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Abstract: We deal with the problem of characterizing a source or scatterer from electromagnetic
radiated or scattered field measurements. The problem refers to the amplitude and phase measure-
ments which has applications also to interferometric approaches at optical frequencies. From low
frequencies (microwaves) to high frequencies or optics, application examples are near-field/far-field
transformations, object restoration from measurements within a pupil, near-field THz imaging,
optical coherence tomography and ptychography. When analyzing the transmitting-sensing system,
we can define “optimal virtual” sensors by using the Singular Value Decomposition (SVD) approach
which has been, since long time, recognized as the “optimal” tool to manage linear algebraic problems.
The problem however emerges of discretizing the relevant singular functions, thus defining the
field sampling. To this end, we have recently developed an approach based on the Singular Value
Optimization (SVO) technique. To make the “virtual” sensors physically realizable, in this paper,
two approaches are considered: casting the “virtual” field sensors into arrays reaching the same
performance of the “virtual” ones; operating a segmentation of the receiver. Concerning the array
case, two ways are followed: synthesize the array by a generalized Gaussian quadrature discretizing
the linear reception functionals and use elementary sensors according to SVO. We show that SVO
is “optimal” in the sense that it leads to the use of elementary, non-uniformly located field sensors
having the same performance of the “virtual” sensors and that generalized Gaussian quadrature has
essentially the same performance.

Keywords: near-field/far-field transformations; source/scatterer characterization; singular value
optimization; singular value decomposition; gaussian quadrature; optimality

1. Introduction

Near-field source characterization consists of reconstructing the radiating features
of a transmitter by measuring its radiated field in the near-zone using field sensors [1–4].
Such a problem arises in different fields of applied electromagnetics as near-field antenna
characterization [1–3] and near-field scanning of electromagnetic emissions [5]. We face here
amplitude and phase sampling which has applications also to interferometric approaches
at optical frequencies. Relevant to the high-frequency and optical regimes, we mention the
characterization of thermal fields [6] and of laser beams [7], near-field THz imaging [8],
optical coherence tomography [9] and ptychography [10] as application examples.

When analyzing a transmitting-sensing system, proper basis functions can be intro-
duced to properly represent the field on the transmitter and on the sensor ends. Further-
more, “virtual” transmitters and sensors, that take into account the geometry of the link,
can be defined, regardless to being physically implementable or not. For a fixed transmitter,
these are “optimal” if derived by the Singular Value Decomposition (SVD) approach which
is recognized as the “optimal” tool to manage linear algebraic problems. This point has
been recently addressed in [11]. Indeed, under general hypotheses on the noise and weak
geometrical assumptions, the SVD assigns a precise meaning to the concept of Degrees
of Freedom (DoFs) [12,13]. It identifies the actual space dimensions when resorting to
the singular system corresponding to the most significant singular values. The singular

Sensors 2021, 21, 4460. https://doi.org/10.3390/s21134460 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6467-4704
https://orcid.org/0000-0001-7174-0178
https://orcid.org/0000-0002-5063-6395
https://doi.org/10.3390/s21134460
https://doi.org/10.3390/s21134460
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21134460
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21134460?type=check_update&version=2


Sensors 2021, 21, 4460 2 of 18

system defines the space of “optimal” transmitters and that of “optimal” receivers [12,13].
Therefore, the “virtual” sensors defined by the SVD are “optimal” since they are the mini-
mum number of sensors capable to extract all the information of the field radiated by the
transmitter belonging to a specified class of transmitters on the measurement area and for
the considered geometry of the link. They are “virtual” because, as will be remarked below,
the most convenient representation is by arrays or segmented sensors.

Besides the theoretical interest of properly identifying the DoFs of the radiated field
on a region of space, investigations on the problem at hand have been repeatedly proposed
and used, in the field of imaging optics, to attempt providing an answer to issues related to
the resolution of an image [14], to restoring objects beyond the diffraction limit [15] and to
evaluating the information content of optical wave fields [11,13].

Generally speaking, the “optimal virtual” sensors defined by the singular functions of
the SVD have the entire sensing area as support. Consequently, they overlap. Due to the
overlap, the acquisition of the field radiated by the transmitter must be performed by N
temporarily subsequent measurements with N different sensors, where N is the number
of “optimal” sensors. Performing N subsequent measures with N different sensors can
be impractical in terms of measurement duration. Moreover, the problem arises of how
synthesizing and implementing the “optimal virtual” sensors starting from the singular
functions defined by the SVD.

To make the “virtual” sensors physically realizable avoiding the overlap, two ap-
proaches are here conceived.

