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Identifying transmission of hot spots with temporal trends is important for
reducing infectious disease propagation. Cluster analysis is a particularly use-
ful tool to explore underlying stochastic processes between observations by
grouping items into categories by their similarity. In a study of epidemic prop-
agation, clustering geographic regions that have similar time series could help
researchers track diffusion routes from a common source of an infectious dis-
ease. In this article, we propose a two-stage scan statistic to classify regions
into various geographic clusters by their temporal heterogeneity. The proposed
scan statistic is more flexible than traditional methods in that contiguous and
nonproximate regions with similar temporal patterns can be identified simulta-
neously. A simulation study and data analysis for a dengue fever infection are
also presented for illustration.
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1 INTRODUCTION

Cluster analysis is a useful tool to explore underlying structures of a stochastic process and relations between observations
by grouping items into categories according to their similarity.1 This analytical approach has long been of great impor-
tance in applications of epidemiology, including contagious disease surveillance. We are here particularly interested in
clustering geographic units with similar time series of elevated risks while accounting for spatial-temporal correlation.
A motivation for this article is the study and surveillance of dengue fever infection in Taiwan. Dengue fever is a disease
caused by the flavivirus, which is transmitted by certain species of mosquito of the Aedes type, whose incubation period
has a seasonal cycle in Taiwan. Due to climate change, dengue is now a global problem, and it has had outbreaks in more
than 110 countries since the Second World War. Dengue fever infection also had consecutive outbreaks in Taiwan in
2014 and 2015, which caused 15,732 and 43,784 confirmed cases, respectively. Since there is no effective vaccine or spe-
cific medicine to treat dengue infection, dengue prevention usually puts more focus on vector control, such as chemical
spraying and physical removal of breeding sites. A surveillance system that can map clusters of cases to explore epidemic
propagation is thus essential to preventing a dengue outbreak.

Epidemic propagation is a process by which an infectious disease spreads from its origin. Taiwan, an island straddling
the Tropic of Cancer, is an excellent place to investigate the epidemic propagation of dengue fever. Geographically, Taiwan
is surrounded by China, Japan, and some southeast Asian counties. While dengue pandemics occurred often in south-
east Asian counties, dengue outbreaks have been found in East Asian countries just in recent years. Since Taiwan forms
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an isolated geographic environment and most dengue epidemics initiated from imported cases, a better understanding
of the epidemic propagation could help other countries prevent their own dengue outbreaks. For dengue progression,
the incubation period of mosquitos is a pivot factor. Since the incubation period depends on climate and environmental
situations,2 the epidemic diffusion would usually be related to an evolution of disease clusters that have space and time
interaction.3 An exploratory spatial analysis such as kernel density estimation may thus not be suitable to explore com-
plex diffusion processes.4 On the other hand, a disease mapping model that can characterize different temporal trends
into their corresponding geographic clusters would be useful to evaluate epidemic progression in time and space for dis-
ease surveillance. For this purpose, we aim to develop an identification method to group regions into various geographic
clusters by their temporal heterogeneity of incidence rates.

To cluster geographic regions that have similar time series, we note that these regions should also have similar annual
incidences. So, in the first stage of the identification procedure, we modify the quasi-likelihood (QL) scan statistic by Lin
et al5 for the dengue data to find geographic clusters that are in proximity and have similar elevated (annual) disease
rates. Then, proceeding from the geographic clusters identified by the spatial scan statistic, in the second stage we use
a combination procedure based on a chi-squared test for comparison of temporal risks to regroup the clusters. Instead
of considering candidate clusters with sizes up to the same order of the sampling regions, the proposed identification
procedure uses a concept similar to local regression with restriction for sizes of candidate clusters in the first stage. By
knitting the identified geographic clusters into temporal-heterogeneity (TH) clusters with suitable selection procedures
in the second stage, the proposed method can sense regions that are distant from each other but have similar temporal
trends. For convenience, we refer to the proposed method as a TH scan statistic.

