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Recently, two quantitative tools have emerged for predicting the health impacts of projects that change population physical activity:
the Health Economic Assessment Tool (HEAT) and Dynamic Modeling for Health Impact Assessment (DYNAMO-HIA). HEAT
has been used to support health impact assessments of transportation infrastructure projects, but DYNAMO-HIA has not been
previously employed for this purpose nor have the two tools been compared. To demonstrate the use of DYNAMO-HIA for
supporting health impact assessments of transportation infrastructure projects, we employed the model in three communities
(urban, suburban, and rural) inNorthCarolina.We also comparedDYNAMO-HIAandHEATpredictions in the urban community.
Using DYNAMO-HIA, we estimated benefit-cost ratios of 20.2 (95% C.I.: 8.7–30.6), 0.6 (0.3–0.9), and 4.7 (2.1–7.1) for the urban,
suburban, and rural projects, respectively. For a 40-year time period, the HEAT predictions of deaths avoided by the urban
infrastructure project were three times as high as DYNAMO-HIA’s predictions due to HEAT’s inability to account for changing
population health characteristics over time. Quantitative health impact assessment coupled with economic valuation is a powerful
tool for integrating health considerations into transportation decision-making. However, to avoid overestimating benefits, such
quantitative HIAs should use dynamic, rather than static, approaches.

1. Introduction

In theUnited States, approximately 234,000 premature deaths
are associated with physical inactivity each year [1]. The
built environment influences walking and biking for trans-
portation and, in turn, total physical activity [2, 3]. Many
communities in the United States are designed in ways that
do not support walking and biking, thereby contributing to
low levels of physical activity [4]. Recently, transportation
agencies across the United States have sought to integrate
health considerations into decision-making [5, 6]. Health
impact assessment (HIA) has emerged as a systematic frame-
work for considering how decisions, such as modifications
to the built environment, may impact public health and
has informed a variety of decisions in the transportation

sector [7, 8]. However, most transportation HIAs conducted
to date have provided qualitative rather than quantitative
estimates of health benefits arising from changes in physical
activity (e.g., indicating that physical activity is expected to
increase, without estimating the magnitude of the increase)
[9]. Existing research links the built environment to physical
activity levels and health outcomes, but quantitative models
to predict the health impacts of modifications to the built
environment remain poorly developed [10–12].

Within the past four years, two new tools to support
quantitative HIAs have emerged. The first tool, the Health
Economic Assessment Tool (HEAT) for cycling and walking,
was introduced by the World Health Organization in 2011
[13]. More recently, the European Union Health Programme
released the Dynamic Model for Health Impact Assessment
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(DYNAMO-HIA) [14]. These two tools employ fundamen-
tally different methods; while DYNAMO-HIA is dynamic,
capable of tracking changes in population health over many
years, HEAT is static, providing health impact estimates for
a single year. The HEAT method has been used in several
HIAs of policies or projects to promote active transportation
(walking or cycling instead of driving) [14]. DYNAMO-HIA
has been applied to estimate the health impacts of a ban
on alcohol imports in Sweden, smoking cessation in Great
Britain, reduced salt intake in Europe, decreased smoking
prevalence inCopenhagen, and bodymass index reduction in
Netherlands [15–18].However, to our knowledge,DYNAMO-
HIA has not yet been applied to predict the health impacts of
increased physical activity arising from changes in the built
environment. Further, the estimates from these two methods
have not been compared.

To demonstrate the use of quantitative tools for esti-
mating the health effects of physical activity in HIAs of the
built environment, this paper describes quantitative HIAs of
proposed changes to the built environment in three North
Carolina communities. All three HIAs used DYNAMO-HIA
to estimate the health effects of increased transportation
walking time expected to arise due to modifications to the
built environment. Changes in prematuremortality, coronary
heart disease (CHD), type 2 diabetes, hypertension, and
stroke were estimated for each community. In addition, each
HIA estimated the ratio of health benefits to expected project
costs. For one of the case studies, we additionally compared
results obtained from DYNAMO-HIA with those obtained
from theHEATmodel. Our objective inmaking this compar-
ison was to determine whether the health impact estimates
differ when using a dynamic approach (as in DYNAMO-
HIA) as compared to a static approach (as in HEAT).
We hypothesized that the static approach may overestimate
health benefits by failing to account for overall improvements
in population health from one year to the next and, as a
result, estimating benefits in each year relative to a population
for which no benefits have yet accrued. Our overall purpose
was twofold: first, to demonstrate that quantitative tools
in general may provide objective, evidence-based decision
support within the HIA framework and, second, to provide
insight into the advantages and disadvantages of emerging
quantitative tools and methods to conduct HIAs.

The HIAs presented in this study were conducted as
examples to support WalkBikeNC, a statewide bicycle and
pedestrian plan developed by the North Carolina Depart-
ment of Transportation (NCDOT) in 2013 [19].WalkBikeNC
presents a unified policy framework to support active travel
statewide, but it does not propose projects. Instead, specific
bicycle and pedestrian infrastructure projects are planned
and implemented by local authorities in accordance with
WalkBikeNC. Such projects may be included in a range of
local plans, including small-area plans, comprehensive trans-
portation plans, and bicycle and pedestrian master plans.
The three HIAs described in this paper consider pedestrian
infrastructure improvements aligned with the policy frame-
work established in WalkBikeNC at three planning scales: a
small-area plan, a comprehensive plan, and a streetscape plan.