1. The “virtual” field sensors can be cast into arrays, so that each “virtual” sensor cor-
responds to an array; each array should be conceived so that it reaches the same
performance of the “virtual” field sensor to which it corresponds. The array is the
natural representation of a “virtual” receiver following the discrete representation of
a continuous measurement functional by quadrature or an equivalent process, where
the continuous functional is the mathematical representation of the “virtual” sensors.
Casting the “virtual” field sensors into arrays makes their realization practical since
the arrays can use elementary sensors which “sample” the radiated field on the
sensing area. The complexity of the synthesis of the individual extended sensor is
overturned to the way the differently collected data from the different sensors are
combined. Furthermore, the arrays can be conceived to have all the same number
of elements sharing the same positions and have the advantage that their synthesis
amounts to the determination of proper weights for the acquired field samples en-
abling the discretization of the “virtual” sensors. Finally, synthesizing the arrays can
be carried out as illustrated below.

2. It is possible to operate a segmentation of the receiver so to make the sensors spatially
disjoint. The segmentation solves the overlap issue. However, differently from before,
depending on how it is performed, the segmentation does not exploit elementary
sensors so that the problem of properly synthesizing the different segments remains.
Throughout the paper, we will consider the solution at the foregoing point.

Concerning the array case, two ways can be followed:

1.A Use proper “optimized” generalized Gaussian quadrature rules [16] to discretize
linear reception functionals.

1.B Use elementary sensors as in case 1.A, but now following the definition of “opti-
mized” sensor locations [1,2,17].

Turning apertures into arrays is a practice, but defining the array to have the same
performance of the un-discretized setup is an overlooked issue.
After the first goal of the paper of defining the “virtual” sensors, our further goals are then:

• introduce approaches 1.A and #2 which are new ideas of this paper;
• show for the very first time that approach #1.B, namely the sampling approach pro-

vided by the Singular Value Optimization (SVO), which has been already introduced
by the Authors, is “optimal” in the sense that it leads to the use of elementary, non-
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uniformly located field sensors having the same performance of the impractical
“virtual” ones.

In this sense, Gaussian quadrature represents an alternative to SVO.
Several contributions to SVO have appeared throughout the literature with a target

different from the one pursued in the present paper. In [18,19], SVO has been used for
plane-polar near-field acquisitions; in [20,21], it has been exploited for very-near-field
measurements performed with dielectric probes; in [2], a multi-frequency extension has
been given; in [17], it has been applied to a helicoidal cylindrical scanning; in [3], a
criterion to determine the size of the portion of the measurement plane and the “quasi-
raster” scanning have been introduced; in [22], SVO has been extended to the case of
incoherent sources; in [23,24], it has been extended to inverse scattering, also with multi-
resolution purposes; in [25], the use of gradient information in the optimization of the
sample locations has been introduced; in [26,27], SVO has been used in connection to the
design and construction of an innovative scanner controller; finally, in [28,29], extensions
to the spherical and cylindrical scanning geometries have been provided.

We note that other techniques have been already proposed for non-uniform field
sampling, especially at optical frequencies, see [30–33]. SVO has been already compared to
other sampling techniques in [1] showing superior performance.

We stress that the behavior of the system composed of the transmitter and the sensor
can be described in a synthetic and abstract way by means of linear functionals, extending
to the general case the standard concept of effective length.

For the sake of simplicity, but without loss of generality, the geometry considered in this
paper has planar rectangular and parallel transmitting and sensing domains (Figure 1) [34].

All the inversions throughout the paper are performed by the Truncated SVD (TSVD)
since the TSVD of the un-discretized radiation operator has optimal performance in case of
additive, uncorrelated, white Gaussian noise [35].

The validity of SVO has been extensively experimentally verified in various scanning
geometries [2,3,17–29]. The purpose of this paper is showing the “optimality” of SVO by
formulating the problem in a rigorous mathematical setting and also proving that other
possible solutions, related to the representation of the measurement functionals through
generalized quadrature, lead essentially to the same results.

The paper is organized as follows. In Section 2, the sensing process is regarded as a
scattering process and the effective length for aperture sensors is drawn as the result of a
rigorous scattering approach of the receiving process. In Section 3, a simple, scalar 2D problem
is considered and the “optimal virtual” sensors defined. Section 4 introduces the different
possibilities to practically implement the “optimal virtual” sensors. Section 5 collects the
performance analysis and the discussion. Finally, Section 6 gathers the conclusions.

Figure 1. Left: geometry of the 3D problem. Right: geometry of the 2D problem.
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2. Aperture Modelling of Transmitter and Sensor

In this section, we briefly recall the aperture modelling of the transmitter. Furthermore,
the aperture modelling problem of the sensor is faced in its very nature, namely, as a
scattering problem and the concept of effective length for aperture sensors is rigorously
drawn as a new result by using mathematical theorems of functional analysis [36].