When an infectious disease can be transmitted by persons in transportation, identification of nonproximate geographic
clusters that share temporal similarity would provide useful information to track multiple routes of propagation that
come from a common source, for example, as shown in the data analysis of Section 5. However, traditional scan statistics
are mainly designed to cluster contiguous regions with similar mean infection rates.6 On the other hand, although some
classification methods, such as the k-means method, can be used to group nonproximate spatial-temporal units with
similar event rates, there is no guarantee that temporal patterns can be observed from the grouped units since the k-means
method does not supervise the known spatial structure. Additionally, the above method generally does not take correlation
between observations into account. The TH scan statistic, on the other hand, can bridge clustering and classification
methods. For example, in the first stage of the identification procedure, our method bears a similarity to the traditional
clustering approaches by using the spatial scan statistic to identify clusters with contiguous regions. And, in the second
stage of the TH scan statistic, we merge geographic clusters that may not be in proximity but have the same temporal
patterns into TH clusters, which results in an identification result similar to the classification method. The TH scan
statistic can thus not only identify geographic clusters in arbitrary shapes but also summarize temporal waves of outbreaks
over the whole time period.

The remainder of this article is organized as follows. In Section 2, we establish cluster models and QL estimation
methods for the proposed models. In Section 3, the QL function is adapted to develop a spatial scan statistic for geographic
clusters, and then a chi-squared test is built to regroup geographic clusters. A simulation study is conducted to compare
the TH scan statistic with other existing approaches in Section 4. Data analysis and discussion are given in Sections 5
and 6, respectively.

2 CLUSTER MODELS AND ESTIMATES

2.1 Model settings

Assume that we have a spatial-temporal data set with n geographic regions and T time periods. Let (si, t), i = 1,… ,n; t =
1,… ,T, denote a spatial-temporal coordinate for region i at time t, where si denotes a geographic location for the centroid
of region i. Let NT = nT denote the total number of spatial-temporal observations. Also, let Oi,t and Ni,t denote numbers of
observed cases and people at risk, respectively, in region si at time t. Assume that Oi,t is affected by a spatial-temporal noise
𝜖i,t from a zero-mean Gaussian random field with variance 𝜎2 and correlation 𝜌i,t;j,t′ for 𝜖i,t and 𝜖j,t′ . With consideration
of regional noises, we are interested to know whether TH clusters for elevated infection rates exist. Let H denote a null
hypothesis that the observations do not have a geographic cluster (but could have spatial-temporal correlation). Under
H, an expected number of cases Ei,t in region si at time t is given by Ei,t = Ni,t

∑
j,t′ Oj,t′∕

∑
j,t′ Nj,t′ . A spatial-temporal

(standardized) incidence rate Yi,t is therefore given by Yi,t = Oi,t∕Ei,t.



148 LIN

We now fit a spatial-temporal cluster model for Yi,t. In this article, each TH cluster is assumed to have its own temporal
pattern, which is determined mainly by a risk coefficient within the given cluster in each time t. Let Ck, k = 1,… ,K,
denote disjoint TH clusters, and let 𝛿Ck (si) denote an indicator variable such that 𝛿Ck (si) = 1 if si ∈ Ck. Let 𝜉k,t denote a
log risk associated with cluster Ck at time t. Conditional on 𝜖i,t, Ck, and 𝜉k,t, an integrated model is given by

log(Yi,t|𝜖i,t,Ck, 𝜉k,t) = 𝜇0 +
K∑

k=1
𝜉k,t𝛿Ck (si) + 𝜖i,t, (1)

where 𝜇0 denotes an intercept parameter. Note that model (1) is different from a traditional generalized linear model
(GLM) since both 𝜉k,t and Ck are unknown. Thus, a traditional GLM method cannot be directly applied for estimation,
and therefore the concept of scan statistics is later used to address the related estimation problem in Section 2.2.

