of the exon junction downstream the PTC, the 3′ UTR region, the 5′ UTR region, 

the region between the PTC and the normal stop codon and the whole transcript sequence. In 

addition, RNA motif scanning was also performed in the first and last 200 nt of each 

transcript. For sequence conservation, RNA folding score and codon optimality, the median 

score for each region was used as input for the Random Forest regression. The mRNA half-

life feature is based on Friedel et al.46 (Supplementary Table 2: RNA half-lives in human B-

cells) and is validated with mRNA half-life measures in HeLa cells47. A list of translated 

upstream open reading frames from Andreev et al.48 was kindly provided by Patrick BF 

O'Connor.

A correction for attenuation procedure was used to remove the measurement error to 

investigate how much of the variation in NMD efficiency could be explained with the rules 

we defined. A Spearman correlation on the NMD efficiency of replicated data points (same 

nonsense mutation in several tumor samples) showed 22.5% explainable variance in the 

data. Next we used Random Forest regression (‘randomForest’ package, 100,000 trees, mtry 

= 3) to determine the added explained variance for each feature, starting with the most 

important one. Including all validated rules in the Random Forest explained 16.6% of the 

variance, which equals 74% of the explainable variance in NMD efficiency.

Purifying selection

To test whether there is purifying selection in essential and cancer genes, we defined the first 

250 nt, the 50 nt before the last exon and the whole last exon of a transcript as NMD-

insensitive regions and compared the nonsense mutation density to the NMD-sensitive 

region. The nonsense mutation density was normalized to the synonymous mutation density, 

to correct for differences in the mutational landscape. Two standard deviations of 10,000 

bootstrap samples are shown in the error bars, while empirical p-values were computed with 

10,000 permutations. The 200 most essential genes published by Hart et al.40 were used as 

essential genes and 220 oncogenes were taken from the Cancer Gene Census39 (Molecular 

Genetics = ‘Dom’), after manual removal of leukemia-specific cancer genes. To test whether 

genes that promote carcinogenesis when successfully silenced are enriched for nonsense 

mutations in NMD-sensitive regions, we took the 200 highest scoring STOP genes from 

Solimini et al.41 Gene Ontology enrichment analysis for gene sets under negative selection 

of somatic nonsense mutations was done on the UniProt-GOA release 15449 by calculating 
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the log2 odds ratio of NMD-sensitive and insensitive somatic nonsense mutations 

normalized for the synonymous mutation densities for every gene set bigger than 30 genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study overview.
The rules of NMD were inferred from nonsense somatic mutations (n=2,840) in TCGA 

tumor genome sequences, and then validated using somatic frameshift changes (n=3,151) in 

TCGA and germline nonsense variants (n=1,784) in Geuvadis. NMD efficiency was 

quantified via mRNA expression levels for the TCGA (after control for somatic copy-

number changes), and via allele-specific expression for the Geuvadis cohort.
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Figure 2. A downstream EJC and the proximity to the start codon are widespread signals for 
NMD.
NMD efficiency (–log2 nonsense mRNA level / wild-type mRNA level) in different gene 

regions. (a) NMD efficiency for PTCs in the first 200 coding nt with and without a 

downstream AUG codon. (b) NMD evasion in the last exon (red) and 50 nt upstream of the 

last exon (green), in comparison to efficient NMD in the second-last (blue) and further 

upstream (purple) exons. (c) PTCs in the second-last exon do not induce NMD when an 

intron is present in the 3′ UTR, shown for the nonsense mutations (left) and PTCs resulting 

from frameshift mutations (right). (a-c) P-values are by Mann-Whitney U-test, two-tailed, 

not adjusted for multiple testing. (d) Above: a schematic representation with color-coded 

gene regions that show different NMD efficiencies; black boxes represent exons. Below: a 

loess fit and its 95% C.I. shows NMD efficiency trends (individual points not shown). 