2. Materials and Methods

All three case studies followed the six steps of HIA proposed
by the US National Research Council: (1) screening; (2)
scoping; (3) assessment; (4) recommendations; (5) report-
ing; and (6) monitoring and evaluation [7]. The first two
steps of HIA, screening and scoping, focus on identifying
and characterizing health concerns and disparities in the
community. The third step, assessment, explores how the
decision to be made influences these concerns and dispar-
ities through qualitative understanding and/or quantitative
modeling of causal pathways as understood in the scientific
literature. The conclusions from the assessment stage inform
the fourth stage, recommendations. Finally, reporting and
monitoring and evaluation aim to engage stakeholders, hold
decision-makers accountable, and evaluate the effectiveness
of the decision in addressing identified health concerns
at some point in the future. Because this paper focuses
on improving the assessment stage through the application
of quantitative methods, details of steps 4–6 are not pre-
sented; these details can be found elsewhere [19, 20]. Details
on the screening and scoping stages are provided below,
because these steps influenced the scope of the assessment
phase.

2.1. Site Selection (Screening). Case study sites were selected
in coordination with NCDOT. In all three communities, the
proposed changes to the built environment were included
in adopted local plans but had not received funding as
of October 2012 (when this project began). Projects were
selected to provide variation across three dimensions: (1)
development context (rural, suburban, and urban); (2) plan-
ning scale (corridor plan, small-area plan, and comprehen-
sive plan); and (3) geographic region within North Carolina
(Piedmont region, coastal region, mountain region). Table
S1 and Figures S1–S3 in Supplementary Material available
online at http://dx.doi.org/10.1155/2015/812325 provide maps,
demographic data, and information about the changes to the
built environment proposed for each project.

The first HIA is conducted on changes to the built
environment proposed in the City of Raleigh’s Blue Ridge
Road Corridor (BRRC) small-area plan (urban, small-area
plan, Piedmont region). The BRRC is located eight kilome-
ters east of downtown Raleigh, the second-largest city in
North Carolina and the state capital. The BRRC small-area
plan is the result of a planning and visioning process to
guide development in the corridor as it urbanizes. The plan
includes dense, mixed-use land development, construction
of a compact street network, and construction of additional
pedestrian and bicycling facilities. We considered the effects
on time spent walking for transportation and the resulting
health outcomes if the plan were implemented in its entirety
[21].

The second HIA is conducted on construction of new
sidewalks in the town of Winterville as proposed in the
Greenville Metropolitan Planning Organization’s Bicycle
and Pedestrian Master Plan (suburban, comprehensive plan,
coastal region). This plan proposes both pedestrian and
bicycle projects throughout the Greenville metropolitan area,
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a mid-size community in eastern North Carolina. We esti-
mated the health impacts of building all sidewalks proposed
in the plan within the municipal boundaries of Winterville,
a suburban community on the outskirts of the Greenville
region [22].

The third HIA is conducted on streetscape improvements
proposed in the Town of Sparta’s Downtown Streetscape
Master Plan (rural, corridor plan, mountain region). Sparta
is a prototypical rural main-street community, with a small,
walkable downtown containing shops and services sur-
rounded by low-density development. We estimated the
health impacts of proposed improvements to the downtown
streetscape, including improved sidewalks and street cross-
ings [23].

2.2. Selection of Health Outcomes (Scoping). Facilitated dis-
cussions with local decision-makers and residents in each
community confirmed that existing transportation infras-
tructure (e.g., lack of sidewalks) and overall community
design (e.g., lack of destinationswithin easywalking distance)
limit opportunities for walking as a means of transportation.
The potential health outcomes that could be affected if new,
pedestrian-friendly infrastructure were in place and if, as a
result, residents spent more time walking for transportation
were then selected from a literature review. The literature
review identified several health outcomes for which non-
vigorous transportation physical activity has been shown
to have a preventive effect: coronary heart disease (CHD),
type 2 diabetes mellitus, hypertension, stroke, and premature
mortality from all causes [24–27]. Additionally, these four
diseases were identified as existing health concerns related to
physical activity levels in each community.

2.3. Health Impacts Model (Assessment). We used DYN-
AMO-HIA to estimate the health impacts of increased trans-
portation physical activity in all three communities. We then
additionally used a modified version of the HEAT model,
implemented inAnalytica 4.5 (LuminaDecision Systems, Los
Gatos, CA) in the BRRC. These two models and their data
requirements are described in turn below.

DYNAMO-HIA is a dynamic health impacts model that
employs Markov Chain modeling to estimate the effects of
a health intervention on a population over time [15]. Con-
ceptually, Markov Chain models divide a system into distinct
groups of risk factor states linked by transition probabilities,
which define the likelihood that a member of one group will
transition to another group over time (Figure 1). The model
moves forward in discrete one-year time steps, estimating
the population in each group at time step using the previ-
ous group populations and transition probabilities between
groups. To estimate the health impacts of an intervention
that changes health behaviors, an intervention scenario is
specified in which the probabilities of transitioning from a
healthy to a diseased state (represented in Figure 1 as 𝑃
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of risk factors in the population (e.g., amount of time walking
for transportation). As themodel steps forward through time,

changes in these transition probabilities affect the rate at
which healthy individuals transition to diseased states and/or
death. Alongside the intervention scenario, a baseline sce-
nario is also specified in which transition probabilities are not
affected by the intervention. Health impacts are estimated by
comparing health outcomes between the two scenarios over
time. DYNAMO-HIA requires a large amount of baseline
health data: age- and sex-specific population distributions,
mortality rates, disease prevalence, disease incidence rates,
and risk factor prevalence. In the intervention scenario, a
change in risk factor prevalence and/or a transition between
risk factor states over time must also be specified. Finally,
dose-response functions must be characterized for each
health outcome of interest. DYNAMO-HIA is available free
of charge (http://www.dynamo-hia.eu/) and may be installed
on any Windows-based machine.