To find geographic clusters by scan statistics, we next develop a spatially marginal model associated with Ck from
(1). Let Oi,+ =

∑T
t=1Oi,t and Ei,+ =

∑T
t=1Ei,t denote sums of observed and expected cases, respectively, in region si over all

time periods. A spatial (standardized) incidence rate in region si can thus be defined as Yi,+ = Oi,+∕Ei,+. When Ni,t ≡ Ni
for all t ∈ T, the spatial incidence rate can be expressed as Yi,+ =

∑T
t=1Yi,t. Let 𝜉k,+ =

∑T
t=1𝜉k,t denote a yearly log-risk

associated with cluster Ck and let 𝜖s
i =

∑T
t=1𝜖i,t denote a spatial noise associated with region si. It then follows from (1)

that Yi,+ = bi,+ exp(𝜇s + 𝜖s
i ), where 𝜇s denotes an intercept and bi,+ = exp(

∑K
k=1𝜉k,+𝛿Ck (si)), as derivation can be seen in the

Appendix. So, conditional on Ck and 𝜖s
i , we can model Yi,+ by

log(Yi,+|Ck, 𝜉i,+, 𝜖
s
i ) = 𝜇s +

K∑
k=1

𝜉k,+𝛿Ck (si) + 𝜖s
i , (2)

where 𝜖s
i is from a Gaussian process with mean zero, variance 𝜎2

s , and correlation 𝜌S
i,j for 𝜖s

i and 𝜖s
j .

Finally, we set a covariance structure for the responses by assuming that 𝜌i,t;j,t′ is spatial-temporally separable. That is,
𝜌i,t;j,t′ = 𝜌S

i,j(h)𝜌
T
t,t′ (l), where 𝜌S

i,j(h) and 𝜌T
t,t′ (l) denote the spatial and temporal correlations, respectively, with a Euclidean

distance h = ||si − sj|| between si and sj and a time lag l = |t − t′| between t and t′. Also, let o(⋅) denote a little o function.
We make the following assumptions for the dependence structure.

Assumption 1. (a) 𝜌S
i,j(h) is a positive-definite correlation function satisfying 𝜌S

i,j(h) = o(h) as h → ∞. (b) The temporal
correlation 𝜌T

t,t′ (l) decays exponentially in lag |t − t′|.
We note that in model (1), 𝜉k,t is associated with time t, and therefore the temporal structure of Yi,t within a TH cluster

is almost included in (𝜉k,1,… , 𝜉k,T)′. Thus, it is reasonable to assume that the temporal correlation of 𝜖i,t is negligible in
the sense that

∑∑
t≠t′ 𝜌

T
t,t′ = o(T) as T → ∞, as described in Assumption 1(b). It then follows from the definition of 𝜖s

i
that cov(𝜖s

i , 𝜖
s
j ) =

∑T
t=1cov(𝜖i,t, 𝜖j,t) +

∑∑
t≠t′ cov(𝜖i,t, 𝜖j,t′ ) ≈ T𝜎2𝜌S

i,j. This implies that corr(𝜖s
i , 𝜖

s
j ) = corr(𝜖i,t, 𝜖j,t) = 𝜌S

i,j and
var(𝜖s

i )(≡𝜎2
s ) = T𝜎2. This relationship will be used to connect spatial and spatial-temporal variations in later sections.

2.2 QL estimating equations for scan statistics

For estimation of unknown parameters, we rely on QL estimating equations, which involve first-order and second-order
moments. To develop a spatial estimating equation for model (2), let 𝜃i,+ = E(Yi,+) denote the corresponding marginal
mean. By moment generating functions for a normal distribution, we can get 𝜃i,+ = exp

{
0.5𝜎2

s + 𝜇s +
∑K

k=1𝜉k,+𝛿Ck (si)
}

and cov(Yi,+,Yj,+) = 𝜃i,+𝜃j,+{exp(𝜎2
s 𝜌

S
i,j) − 1}. Let 𝚺s denote an n × n matrix with the (i, j) element to be

(𝚺s)i,j = exp
(
𝜎2

s 𝜌
S
i,j

)
− 1. (3)

Let Ys = (Y1,+,… ,Yn,+)′, let 𝜽s = E(Ys) ≡ (𝜃1,+,… , 𝜃n,+)′, and let 𝚯s = diag(𝜽s) denote a diagonal matrix formed by 𝜽s.
The covariance matrix of Ys can then be expressed as Vs = 𝚯s𝚺s𝚯s. Let Ds = 𝜕𝜽s∕𝜕(𝜇s, 𝜉1,+,… , 𝜉K,+) denote a derivative
matrix of 𝜽s with respect to (𝜇s, 𝜉1,+,… , 𝜉K,+). The QL estimating equation for the spatial model (2) is given by