Bottom-left: increase in NMD efficiency across the first 200 coding nt. Bottom-right: 
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variation in NMD efficiency around the last exon junction, where the assumed location of 

the EJC is demarcated in the top of the plot. (e) Color-coding of gene regions.
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Figure 3. Exon length, distance to stop codon, mRNA decay rates and RBPs influence NMD 
efficiency.
(a) Reduced NMD efficiency in long exons. (b) Effects of distance between the PTC and the 

downstream exon junction. The line is a local polynomial regression fit. (c) Reduced NMD 

efficiency at PTCs very distant from the normal stop codon (after controlling for the EJC 

model and start-proximal NMD insensitivity; Methods). X-axis shows the median distance 

between the PTC and the normal stop codon of boxplots. (d) Reduced NMD efficiency in 

transcripts with short half-lives. X-axis shows the median mRNA half-life in minutes in each 
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boxplot. Bins in (c) and (d) are equal-width on the square root-transformed scale. (e) RNA 

binding protein motifs associated to NMD efficiency when located within +/– 100 nt from 

the PTC (SRSF1, PABPN1 and SNRPB2) or in the normal 3′UTR (ACO1). NMD efficiency 

distribution in left or the right box corresponds to absent or present motif, respectively. The 

position weight matrices used to detect motifs are shown below. In all boxplots, the central 

line and the notch are median and its approximate 95% C.I., the box shows the interquartile 

range, and the whiskers are extreme values upon removing outliers. (a,e) P-values are from 

Mann-Whitney U-test, two-tailed.
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Figure 4. The identified NMD rules explain a large part of the NMD efficiency but NMD can 
have little effect when there is dosage compensation.
(a) The identified rules for NMD explain different amounts of variance in NMD efficiency 

between PTCs, up to a total of R2=74.2%. The predictive power of every feature was 

determined by sequentially introducing the features to RF models, based on the order of the 

features suggested by an initial analysis of the entire feature set (Supplementary Table 3); in 

the bar chart, the bottommost features were added first, and the topmost features added last. 

The gain in R2 upon adding each feature is shown after normalizing by the maximum 

attainable R2 given the noise in the data (estimated from repeated occurrences of the same 

PTC in different tumors; Methods). (b) A significant decrease in explained NMD efficiency 

is observed in dosage-compensated genes. Explained NMD efficiency in the top 20% least 

and most-dosage compensated genes (definition in Methods) are shown in the top and 

bottom bars, respectively. Colors in the bars match the features in (a). Significance by a t-

test on the Fisher-transformed Pearson correlations of the RF model.
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Figure 5. Signatures of negative/positive selection on somatic nonsense mutations.
(a) Genes were divided into NMD-insensitive regions: (i) last exon plus 50 nt upstream 

(3′NS), and (ii) first 250 nt after start codon (5′NS), and (iii) the NMD-sensitive remainder 

(S). (b-d) Density of nonsense mutations normalized by synonymous mutations within each 

gene region, for all genes (b), oncogenes (c) from the Cancer Gene Census39 and essential 

genes (d) from40. (e) Gene Ontology enrichment analysis of genes under negative selection, 

based on NMD-sensitive vs. insensitive proportions (Methods). Gene sets ≥30 genes and 

odds ratio > 2 are shown. (f) As (b-d), but for the 200 highest scoring ‘STOP’ tumor 
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suppressor (TS) genes from41. Panels (b-d, f), error bars are 95% C.I. obtained by 

bootstrapping; n = number of examined PTCs; p-values are from randomization tests, 

comparing against the baseline in (b). (g) A principal components analysis of occurrence of 

nonsense mutations in NMD-sensitive or NMD-insensitive gene regions and copy-number 

alteration data in the same patients (Methods). Clusters with different putative mechanisms 

of inactivation shown with distinct shapes and colors. Arrows show correlations of principal 

components and original features; colors as in (h). TS genes with ≥50 nonsense mutations in 

the TCGA cohort are shown. (h) Example TS genes from each cluster: PBRM1- two-hit 

genes; NF1- haploinsufficient TS genes; APC- genes that rarely undergo NMD. Columns 

show relative frequencies of tumors harboring a deletion (“Del”) or not (“noDel”) of a gene; 

rows are tumors with nonsense mutations in NMD-sensitive (“NMD”) or NMD-insensitive 

regions (“noNMD”).
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Figure 6. Model summarizing the rules governing NMD in human cells.
(a) Overview of the determinants of NMD efficiency. (b) Negative selection against NMD-

triggering somatic mutations. (c) Relevance of NMD for tumor suppressor inactivation.
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