The modelling of the transmitter and the sensor as apertures is necessary to rigorously
define the following vector subspaces:

1. subspace to which all the possible fields impinging on the sensors essentially belong;
2. subspace to which all the possible fields impinging on the sensor that are actually

receivable belongs to, thanks to the evaluation of the sensed signal as a scalar product.

2.1. Modelling of the Transmitter

The transmitter is assumed to be modelled with a radiating aperture whose domain
AT is 2aT × 2bT sized and the transmitter is located on the z = 0 plane (see Figure 1—left).
For the sake of simplicity, but without any loss in generality, we consider the case of
a y-polarized aperture field Ea = Ea ı̂y. For the case of parallel aperture and sensing
domains, the plane-wave expansion shows that the fields are fully determined by the
transverse spectrum [37]. The two Cartesian transverse x- and y-components propagate
from the radiating aperture to the sensing plane independently each other. Accordingly,
a y-polarized aperture field leads to dealing with a scalar problem. The aperture field is
assumed to be vanishing outside AT .

2.2. Modelling of the Sensor

We now describe the sensing process as a scattering process, see Figure 2—left, and
generalize the concept of effective length.

Figure 2. The sensing process as a scattering one.

2.2.1. The Sensing Process as a Scattering Process

The source in Figure 2—left radiates the impinging field over the sensed region, that
is, the region physically occupied by the sensor. The sensor extracts information from
the impinging field in the sensed region through the total field, namely, the sum of the
impinging field and the field scattered by the different parts of the sensor (Figure 2—right).
Finally, the sensor makes a signal V available which then depends on the total field at
the probe terminals. The total field and, thus, V can be determined only after solving a
full scattering problem. V is then determined by all the portions of the probe that interact
with the impinging field and that electromagnetically interact each other giving rise to
mutual interactions. Notice that the probe is not forced to fill, geometrically, a connected
domain and can be made of separated parts that interact each other when generating the
scattered (and the total) field. Typically, these parts are thought of as disconnected from
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the main body of the probe and dealt with as parasite elements. Accordingly, the sensor is
the whole system, and all the mutual interactions between its portions (red and green parts
of Figure 2—right) that generate the scattered (and total) field have the same conceptual
nature [38].

2.2.2. The Effective Length and the Aperture Modelling of the Receiver

As long as the probing sensor is made of linear materials and linear components, the
relationship between the impinging field in the sensed region and the sensed signal is
represented by a linear functional, sayM

M | Ei → M(Ei) = 〈Ei, M〉 = V, (1)

where Ei contains the relevant vector components of the field incident all over the sensed
region AR (see Figure 1—left) as the function of (x, y), M returns the signal from the
impinging field, 〈·, ·〉 stands for the duality and M is the vector function representing the
functionalM in the dual space of the fields.

The aperture modelling of the sensor assumes that the only portion of the impinging
field relevant to the scattering process amounts to that on the aperture. Accordingly,
after the Ritz Theorem [36] and for a planar sensing aperture,M can be expressed as a
scalar product

M | Ei →
∫∫
AR

Ei(x, y) ·m∗(x, y)dxdy = V, (2)

where m(x, y) represents the sensing function and generalizes the concept of effective
length. According to (2), for a planar sensor, it is sufficient to know the impinging field
only on the probe aperture AR. Indeed, the impinging field on the sensing aperture is all
that is needed to work out the scattering process.

The expression ofM in Equations (1) and (2) are more familiar than what appears at
the first sight. Indeed, let us consider the case when Ei can be approximated by a plane
wave in the whole sensed region, namely Ei = Ei0 exp(−jβk̂ · r), where r is the position
vector and k̂ is the unit propagation vector. In this case, and on substituting the plane wave
expression (2), V turns into

V = Ei0 · le(k̂) (3)

which expresses the well-known concept of effective length le of the sensor.
Finally, the integral in Equation (2) can be extended to R2 by assuming m vanishing

outside AR, namely

M | Ei →
∫∫

R2
Ei(x, y) ·m∗(x, y)dxdy = V. (4)

Note that the m∗(x, y) appearing in Equation (4) rigorously accounts for all the scatter-
ing mechanisms and so it accounts for a full-wave description of the sensor.