D′
sV−1

s (Ys − 𝜽s)||(𝜇s=�̂�s,𝜉1,+=𝜉1,+,…,𝜉K,+=𝜉K,+)
= 0, (4)
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where V−1
s denotes an inverse matrix of Vs. We refer to (4) as the spatial estimating equation, and to the estimates �̂�s and

𝜉k,+ as the QL estimates for 𝜇s and 𝜉k,+, k = 1,… ,K, respectively. It is easy to see that the derivative matrix of Vs with
respect to 𝜽s is symmetric, and therefore the QL estimating equation has a unique root in this setting.7

Similarly, we develop a spatial-temporal estimating equation for model (1). Let Yt = (Y1,t,… ,Yn,t)′ denote the tempo-
rally marginal data and let Y = (Y′

1,… ,Y′
T)′ denote the ST data. Also, let 𝜃i,t = E(Yi,t). Then, it follows from the moment

generating function that 𝜃i,t = exp{𝜇0 +
∑K

k=1𝜉k,t𝛿Ck (si) + 0.5𝜎2}. Let𝜽t = (𝜃1,t,… , 𝜃n,t)′ and𝜽 = (𝜽′
1,… ,𝜽′

T)′. Let𝚺denote
an n × n matrix with the (i, j) element to be (𝚺)i,j = exp(𝜎2

s 𝜌
S
i,j∕T) − 1. By Assumption 1, the covariance matrix of Y can be

approximated by

V = 𝚯(IT ⊗ 𝚺)𝚯, (5)

where 𝚯 = diag(𝜽), IT is an identity matrix of size T, and ⊗ denotes a Kronecker product. Let 𝝃k = (𝜉k,1,… , 𝜉k,T)′ denote
the time series in cluster Ck, and let 𝝃 = {𝝃′1,… , 𝝃′K}′. Also, let D = 𝜕𝜽∕𝜕(𝜇0, 𝝃) denote a derivative matrix of 𝜽with respect
to 𝝃. The spatial-temporal estimating equation,

D′V−1(Y − 𝜽)||(𝜇0,𝝃)=(�̂�0,�̂�)
= 0, (6)

is then used to estimate the parameters (𝜇0, 𝝃), where V−1 denotes an inverse matrix of V. We refer to �̂�0 and �̂� as the QL
estimates for 𝜇0 and 𝝃, respectively.

In practice, locations of the true clusters are usually unknown; therefore, the scan statistic is commonly used to identify
the clusters. Let Λm denote a candidate geographic cluster, and let 𝚲 = {Λm ∶ m = 1,… ,Mn} denote a collection of the
candidate geographic clusters, where Mn denotes the total number of candidate clusters. Let |A| denote a cardinality for
set A. To ensure asymptotic properties for the QL estimating equation on Λm, the size of each candidate cluster should be
restricted.5 We make an assumption for the size of Λm.

Assumption 2. For each candidate cluster Λm, m = 1,… ,Mn, we require |Λm| ≤ Mn1∕2 for some M > 0.

The idea of Assumption 2 for the spatial scan statistic is similar to the concept of local regression. In spatial epi-
demiology, identification of localized clusters is important for exploration of disease transmission. However, in some
areas with uneven terrains, close regions may still have different disease transmission patterns. For this reason, restric-
tion for the sizes of candidate clusters with local models may not only be useful to obtain statistical inference for the
proposed scan statistic, but also provide ability to detect regions that have abrupt changes in disease rates. Thus, by
applying the concept of local regressions in the identification process, the proposed scan statistic could more accu-
rately identify temporal trends by piecewisely regrouping clusters with suitable criteria. In Section 3.2, we propose a
test statistic to combine geographic clusters with similar patterns into a larger cluster. On the other hand, although the
size of candidate clusters is limited, the scan statistic used in this article can allow the candidate clusters to be arbitrary
shapes.