We developed DYNAMO-HIA models for each commu-
nity. Each model included community-specific population
and health data as described in Section 2.3.1. A baseline, “no-
build” scenario and an intervention scenario were specified
for each community. In the baseline scenarios, weekly time
spent walking for transportation was taken from recent
surveys as described in Section 2.3.3. In the intervention sce-
narios, studies linking proposed built environment changes
in each community to increases in walking for transportation
were used to estimate post-constructionwalking as described
in Section 2.3.4. Relative risks linking time spent walking for
transportation to modeled health outcomes were taken from
epidemiological studies (Table 1). Health impacts were esti-
mated by taking the difference in projected health outcomes
between the two scenarios over time each year for 40 years.

To develop 95% confidence intervals for our health
impact estimates, each model was run five times, changing
relative risk parameters in the model to the upper and lower
bound of the 95% confidence intervals reported in epidemio-
logical studies in each iteration. The first model used central
values for all relative risk parameters, the second model used
the lower bound of the confidence interval for mortality and
central values for all diseases, the third model used the upper
bound of the confidence interval for mortality and central
values for all diseases, the fourth model used lower bounds
for all diseases and the central value for mortality, and the
fifthmodel used upper bounds for all diseases and the central
value for mortality. Varying each relative risk parameter in
turn and rerunning each model enabled the construction
of 95% confidence intervals for all of our results reflecting
uncertainty in the relative risk parameters used; however,
uncertainty in other model parameters (e.g., magnitude of
changes inwalking for transportation) is not reflected in these
estimates. All confidence intervals reported throughout this
paper were developed using this approach.

Unlike DYNAMO-HIA, the HEAT model is static: it
estimates a fraction of cases of premature mortality that
could be avoided if a population spent more time walking or
cycling and assumes that this fraction is constant from year
to year. That is, health benefits of increased activity do not
accrue from year to year for a given individual. The WHO
has made an online tool for automating these calculations
(http://www.heatwalkingcycling.org/) available. In order to
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Figure 1: Schematic of DYNAMO-HIA model representing simulation of one time step for one scenario (reference or intervention). Each
circle represents a population state. Solid lines represent possible transitions between states at each time step, whereas dotted lines represent
staying in the same state during a time step. The variables 𝑃

1
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represent transition probabilities between states.

Table 1: Relative risks.

Health outcome Sex
Low category

(1–149 minutes’ walking for
transportation per week)

High category
(150+ minutes’ walking for
transportation per week)

All-cause mortality [23] Combined 0.95 (0.98–0.92)a 0.90 (0.96–0.85)

CHD [24] Male
Female

0.99 (1.08–0.91)c
0.95 (1.08–0.83)c

0.99 (1.10–0.90)c
0.80 (0.92–0.69)c

Type 2 diabetes [26] Combined 0.77 (1.02–0.58)b 0.69 (0.88–0.54)b

Hypertension [26] Combined 0.76 (0.94–0.61)b 0.69 (0.83–0.58)b

Stroke [25] Male
Female

0.94 (1.06–0.83)c
0.88 (1.01–0.77)c

0.88 (1.02–0.77)c
0.87 (1.01–0.75)c

a95% confidence interval shown for all relative risks.
bAdjusted for race, education, income, and smoking status.
cAdjusted for education, smoking status, alcohol consumption, body mass index, systolic blood pressure, cholesterol, history of diabetes, and occupational and
leisure-time physical activity.

compare the results obtained with DYNAMO-HIA with
those obtained using the HEAT model approach, we recon-
structed the HEAT tool using Analytica. This reconstruction
additionally includes morbidity, which is not included in the
baseHEATmodel. Details of this reconstruction are provided
elsewhere [28].

Like DYNAMO-HIA, our reconstructed version of the
HEAT model requires baseline data on population size by
age and sex, baseline death rates, baseline disease prevalence
and incidence rates for each health outcome of interest, and
relative risks linking each health outcome to a risk factor (in
this case, walking for transportation). In addition, informa-
tion about the time spent walking for transportation under
current conditions and under the intervention scenario is
needed. Sources for these data, used in both the DYNAMO-
HIAmodels the reconstructedHEATmodel in the BRRC, are
described below.

2.3.1. Baseline Population and Health Data. We estimated
age- and sex-specific population distributions by applying
county-level age and sex distributions to refine Census
block-group data for each case study location (Figure S2)
[29, 30]. Baseline death and birth rates were taken from
county-level data obtained from the NC State Center for
Health Statistics [31]. We developed age-specific prevalence
functions for CHD, type 2 diabetes mellitus, hypertension,
and stroke for each case study location by fitting second-
order prevalence functions to data from the Behavioral Risk
Factor Surveillance System (BRFSS) survey [32]. Disease
prevalence data were not available stratified by both age and
sex; thus, we stratified by age only and assumed identical
prevalence functions for males and females. Incidence data
are not available from the State Center for Health Statistics
for the diseases considered in this study. Thus, incidence
functions for each case study location were estimated using a
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differential equation-based method described in Brinks (see
Supplementary Material, Section 2.1 and Table S4) [33].

2.3.2. Relative Risks. Relative risks of each health outcome
as a function of transportation walking were drawn from
previous studies (summarized in Table 1). Categorical dose-
response functions for type 2 diabetes mellitus and hyperten-
sion were taken from a study of US adults that used data from
the National Health and Nutrition Examination Survey [26].
To our knowledge, no studies exist linking transportation
physical activity levels to CHD or stroke risk in US adults;
thus, relative risks were taken from two studies of a large
cohort of Finnish adults [24, 25]. To estimate the relative risk
of prematuremortality as a function of time spent walking for
transportation, a dose-response function derived in a recent
meta-analysis was employed; this same function is used to
calculate the relative risk of all-cause mortality in the HEAT
model [13, 27]:

RRmortality = 0.89
(𝑦/168)
, (1)

where 𝑦 is weekly minutes spent walking for transporta-
tion. We used (1) to estimate the relative risk of all-cause
mortality for the same exposure categories used in studies
linking walking for transportation to disease risk. Specifi-
cally, these studies grouped populations into three levels of
time spent walking for transportation: a reference category
(none), a low category (1–149min/week), and a high category
(150+min/week). The high category reflects the Centers for
Disease Control and Prevention (CDC) minimum recom-
mendation for total adult physical activity [34]. Using (1), we
calculated relative risks for all-causemortality at themidpoint
of the low transportation walking category (75min/week)
and at the low point of the high transportation walking
category (150min/week).