The scalar product (2) has a spectral domain expression, according to the Parseval–
Plancherel equality, as

M | Ei →
1

(2π)2

∫∫
R2

Êi(kx, ky) · m̂∗(kx, ky)dkxdky. (5)

As long as the sensor is outside the reactive region of the transmitter, being Ei van-
ishing outside the visible domain V = {(kx, ky) | k2

x + k2
y ≤ β2}, where β = 2π/λ, λ is

the wavelength and kx and ky are the spectral variables, the field m̂ can be assumed zero,
correspondingly. Therefore, Equation (5) can be expressed as

M | Ei →
1

(2π)2

∫∫
V

Êi(kx, ky) · m̂∗(kx, ky)dkxdky. (6)

2.2.3. The space of Sensing Functions: The Scalar Case

By considering a scalar case with a scalar sensing function, Equations (2) and (6) become
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M | Ei →
∫∫
AR

Ei(x, y) ·m∗(x, y)dxdy = V (7)

and

M | Ei →
1

(2π)2

∫∫
V

Êi(kx, ky) · m̂∗(kx, ky)dkxdky, (8)

respectively.
The scalar field m then belongs to the subspace of functions with bounded support

AR whose Fourier transform has essentially bounded support V . Accordingly, m belongs
to the subspace generated by the Prolate Spheroidal Wave Functions (PSWFs) [1–3,39–42]
associated to the sensing aperture.

3. “Optimal Virtual” Sensors

Following the result of the foregoing Section, we now introduce the “optimal virtual”
sensors along with the expressions of their own sensing functions. For the reader’s con-
venience, the modelling for the transmitting and sensing apertures is worked out for the
scalar 2D geometry in Figure 1—right. The modelling for the full 3D case can be obtained
using function factorization along x and y. A full 3D example will be anyhow provided
in Section 5.5.

Figure 1—right shows the case of planar and parallel domains, centered one other.
For the transmitting case, we assume that the aperture field Ea(x′) is linearly polarized

along the y-axis. Then, the only (y) component of the aperture field Ea(x′) is represented
by KT = b2cT/πe PSWFs [1–3,39–42], where bξe is the nearest integer not smaller than ξ,
and cT = aT β is the space-bandwidth product, namely

Ea(x′) =
KT

∑
k=1

ekΦk[cT ; x′], (9)

where Φk[γ; x′] is the k-th PSWF with space-bandwidth product γ and the ek’s are the
expansion coefficients.

For the sensing case, considering the obvious scalar, y polarized sensing function
m(x) = m(x)ıy, then m(x) is expressed as

m(x) =
LR

∑
l=1

µlΦl [cR; x], (10)

where LR = b2cR/πe, cR = aRβ and the µl’s are expansion coefficients.
According to Equation (9), the field impinging onto the sensed region can be expressed as

Ei(x) = A(Ea)(x) =
KT

∑
k=1

ekA[Φk[cT ; x′]](x), (11)

where A is the radiation operator linking the field on z = 0 to that on z = d.
Care should be provided to the case when the apertures reach dimensions comparable

or smaller than the wavelength which leads to small space-bandwidth products. In this case,
it would be necessary to transiting to elementary transmitter and sensor representations.

According to Equations (7) and (10) and using Equation (11), the signal V is

V = 〈A(Ea)(x), m(x)〉 =
KT

∑
k=1

LR

∑
l=1

ekml Akl , (12)

where Akl = 〈A[Φk[cT ; x′]](x), Φl [cR; x]〉.
In Equation (12), the sensed signal depends on the transmitter by the ek’s and on the

sensor by the µl ’s. Furthermore, the Akl ’s define the link matrix A providing the connection
between the k-th transmitting and the l-th sensing PSWFs.

For fixed values of aT , aR and d, the “optimal virtual” sensors can be defined by the
SVD of A which factorizes A as
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A = U︸︷︷︸
KT×KT

Σ︸︷︷︸
KT×LR

V†︸︷︷︸
LR×LR

, (13)

where the diagonal matrix Σ contains the singular values σn of A and † denotes conjugate
transposition. The rank of A is limited by the minimum between the number of transmitting
PSWFs KT and the number of sensing PSWFs LR. The SVD in (13) defines Nopt “virtual”
sensors mn(x) corresponding to the most significant σn’s as

mn(x) =
LR

∑
l=1

vlnΦl [cR; x], n = 1, . . . , Nopt (14)

where vln is the l-th component of the n-th singular vector vn which corresponds to the
n-th column of V.

For a general system, the link is not able to capture all the DoFs of the transmitter
if Nopt < KT . As long as the distance between the transmitter and the sensor grows, the
energy of the radiated PSWFs spreads and larger sensors are needed to recover all the
radiated DoFs. This point will be discussed and numerically illustrated in Section 5.1.

We remark that the field radiated by the aperture is composed by the two contributions
due to the visible and the invisible PSWFs. In the Very Near Field (VNF), or reactive, region
of the aperture, both the contributions are significant. Opposite to that, few wavelengths
away from the aperture, invisible components of the radiated field are negligible even if still
in the near-field of the aperture. Throughout the paper, we consider sensors located outside
the reactive region. Accordingly, the PSWFs are employed since they represent a basis for
the visible part, namely, the only relevant part of aperture fields. Similar considerations
apply to the sensing aperture.

By the PSWFs, the radiation operator and the sensing process are discretized and the
link matrix A defined. The “optimal virtual” receivers are then defined according to the
SVD of the link matrix, as expressed by Equation (14).

4. Practical Realization of “Optimal Virtual” Sensors

The geometrical extent of each “optimal virtual” sensors, in general, embraces the
whole aperture AR causing an unavoidable overlap issue among the various sensors.
Accordingly, the “optimal virtual” sensors must be employed one after the other as in
Figure 3 and the problem amounts to practically synthesize the receivers according to their
own sensing functions mn(x, y) [34].

An alternative is represented by arrays of elementary sensors whose definition requires
a discretization of the involved apertures.

Arrays are an appealing solution since:

1. they suggest the way on how synthesizing the sensors, since only the Network
Weights (NWs) need to be determined, while the elementary composing elements do
not need a substancial design at this stage;

2. they potentially solve the overlap issue, provided that the arrays of elementary sensors
realize different receivers sharing the element positions, but realizes different sensors
according to different sets of NWs.

The arrays can be realized by using “point-like” elements or extended elements. The
NW can be physical or numerical.

We consider first point-like elements and then sketch on extended ones.
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Figure 3. Subsequent use of the “optimal virtual” sensors to measure the transmitted field according
to Equations (7) and (8).

4.1. Elementary Sensors Using Generalized Gaussian Quadrature

The use of the sensing arrays corresponds to the discretization of the reception inte-
grals (7) which is possible thanks to generalized Gaussian quadrature formulas.

Applying generalized Gaussian quadrature means setting the following approximation∫ aR

−aR

Ei(x)m∗n(x)dx '
N

∑
s=1

w(n)
s Ei(x(n)s ), ∀Ei ∈ Ei, n = 1, . . . , Nopt. (15)

where Ei is the space spanned by the KT functionsA[Φk[cT ; x′]](x), see Equation (11). In (15),
the number N of quadrature nodes and the nodes x(n)s ’s and weights w(n)

s ’s define the array
element number and (non-uniform, in general) locations, and the NWs, respectively, see Figure 4.
They must guarantee a good approximation in (15) for all Ei in Ei for each fixed “optimal virtual”
sensor. Obviously, quadrature involves an implicit sampling of the impinging field tuned to the
problem aim.

Figure 4. Illustrating the representation of the “optimal virtual” sensors by arrays thanks to the use
of generalized Gaussian quadrature rules.

Nevertheless, the application of Gaussian quadrature for each “optimal virtual” sensor
separately leads to array element positions which can change across the sensors, see
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Figure 5. If the element positions must keep the same across the different “optimal virtual”
sensors because we want to deal with a unique set of array elements, then we must enforce
a constraint.

Figure 5. Subsequent use of the discretized “optimal virtual” sensors to measure the transmitted field.

To achieve this purpose, a generalized Gaussian quadrature technique is introduced
determining weights to approximate at the best the signals sensed for each possible Ei in Ei
and for all the “optimal virtual” sensors as well as a common node grid for all the “optimal
virtual” sensors. In other words, the integrals (7) are approximated as∫ aR

−aR

Ei(x)m∗n(x)dx '
N

∑
s=1

w(n)
s Ei(xs), ∀Ei ∈ Ei, ∀mn, n = 1, . . . , Nopt. (16)

This task is simplified by the fact that both the impinging fields and the “optimal”
reception functions belong to a finite dimensional space.

In other words, we consider the solution illustrated in Figure 6 consisting of arrays
made of elementary sensors sharing number and positions of their elements. The arrays
differentiate by only the weights w(n), n = 1, . . . , Nopt.

According to Equation (16), the array parameters are selected so that:

Vnk =

aR∫
−aR

m∗n(x)A
[
Φk
[
cT ; x′

]]
(x)dx '

N

∑
s=1

w(n)
s A

[
Φk
[
cT ; x′

]]
(xs),

n = 1, . . . , Nopt, k = 1, . . . , KT . (17)

Therefore, the synthesis of the positions of the elementary sensors as well as of their
weights is worked out by solving a set of non-linear equations. The Vnk’s in Equation (17) are
the signals sensed by the n-th “optimal virtual” sensor when the impinging field is pro-
duced by a transmitter with aperture field equal to the k-th radiating PSWFs.