2.3.3. Baseline Active Transportation Behavior. InWinterville
and Sparta, we estimated baseline transportation physical
activity using data from the 2009 North Carolina BRFSS
survey [32]. In the BRRC, we used an active transportation
survey conducted within the neighborhood in 2012 utilizing
a widely used and validated physical activity questionnaire
[20, 28, 35]. Responses to these surveys were recategorized
according to the CDC physical activity categories described
above.

2.3.4. Estimating Changes in Active Transportation Behavior.
Due to differences in data availability and the nature of
the plans considered, different methods were used in each
case study community to estimate how changes in the built
environment are expected to affect transportation physical
activity.

The method for estimating changes in walking time if
the BRRC small-area plan were implemented is described
in detail elsewhere [20, 28]. Briefly, because multiple built
environment changes are proposed in addition to pedestrian
infrastructure improvements, the net effect of all of these
changes on transportation walking is estimated using a
multidimensional walkability index that links intersection

density, population density, land-use diversity, and retail floor
area ratio to walking for transportation [36]. The walkability
index is calculated from

Walkability Score = (2 × 𝑍intersetion) + (𝑍residential)

+ (𝑍FAR) + (𝑍land-use) ,
(2)

where 𝑍 variables represent normalized versions of intersec-
tion density (𝑍intersetion), the number of intersections divided
by land area; residential density (𝑍residential), the number of
housing units divided by the residential land area; retail
floor area (𝑍FAR), the square footage of retail floor area
divided by the square footage of land devoted to retail use;
and land-use diversity (𝑍land-use), computed as described in
Cervero and Kockelman [37]. Previous studies that have
linked transportation walking time to the walkability score
were then used to estimate the increase in time spent walking
as a result of the increase inwalkability score thatwould occur
if the small-area plan were fully implemented [28, 38].

In Winterville, the proposed changes to the built envi-
ronment consist solely of new sidewalk construction. Thus,
a relationship linking sidewalk density to transportation
walking was used to estimate changes in transportation
physical activity. A 1 km/km2 increase in sidewalk density
is associated with an increase in the odds of an individual
having taken a walking trip in the previous week by 2.3
percent [39]. Thus, the odds ratio of walking before and after
construction may be expressed as:

𝑂
𝑊,after

𝑂
𝑊,before
= 1.023

(𝐷
𝑠,after−𝐷𝑠,before). (3)

𝑂
𝑊,before is the odds of walking given the density of side-

walks before construction,𝐷
𝑠,before (km/km2), and 𝑂

𝑊,after is
the odds of walking given the density of sidewalks after con-
struction, 𝐷

𝑠,after (km/km2). Rearranging (3) and expressing
in terms of probabilities, this becomes:

𝑃
𝑊,after

(1 − 𝑃
𝑊,after)
=
𝑃
𝑊,before1.023

(𝐷
𝑠,after−𝐷𝑠,before)

(1 − 𝑃
𝑊,before)

. (4)

𝑃
𝑊,𝑎𝑓𝑡𝑒𝑟

is the probability that an individual takes at least
one walk trip per week after construction, and 𝑃

𝑊,before is
the probability that an individual has taken a walking trip
in the past week before construction, assumed to be equal
to the proportion of the population reporting any walking
in the BRFSS. We iteratively solved for 𝑃

𝑊,after and adjusted
the proportion of non-walkers in the population accordingly.
We assumed that new walkers were distributed between the
low- and high-walk-time categories in the same manner as
walkers were distributed between these two categories before
construction.

In Sparta, we used changes in a composite pedestrian
environment factor (PEF)—which includes sidewalk quality,
ease of street crossings, topography, and density of the street
grid—to estimate changes in average weekly walking distance
[40]. Each subcategory is assessed on a 3-point scale; the
PEF is calculated by adding these four subcategory scores
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and transforming the result into an ordinal variable (low,
medium, or high). After construction of streetscape improve-
ment in Sparta, sidewalk quality and ease of street crossings
would improve significantly while topography and the con-
figuration of the street network would remain unchanged.
Therefore, we assumed that the sidewalk quality and ease of
street crossings subcategories would change from 1 (current
conditions) to 3 (post-construction), while the topography
and street grid density would remain unchanged.This change
in subscores would change the PEF from low to medium.
In turn, per-capita weekly walking distance would increase
by 0.92 kilometers [40]. Assuming a typical walking speed
of 4 kilometers per hour, per-capita transportation walking
time would increase by 13.6 minutes per week, on average
[41]. Because this relationshipwas derived in an urban setting
using small geographies, while Sparta is a rural town, we
assumed that only individuals living within a 0.4-kilometer
buffer of the proposed improvements (25% of the population)
would increase their walking. We increased the percentage
of population in each walking time bin proportionally so
that the average per-capita walking time for individuals living
within 0.4 kilometers of the proposed improvements equaled
to the preconstruction average plus 13.6 minutes.