Sensors 2021, 21, 4460 10 of 18

Figure 6. Illustrating the point-like elements array geometry with weights.

4.2. SVO

Another possibility to synthesize the sensors while solving the overlap issue is using
SVO which leads to represent the “optimal” sensing probes using a single array of point-
like elements with element locations shared among the sensing aperture. Differently from
Gaussian quadrature, SVO maximizes the amount of information on the source collected
by the field samples Vs acquired over AR. We stress that SVO optimizes the Singular Value
Behavior (SVB) of A and that different metric to evaluate the degree of conditioning of the
problem have been proposed, including the use of Shannon number, mutual information
and Fisher information, see [43]. We mention that an alternative metrics can be obtained by
resorting to the Hilbert–Schmidt norm of A, as suggested in [11].

Notice that SVO hides the explicit use of weights for the signals acquired by the
individual elementary sensors. The absence of a mechanism similar to the quadrature
weights is only apparent since they are actually introduced when the signals acquired by
the individual sensors are processed.

A recall of the salient features of SVO is now in order.

SVO in Electromagnetics

In many electromagnetic contexts, the model describing the system is provided by a
linear operator T mapping the input a into the output b and depending on P parameters
p = (p1, . . . , pP), namely

T (a, p) = b. (18)

Typically, b is available in terms of its discrete counterpart, expressed by Q values

Mq(b) =< Mq, b >= bq (19)

whereMq are linear functionals to be selected. For the case of interest here, the linear
functionals Mq’s correspond to elementary probes and their selection amounts at the
determination of the positions of such elementary sensors.

By exploiting the available a priori information, a can be typically represented by
means of its projection on a finite dimensional sub-space expanded by N basis functions ψn

a =
N

∑
n=1

anψn. (20)

The relation in Equation (18) is then discretized as

b = T · a (21)

where T is the matrix discretizing T , a = (a1, . . . , aN) and b = (b1, . . . , bQ).
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The SVO consists into the determination of the parameters p and the set of the func-
tionalsMq’s that improve the spectral behavior of the discrete counterpart T of T [1,2,17].

The SVO is implemented by optimizing a proper Quality Factor Ξ expressed as a
function of the Singular Values (SVs) of T. Ξ is strictly related to the amount of information
carried by the data on the unknown. Although different possible choices are possible [43],
in this paper Ξ is chosen to improve the Shannon number.

After the SVO, a regularized inversion is typically required. Indeed, with the SVO,
not all the SVs can be retained “acceptable”. In this case, a partial reconstruction of the
quantity of interest is performed.

Concerning now how many receivers should be allocated on the receiving region, Q is
determined according to the iterative procedure illustrated in Algorithm 1. The saturation
behavior is expected since adding further receivers does not increase the collectable amount
of information which can be extracted fromAR and needed to determine the characteristics
of the transmitted field.

Algorithm 1 SVO algorithm: determining the number of sensors.

Set Q = Qinit ≥ N

1. Optimize Ξ to obtain Ξopt(Q)

If the curve Ξopt(Q) is not saturated.

Q = Q + 1

goto 1

Choose Qopt as the value of Q associated to the knee

In the 2D case dealt with in this paper, the operator T coincides with the radiation
operator A, a with the aperture field Ea, N in Equation (20) with KT , the ψn’s in (20) with
the Φk[cT ; x′]’s and the an’s with the ek’s. Moreover, the linear functionalsMq are sampling
functionals extracting the samples of the impinging field Ei. Accordingly, the elements of b
are just the samples of Ei and the parameters p coincide with the probe locations.

It should be noticed that, if the optimization parameters correspond to the spatial
coordinates of the receivers, then P can be very large and this can affect an effective and
efficient optimization. Therefore, to control the number of optimization parameters P
defining the elementary probes, the non-uniform (x, y) grid is obtained by distorting a
regular auxiliary grid (ξ, η) via a mapping function r to be determined, so that the m-th
position is expressed as (x(m), y(m)) = r(ξ(m), η(m)). The function r is represented by few,
P basis functions τs, namely,

r(ξ, η) =
P

∑
s=1

psτs(ξ, η). (22)

The approach can be considered as a pre-filtering/pre-conditioning strategy that
reduces the degree of ill-conditioning of the relevant operator to be inverted.

4.3. Extended Elements

Finally, as an alternative to point-like elements, it is possible to use extended elements
or even to mix point-like elements with extended elements. How the segmentation per-
forms in solving the overlap issue between the “optimal virtual” sensors will be clearer in
Section 5.4.
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5. Performance Analysis and Discussion

In this section, we provide numerical results illustrating the performance of the
introduced generalized Gaussian quadrature and the optimality of SVO. Unless explicitly
mentioned, we will refer to a test case with aT = 5λ, aR = 7λ and d = 7λ.

We will first deal with the “optimal virtual” sensors benchmark and the problem
of capturing all the radiated DoFs. Afterwards, we will analyze the performance of the
generalized Gaussian quadrature, of SVO and of the partitioning approach.

5.1. “Optimal Virtual” Sensors and the Problem of Capturing all the Radiated DoFs

Figure 7—left shows the (not normalized) SVs for the “optimal virtual” sensors case.
Around Nopt = 16 “optimal virtual” sensors were available corresponding to the SVs drop-
ping by no more than 20dB as compared to the first one. Furthermore, in Figure 7—right,
the first four “optimal virtual” sensing functions are displayed.

The spread of the energy of the radiated PSWFs with an increasing distance between
transmitter and sensor is shown in Figure 8—left. Furthermore, for fixed values of aT = 5λ
and d = 10λ, Figure 8—right shows how increasing aR to aR = 25λ enabled us to recover
all the KT = 20 radiated DoFs.

Figure 7. (Left): SVs for the case aT = 5λ, aR = 7λ and d = 7λ. (Right): first four “optimal virtual” sensors for the case
aT = 5λ, aR = 7λ and d = 7λ.

Figure 8. (Left): illustrating the spreading of the energy of the PSWFs for the case aT = 5λ and aR = 7λ and for an
increasing distance d. (Right): increasing the size of aR to catch all the radiated DoFs for the case aT = 5λ and d = 10λ.

5.2. Gaussian Quadrature

Figure 9 depicts the optimized Gaussian quadrature points for N = 20 which was cho-
sen to guarantee a maximum difference between left- and right-hand sides of Equation (17)
less than 10−5. The number of elements was slightly larger than the number of Nopt = 16
“optimal virtual” sensors to represent, as expected. The required number of elements was
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consistent with the results in [44]. Thanks to Figure 10—left, it was possible to compare
the SVs for the case when “optimal virtual” sensing functions were used and the SVs
obtained for the case of weighted point-like elements. As it can be seen, the two SVBs
almost completely overlapped. Finally, Figure 10—right shows the differences between
the left-hand side and the right-hand side of Equation (17) when “optimal” weights and
positions were used. As can be seen, the signals sensed by the elementary arrays were
very close to those sensed by the “optimal virtual” sensors. This is due to the capability
of quadrature nodes and weights to represent the scalar products between the functions
m∗n(x) and A[Φk[cT ; x′]](x).

Figure 9. Optimized Gaussian quadrature points for the case aT = 5λ, aR = 7λ, d = 7λ and N = 20.

Figure 10. (Left): SVB for the case when “optimal virtual” sensing functions are used, instead of the PSWFs, to form the
link matrix and the SVB obtained for the case of point-like elements and use of the “optimal” weights. (Right): percentage
errors when the point-like elements when the “optimal” weights are used to form the elements of the link matrix instead of
the “optimal virtual” sensors. The rows span the different sets of weights while the columns the possible impinging fields.

5.3. Elementary Sensors Using SVO

Figure 11 depicts the optimized SVO points for the case illustrated in Figure 12—left.
Moreover, Figure 12—right depicts the comparison between the SVs for the SVO points
and for the “optimal virtual” sensors thus showing the optimality of SVO. As it can be
seen, the SVBs were the same, indicating that the elementary optimized SVO elements had
the same reconstruction potentialities of the extended “optimal virtual” sensors. Indeed,
optimality was reached when the discretized operators obtained the same singular values
dynamics of the continuous operators. Moreover, the number of array elements per probe
as well as the reconstruction capabilities were essentially the same as for the generalized
Gaussian quadrature case.

Figure 11. SVO points for the case aT = 5λ, aR = 7λ, d = 7λ and N = 20.
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Figure 12. (Left): Illustrating the point-like sensor geometry without weights. (Right): SVO points for the case aT = 5λ,
aR = 7λ, d = 7λ and N = 20.

5.4. Partitioning the “Optimal Virtual” Sensors

We here considered the alternative solution to both the realization of the “optimal
virtual” sensors and to the arrays of elementary sensors. We considered an intermediate
solution by partitioning the sensing aperture to mitigate the overlap issue.