2.3.5. Economic Valuation. To compare the benefits of esti-
mated health impacts to project costs, we applied economic
valuations to each health outcome considered. For mortality,
we used the value of a statistical life suggested by the
United States Department of Transportation (USDOT) in
2013, $9.1M USD per avoided premature death [42]. For
each disease, we used yearly disease costs estimated by the
Milken Institute that combine treatment costs and indirect
costs from productivity losses resulting from lost workdays
and reduced presenteeism (in Supplementary Material, Table
S7) [43]. For the BRRC andWinterville, we estimated project
costs using average bid data for North Carolina ($89.57 per
linear meter of sidewalk; $142.08 and $150.70 per square
meter of poured concrete sidewalk and curb and gutter,
resp.) [44]. For Sparta, we used the cost estimate provided
in the plan, $686,157 USD [23]. Ongoing maintenance costs
are not considered. Benefits and costs were discounted to
the present using a 5% discount rate per USDOT guidance
[45]. A sensitivity analysis was conducted using 3.5% and
7% discount rates based on guidance from the United States
Office of Management and Budget and NCDOT, respectively
(in Supplementary Material, Figure S5) [45, 46].

3. Results

3.1. Health Outcomes. To estimate the health impacts of
built environment changes in each community, we used
DYNAMO-HIA to predict changes in premature mortal-
ity and incidence of CHD, type 2 diabetes, hypertension,
and stroke over 40 years due to increased walking for
transportation. In the BRRC, DYNAMO-HIA estimates a
significant reduction in premature all-cause mortality as
well as significant preventive effects for hypertension, type 2
diabetes mellitus, and CHD (Figure 2). In Sparta, significant
reductions in premature mortality, cases of hypertension,

and cases of type 2 diabetes mellitus are estimated; however,
estimated effects on avoided cases of CHD are minimal. In
Winterville, DYNAMO-HIA estimates small, yet significant,
reductions in premature mortality and cases of hypertension
and minimal effects on type 2 diabetes and CHD. Across
all sites, no significant reductions in cases of stroke are
estimated. The total population benefits of avoided mortality
and the prevention of hypertension and type 2 diabetes accrue
over time but demonstrate diminishing returns (Figure 2,
Table 2). For example, DYNAMO-HIA estimates that the
cumulative number of premature deaths avoided in the BRRC
will increase from 4.9 (1.8–7.7) ten years after construction
to 14 (5.2–23) 40 years after construction (Table 2). Similarly,
within ten years of construction, an estimated 12 (4.5–17)
and 4.9 (2.6–7.6) cases of hypertension and type 2 diabetes
will have been prevented, and these numbers are expected
to increase to 32 (12–45) and 16 (8.3–24) within 40 years.
Generally, health outcomes for which a strong preventive
effect is demonstrated in the literature and for which baseline
community prevalence is high (e.g., hypertension) are most
influenced by increases in transportation physical activity.

Comparing across sites, DYNAMO-HIA estimates
stronger preventive effects on a per-capita basis in the BRRC
and Sparta than in Winterville (Figure 2). For example, the
cumulative cases of premature mortality prevented by year
40 are 0.99 and 0.36 per 1,000 people in the BRRC and
Sparta, respectively, as compared to 0.08 per 1,000 people
in Winterville. This result occurs because the proposed
changes to the built environment in the BRRC and Sparta
are estimated to increase transportation walking more in
the BRRC and in Sparta than in Winterville (Table 2). For
example, the average time spent walking per week is expected
to increase by 17 minutes in the BRRC and 2.2 minutes in
Sparta, in comparison to a smaller increase of 0.7 minutes
per week in Winterville (Table 2). Additionally, a preventive
effect on CHD is only estimated in the BRRC. As shown in
Table 1, the preventive effect of walking for transportation
on CHD is strong only for females in the highest physical
activity category. The population in the BRRC has a greater
proportion of women compared to the other two sites (in
Supplementary Material, Figure S4) and a greater predicted
change in the proportion of the population walking more
than 150 minutes per week for transportation (Table 2); thus,
the effect of increased transportation walking on avoided
cases of CHD is significant in the BRRC but not in the other
two sites.

3.2. Economic Valuation. To estimate the economic value of
health benefits in each community, we multiplied projected
avoided deaths and avoided disease cases per year by their
respective economic values.The economic value of estimated
health benefits exceeds project construction costs within one
year in the BRRC and within three years in Sparta (Table 2)
assuming a 5% discount rate. Over the 40-year time period
considered, the benefit-cost ratios in the BRRC and Sparta
are 20.2 (8.7–30.6) and 4.7 (2.1–7.1), respectively. However,
the present value of the health benefits in Winterville is less
than the estimated project costs: the benefit-to-cost ratio in
Winterville over 40 years is 0.6 (0.3–0.9) (Table 2).This latter
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Figure 2: Estimated health impacts per 1,000 persons for each community (solid lines), with 95% confidence intervals reflecting uncertainty
in relative risk parameters (dashed lines).

finding results from the design of theWinterville project and
the population density in that community; while significant
sidewalk construction is proposed, the new sidewalks will
be spread over a very large area of relatively low population
density, dampening the potential behavioral impact. The
net present value of the BRRC and Sparta projects remains

positive even when considering a higher discount rate (7%)
and remains negative in Winterville even when considering
a lower discount rate (3.5%) (in Supplementary Material,
Figure S5).

In all communities, health benefits are overwhelmingly
driven by avoided premature mortality (Figure S5). Avoided
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Table 2: Summary of findings, with 95% confidence intervals based on uncertainty in relative risk parameters.