We first halved the aperture and deal with the upper half (0, aR) as in Figure 13—left.
Figure 13—right shows the SVs as compared to those of the full aperture: the number of
“optimal virtual” sensors was N(1)

opt = 9. Analogous results were achieved using (−aR, 0).
This shows that, dealing with halved sensors, we had 18 “optimal virtual” sensors, 9 of them
overlapping on the upper aperture and 9 of them overlapping on the lower aperture. At this
point, we could combine the signal sensed by the two groups of 9 “optimal virtual” sensors
using proper NWs b1 and b2 as in Figure 14—left. The NWs could be determined following
the evaluation of the SVD of the link matrix whose generic element was evaluated as

Akl =

{
〈A[Φk[cT ; x′]](x), Ψ(1)

l (x)〉, l ≤ N(1)
opt

〈A[Φk[cT ; x′]](x), Ψ(2)
l (x)〉, N(1)

opt + 1 ≤ l ≤ N(1)
opt + N(2)

opt

, (23)

where Ψ(1)
l (x) and Ψ(2)

l (x) are the “optimal virtual” sensing functions for the upper and

lower half-apertures, respectively, and N(2)
opt = N(1)

opt . Figure 14—right shows the SVs for the
above defined link matrix. As it can be seen, only a number of 13 < Nopt = 16 independent
NW combinations of the two groups of 9 “optimal virtual” sensors were obtained, meaning
that we lost degrees of freedom.

Obviously, a further segmentation, although going in the direction of elementary
sensors, would inherit the same efficiency problem associated to the sub-aperture recombi-
nation as before.
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Figure 13. (Left): Illustrating the “optimal” reception problem for a halved upper aperture. (Right): SVB for the half-sensing
aperture case.

Figure 14. (Left): combining the “optimal” half-sensors with weights. (Right): SVB for the two half-sensors apertures
combined with weights.

5.5. 3D Application: Far-Field Calculation from Near-Field Data

We finally present an application of the SVO to a 3D case consisting of the calculation
of the field radiated by an aperture in the far-zone from near-field measurements.

We considered the case of a pyramidal horn antenna with physical aperture 3.018λ× 2.348λ
sized. The flare had a base width of 0.711λ× 0.356λ and a height of 2.524λ and operates at
1.645 GHz. All the synthetic data were evaluated by FEKO and corrupted with noise having a
Signal to Noise Ratio (SNR) of 35 dB.

For this test case, we considered an electrical aperture size of 2aT × 2bT = 3.5λ× 3.05λ and
a distance between aperture and measurement plane of d = 7λ. Concerning the measurement
plane, we chose 2aR × 2bR = 22λ× 22λ since such a size brought all the SVs above a threshold
set−35 dB below the maximum one, see Figure 15. In this way, we expected to recover all the
source’s DoFs when the SNR was larger than 35 dB. On the other side, Figure 16—left shows
the curve of the optimized SVO functional with varying number of sampling points Ξopt(Q)
where a distorted grid of Q×Q samples has been considered. As it can be seen, a number of
Q = 9 points along each dimension, leading to an overall number of 9× 9 sampling points, was
necessary to reach saturation [2]. Figure 16—right shows the sampling points produced by the
SVO procedure.

Figure 17 shows the cuts, along the u and v axes, of the reference far-field, as evaluated
by FEKO, and that retrieved following the NFFF reconstruction using the “optimal virtual”
sensors and SVO. The two reconstructions practically coincided.
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In all the dealt-with cases, the difference between the reference curves and the recon-
structions was due to the presence of the noise.

Figure 15. SVs for the horn antenna case.

Figure 16. (Left): Curve of the optimized SVO functional with varying number of sampling points Ξopt(Q). (Right): SVO
sampling points.

Figure 17. Cuts, along the u-axis (left) and v-axis (right), of the reference (red pluses) and reconstructed far-field using
“optimal virtual” sensors (black circles) and SVO (blue solid line).

6. Conclusions

We have introduced the concept of “optimal virtual” receivers and we have shown
that such receivers can be equivalently represented by an array. This can be achieved by
two different approaches using a generalized Gaussian quadrature and SVO which lead
to essentially the same results. We have also shown that an approach based on the use of
subapertures is suboptimal.



Sensors 2021, 21, 4460 17 of 18

The singular values have been exploited as a measure of the performance of the
sensing and as the foundation for the comparisons. The singular vectors are used to design
the link (“virtual” sensors).

The discussion has been led in a 2D, scalar setting. The theoretical arguments have
been supported by numerical results referring to a Near-Field/Far-Field (NFFF) transfor-
mation problem.

The test reported throughout the paper and, in particular, the NFFF case, show that
SVO is capable to reach the same results of the “optimal virtual” sensors so that it is “opti-
mal” in turn. The capability of SVO to reaching the same SVB as for the “optimal virtual”
sensors entails having an operator with the same performance in terms of conditioning and
robustness against noise. However, thanks to its optimality, SVO involves the minimum
number of field samples reaching the same performance of the continuous problem.

In the future, the case of arrays with parasitic elements can be also dealt with.
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