Built environment
variables

BRRC Winterville Sparta
Before After Change Before After Change Before After Change

Walkability score −3.61 0.96 +4.57 — — — — — —
Sidewalk density
(km/km2) — — — 0.8 3.8 +3.0 — — —

PEF (categorical) — — — — — — Low Medium +1
Walking outcomesa Before After Change Before After Change Before After Change
No walking (percent) 40.7% 40.7% 0% 84.3% 83.4% −0.9% 85.4% 82.4% −3.0%
1–149min/week
(percent) 41.5% 21.2% −20.3% 12.3% 12.9% +0.6% 12.1% 14.6% +2.5%

150+min/week
(percent) 17.8% 38.1% +20.3% 3.4% 3.6% +0.2% 2.5% 3.0% +0.5%

Ave. walk time
(min/week) 13.1 30.4 +17 12.5 13.2 +0.7 10.4 12.6 +2.2

Health outcomesa Years after construction Years after construction Years after construction
10 20 40 10 20 40 10 20 40

Avoided premature
mortality

4.9
(1.8–7.7)

8.5
(3.1–13.3)

14.3
(5.2–22.6)

0.3
(0.1–0.5)

0.5
(0.2–0.9)

0.9
(0.3–1.4)

0.3
(0.1–0.4)

0.4
(0.2–0.7)

0.5
(0.2–0.8)

Avoided cases of
CHD

1.9
(1.6–2.1)

3.7
(3.1–4.1)

6.1
(5.1–6.7)

0.0
(−0.1–0.1)

0.0
(−0.1–0.2)

0.0
(−0.2–0.3)

0.0
(−0.1–0.2)

0.0
(−0.2–0.3)

0.0
(−0.2–0.3)

Avoided cases of type
2 diabetes

4.9
(2.6–7.6)

9.4
(5.1–14.5)

15.6
(8.3–24.1)

0.5
(0.0–1.0)

1.0
(−0.1–1.9)

1.5
(−0.2–2.9)

0.4
(0.0–0.7)

0.6
(−0.1–1.2)

0.8
(−0.1–1.6)

Avoided cases of
hypertension

11.8
(4.5–16.7)

21.4
(8.4–30.1)

32.1
(12.3–45.1)

1.5
(0.4–2.5)

2.7
(0.6–4.5)

4.0
(0.9–6.9)

0.9
(0.2–1.5)

1.4
(0.3–2.4)

1.8
(0.4–3.2)

Avoided cases of
stroke

1.1
(0.0–1.6)

1.8
(−0.1–2.9)

2.1
(−1.1–4.0)

0.1
(−0.1–0.3)

0.2
(−0.2–0.6)

0.3
(−0.3–0.8)

0.1
(−0.1–0.3)

0.2
(−0.1–0.4)

0.2
(−0.2–0.5)

Economic
outcomesb,c

Years after construction Years after construction Years after construction
10 20 40 10 20 40 10 20 40

Net present value
(2012 USD)

33.4M
(10.8–53.7)

50.4M
(18.4–79.0)

66.8M
(26.8–103)

−5.1M
(−6.5–−3.9)

−3.9M
(−5.9–−2.1)

−2.9M
(−5.3–−0.6)

1.4M
(0.1–2.5)

2.2M
(0.5–3.7)

2.6M
(0.7–4.2)

Benefit-cost ratio 10.6
(4.1–16.5)

15.5
(6.3–23.7)

20.2
(8.7–30.6)

0.3
(0.1–0.5)

0.5
(0.2–0.7)

0.6
(0.3–0.9)

3.0
(1.1–4.6)

4.1
(1.7–6.3)

4.7
(2.1–7.1)

Time for B : C to
exceed 1 1 year (1-2 years) Benefits do not exceed costs 3 years (2–9 years)

aEstimates of walking for transportation after construction in Winterville do not add to 100% due to rounding.
bFor all health and economic outcomes, 95% confidence intervals are estimated using the lower and upper bounds of the relative risk parameters as noted in
Table 1.
c5% discount rate assumed.

premature mortality constitutes 92%, 86%, and 89% of the
total net present value of health benefits over 40 years in
the BRRC, Winterville, and Sparta, respectively. This result
occurs due to the much higher value placed on an avoided
premature death, in comparison to the value placed on
avoided chronic disease cases (in Supplementary Material,
Table S7).

3.3. Comparison of DYNAMO-HIA and HEAT. To compare
the dynamic approach used in DYNAMO-HIA and the static
approach used in the HEAT model, we re-estimated health
impacts in the BRRC using our reconstructed HEAT model
and compared these findings to impacts estimated by our
DYNAMO-HIA model. For all health outcomes considered,
the HEAT model estimates a higher number of avoided
cases per year than the DYNAMO-HIA model (Figure 3).

The difference between the two approaches increases with
time (Figure 3). When considering the cumulative health
impacts over multiple years, the differences in the two
approaches become substantial (Figure 4).The reconstructed
HEAT model estimates that 41 premature deaths would be
prevented over 40 years—2.9 times as many deaths averted
as predicted by the DYNAMO-HIA model. Similarly, central
estimates of avoided hypertension, type 2 diabetes, CHD, and
stroke increase by factors of 3.3, 1.6, 2.5, and 6.7 when using
the static approach, in comparison to the dynamic approach
(Figure 4).

The static approach overestimates health benefits by
failing to account for changing disease prevalence over
time. In the static model, avoided cases for each year are
estimated for the population as a whole without accounting
for population disease prevalence. In contrast, the dynamic
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Figure 3: Estimated health impacts per year obtained using the HEAT (static) model (solid black lines) and DYNAMO-HIA (dynamic)
model (solid grey lines) for the BRRC case study.

model removes individuals who develop a disease from the
population that is able to avoid a new case in subsequent
years (i.e., individuals who develop a disease transition to
diseased states (Figure 1), after which they are not included in
estimations of new avoided cases). Additionally, the dynamic
model references data from the previous year in estimating
benefits for a given year whereas the static model has no
memory of population health data in the previous year.Thus,
relative to the dynamic model, the static model overestimates
benefits in the future because it fails to account for changes
in disease prevalence over time. In other words, the dynamic

model is able to incrementally approach a new steady state in
which an intervention has shifted disease incidence functions
downwards for a portion of the population; once this steady
state is reached, new benefits no longer accrue as lower risk
individuals delay the onset of disease but do not completely
avoid disease over time. Once these individuals transition
into a diseased state, they are no longer included in avoided
cases calculations. Static models, however, do not approach
a new steady state because benefits are always calculated
relative to a population in which no benefits have been
accrued and disease prevalence is not accounted for. Thus,
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Figure 4: Ratio of cumulative health impact estimates from HEAT
(static) and DYNAMO-HIA (dynamic) models at 10, 20, and 40
years after construction.

benefits will continue to accrue beyond the point at which
the dynamic model reaches a new steady state. As a result,
the static model increasingly overestimates benefits over time
relative to the dynamic model. This behavior is illustrated
in Figure 3; at each time step, the rate of change in avoided
cases of type 2 diabetes stays relatively stable for the static
model, increasing slightly as the population grows over time.
In the dynamic model, the rate of change in the number of
cases avoided decreases over time as the model approaches
steady state in which all individuals who walk more have
a decreased risk, but still some risk, for developing type 2
diabetes throughout their lifetimes (Figure 3).

4. Discussion

Using the dynamic DYNAMO-HIA tool, we predicted that
the health benefits of changes to the built environment
that support walking for transportation would exceed con-
struction costs in two of the three case study communities.
In the urban BRRC neighborhood, the benefit-cost ratio
of changes to the built environment that would increase
walkability was estimated to be 20 over 40 years. In the
small rural town of Sparta, the benefit-cost ratio of proposed
improvements to the downtown streetscape reached 4.7 over
40 years. In contrast, the benefit-cost ratio of constructing
proposed sidewalks in suburban Winterville reached only
0.6 over 40 years. In addition, our comparison of estimates
from the reconstructed HEAT model and estimates from
the DYNAMO-HIA model showed that the static approach
tends to over-predict benefits when considering effects over
multiple years. Thus, if sufficient data and capacity exist,
dynamic tools such as DYNAMO-HIA should be used rather
than static tools to estimate the health impacts of policies and
projects that increase transportation physical activity.

4.1. Comparison with Recent Active Transportation HIAs. A
number of transportation HIAs using a range of modeling
techniques to link changes in the built environment to health
benefits from increased transportation physical activity have
been completed in recent years [14]. To our knowledge,
only one example of a dynamic model used to estimate the
health benefits of built environment changes exists: a system
dynamics model was used in an HIA of large-scale bicy-
cle infrastructure construction in Auckland, New Zealand
[47]. This model linked bicycle infrastructure investment
scenarios to changes in the perceived safety of bicycling to
work and resultingmode shifts to bicycle commuting. Health
impacts were then estimated for resulting changes in bicycle
crash risk, air pollution exposure, and physical activity levels.
Bicycle mode shares were predicted for several investment
scenarios, including a business-as-usual scenario. A relative
risk function comparing cyclists to non-cyclists was used to
estimate changes inmortality from increased physical activity
for each scenario over time. Benefit-cost ratios ranged from
6 to 24, driven largely by the value of prevented premature
mortality resulting from increased physical activity [47].

A number of HIAs using static models, including HEAT,
have also recently been performed. A study in Dane County,
Wisconsin, estimated a benefit-cost ratio of 1.7 for a hypo-
thetical countywide sidewalk construction project.The study
used a regression model to link sidewalk presence to time
spent walking and biking for transportation. The results
of this model were used to estimate transportation physi-
cal activity given sidewalk construction across the county.
Increased physical activity was then linked to reduced weight
gain and ultimately reduced costs associated with obesity
using a static model [48]. An HIA of the construction of
a bicycle path in Dublin, Ireland, estimated benefit-cost
ratios ranging from 2.2 to 11.8. This HIA used a survey to
estimate increased bicycling to work after construction and
the HEAT model to estimate health and economic benefits
[49]. Finally, an assessment in Portland, Oregon, used a traffic
demand model to estimate increased bicycle commuting due
to past and planned investments in bicycle infrastructure
throughout the city. Using the HEAT model to estimate
benefits from resulting increases in physical activity, benefit-
cost ratios ranged from 20 to 53 [50]. As in our study, avoided
premature mortality dominated the monetary value of the
health benefits of increased physical activity (Figure S5).

Previous studies have found benefit-cost ratios for
changes in the built environment that support walking and
biking for transportation ranging 1.7 to 53. Our results are
within this range for the BRRC and Sparta but not in
Winterville. The population density in Winterville may be
too low for the proposed improvements to be economically
viable when considering health benefits alone. This finding
demonstrates that the health benefits of changes in the built
environment that increase physical activity may not always
exceed project costs. Thus, quantitative HIA may be an
important tool for prioritizing investments to maximize the
overall value of health benefits.

As HIA for active transportation projects and policies is
refined, it will be important to consider differential treatment
effects for different age groups and to include social equity
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considerations [14]. Physical activity may have a stronger
preventive effect for older individuals, and many coun-
tries worldwide are seeing shifts in population distribution
towards older age groups. The dynamic model used in this
assessment is able to easily incorporate age-specific dose-
response information, if available. The usefulness of such
stratifications is demonstrated in our estimates for CHD:
due to differences in population characteristics and predicted
changes in behavior across sites, we estimate reduced inci-
dence of CHD in the BRRC but not in Sparta or Winterville.
This difference is driven by differential treatment effects at
higher doses of transportation walking for men and women
(Table 1). To increase the consideration of social equity in
transportation HIA, scalable models are needed. Using the
DYNAMO-HIA model at three different scales, we provide
evidence that quantitative assessment methods are robust
across scales. If modeling methods are robust at different
scales, a series of neighborhood-scale models may be used
to compare the health impacts of transportation decisions
in neighborhoods with different socioeconomic conditions
andmay reveal disproportionate impacts. Such an application
could better inform investments in active transportation
infrastructure to address social equity concerns.

In sum, previous studies provide strong evidence that
built environment changes meaningfully impact health out-
comes and are often quite economically advantageous. Our
application of a novel dynamic model yields findings con-
sistent with the existing literature, building the robustness
of the link between the built environment, physical activity,
and health benefits. Further, we demonstrate that dynamic
models may be applied across a variety of scales and are able
to incorporate differential treatment effects for different age
groups and for men and women. Thus, dynamic models may
help address identified limitations of transportation HIA in
practice.

4.2. Limitations. Our estimates of post-construction physical
activity do not consider activity substitution (i.e., reduc-
ing other activities after increasing transportation physical
activity) or self-selection (i.e., more active individuals may
be more likely to increase transportation physical activity).
However, longitudinal evidence suggests that activity substi-
tution is minimal, and increases in physical activity remain
when self-selection is accounted for [51–53]. In addition, our
estimates exclude potential increases in physical activity from
walking for leisure and from bicycling and, in this regard,
could underestimate health benefits.

Additionally, we consider only one health pathway (phys-
ical activity), while transportation influences health in other
ways, including exposure to air pollution and crash risk.
Other health pathways may respond to built environment
changes in opposite directions andwith differentmagnitudes.
For example, compact urban forms may increase physical
activity but also increase exposure to air pollution [54]. A
recent HIA in London found health benefits from increased
physical activity but also negative health impacts from
increased exposure to air pollution and elevated crash risk
for active commuters [55]. However, recent HIAs of active

transportation consistently find changes in physical activity
to be the largest contributor to estimated health impacts
[14].

While DYNAMO-HIA is able to use continuous relative
risk functions, continuous prevalence data are also required
when doing so and must be characterized using the mean,
standard deviation, and skewness of the distribution. Baseline
distributions of walking for transportation were noncontin-
uous (taken from categorical survey responses) and difficult
to characterize as continuous distributions due to excess
zeroes. Further, continuous dose-response functions were
not available linking walking for transportation with CHD,
type 2 diabetes, hypertension, or stroke. To overcome these
difficulties, the model uses a discrete dose-response function
that caps health benefits at 150 minutes of transportation
physical activity per week. As a result, the model may
underestimate benefits for those accruing more than 150
minutes of transportation physical activity per week. To
analyze the potential magnitude of this underestimation, we
recomputed the static (HEAT) model predicted mortality
reduction using a continuous dose-response function com-
binedwith categorical prevalence data using smaller bins (i.e.,
divided into eleven categories of weekly time spent walking
for transportation). The latter model estimates an additional
26 (+63%) avoided deaths after 40 years. However, since both
thesemodels are prone to overestimation, this differencemay
be artificially inflated.

This paper considered only three communities in North
Carolina. While representing a range of urban development
contexts (rural, suburban, and urban), all three communities
had low baseline levels of transportation physical activity and
limited public transit service. Further, community-specific
disease prevalence and incidence may reflect population
characteristics specific to North Carolina. Thus, our findings
concerning the relative costs and benefits of the planned
infrastructure investments in these three communities may
not generalize to highly urban settings with higher baseline
levels of transportation physical activity, higher levels of
public transit usage, and/or different demographic character-
istics than North Carolina. However, the differences revealed
comparing estimates from DYNAMO-HIA and the HEAT
model stem from the different structures of the modeling
approaches themselves and thus may be generalizable across
communities of many types.

Finally, disease prevalence and incidence are estimated
using county data. However, these data are identical in the
baseline and intervention scenarios so any resulting bias is
likely minimal.

5. Conclusion

Using DYNAMO-HIA to conduct three quantitative HIAs,
we demonstrated that investments in infrastructure that
supports active transportation may have meaningful impacts
on health outcomes via increased transportation physical
activity. These health outcomes may also have considerable
financial implications: in two of the three cases, the benefits
of avoided disease and premature mortality alone exceeded
construction costs.
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Dynamic health impact models, such as DYNAMO-HIA,
offer significant advantages over staticmodels, such asHEAT.
Static models may overestimate health benefits by failing to
account for changing population health characteristics over
time. However, it may be difficult to implement continuous
relative risk functions using existing dynamic modeling tools
if baseline exposure information is difficult to characterize
as continuous distributions or if continuous dose-response
information is available only for certain health outcomes.
If continuous dose-response functions are discretized into
just a few categories, the benefits of physical activity may
be underestimated for individuals who are very physically
active. Providing greater flexibility in characterizing exposure
or allowing continuous dose-response functions to be used
alongside categorical exposure data in existing tools would
address this shortcoming in practice. Overall, the advantages
of dynamic models outweigh the current limitations of
available tools.

Quantitative HIA is a feasible tool for objective,
evidence-based decision support linking health outcomes
to increased—or decreased—physical activity resulting
from changes in the built environment. Transportation
decision-makers routinely use models to estimate
congestion reduction and improvement in traffic safety
and translate these outcomes into monetary benefits [56].
Thus, quantitative HIA combined with economic valuation
enables the health benefits of increased transportation
physical activity from changes in the built environment to be
considered alongside traditional transportation metrics. As
transportation agencies search for ways to better integrate
health considerations into transportation decision-making,
quantitative HIA fills a critical gap, translating investment
in infrastructure that supports active travel into a metric
that enables direct comparison with other types of projects.
Further, quantitative assessments of competing built
environment risks, such as physical activity, air pollution,
and traffic fatalities, may help align larger planning efforts
(e.g., comprehensive plans) with health goals by comparing
the public health impacts of alternative future scenarios.
Using three cases across North Carolina, we demonstrated
that quantitative models linking built environment changes
to physical activity and health impacts are feasible, provide
meaningful results to decision-makers, and may help
prioritize resources in pursuit of public health goals.
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