By Assumptions 1 and 2, it is reasonable to assume that n−1D′
sV−1

s Ds converges to a positive-definite matrix 𝚼0
s as

n → ∞. Let �̃�0
s denote 𝚼0

s evaluated at the estimated parameters. Thus, under suitable conditions, we have

n1∕2(�̂�s − 𝜇s, 𝜉1,+ − 𝜉1,+,… , 𝜉K,+ − 𝜉K,+
)′

→ N
{

0,
(
�̃�0

s

)−1}
, (7)

in distribution as n → ∞, where (�̃�0
s )−1 denotes an inverse matrix of �̃�0

s . Similarly, we can assume that n−1D′V−1D con-
verges to a positive-definite matrix as n → ∞. Under Assumption 2 and suitable conditions, we have asymptotic properties
for the spatial-temporal estimating Equation (6). Details can be seen in the Appendix.

3 IDENTIFICATION FOR TH CLUSTERS

3.1 Scan statistics for geographic clusters

To identify local spatial clusters associated with Ys, we first use an independent scan statistic to search a collection of
single clusters. Given the single cluster Λm, we fit a regression model for Yi,+ by
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log
(

Yi,+|Λm, 𝜖
s
i
)
= 𝜇m + 𝜉m𝛿Λm (si) + 𝜖s

i . (8)

Under an independence assumption (ie, 𝜌S
i,j = 0), we estimate 𝜇m and 𝜉m for model (8) by the QL estimating

Equation (4), m = 1,… ,Mn. Since we have Mn estimated cluster coefficients to be evaluated under the null hypothe-
sis H, the Benjamini-Hochberg procedure8 is used to control a false discovery rate (FDR) at level 𝛼. However, after the
Benjamini-Hochberg procedure, some of the initial estimated clusters could have overlapping regions, which would cause
some problems in statistical inference for a multiple-cluster model. To address this issue, a partition procedure for the
initial estimated clusters is proposed to make these clusters disjoint. Details of the Benjamini-Hochberg and partition
procedures can be seen in Section 5.2.

Let I1,… , IK0 denote the estimated clusters by the independent scan statistic after the partition procedure. We then
evaluate whether the independence assumption is suitable. Based on I1,… , IK0 , a multiple-cluster model for spatial
data is given by log

(
Yi,+|I1,… , IK0

)
= 𝜇s +

∑K0
k=1𝜉k,+𝛿Ik (si) + 𝜖s

i . The estimating equation (4) under the independence
assumption is used again to obtain estimates (�̃�s, 𝜉1,+,… , 𝜉K0,+) for (𝜇s, 𝜉1,+,… , 𝜉K0,+). Residuals can then be computed by

𝜖s
i = Yi,+ − exp

{
�̃�s +

∑K0
k=1𝜉k,+𝛿Ik (si)

}
. For spatially correlated data, a variogram, 𝛾(h) = var(𝜖s

i − 𝜖s
j ), is commonly used

to measure spatial dependence. Under suitable conditions, 𝛾(h) can be estimated by an empirical variogram �̂�(h) =∑
(si,sj)∈N(h)

(
𝜖s

i − 𝜖s
j

)
2∕|N(h)|, where N(h) denotes a collection of pairs (si, sj) with distance h apart. We obtain estimates

(�̂�s, �̂�
S
i,j) for (𝜎s, 𝜌

S
i,j) by a weighted least squares estimation9

(
�̂�s, �̂�

S
i,j

)
= arg min𝜎,𝜌s

i,j

∑
h
|N(h)|{1 − �̂�(h)

𝛾(h; 𝜎s, 𝜌
S
i,j)

}2

, (9)

where 𝛾(h; 𝜎s, 𝜌
S
i,j) denotes a specific variogram model. In (9), the used weights are the numbers of pairs N(h).

If �̂�S
i,j is not significantly away from zero, then I1,… , IK0 are the estimated clusters for the spatial data Ys, and the

identification procedure jumps to the combination procedure shown in Section 3.2. When the correlation estimate �̂�S
i,j

from (9) is significantly away from zero, it provides evidence for the existence of spatial correlation. In this situation, a
spatial scan statistic by adding empirical estimates �̂�s and �̂�i,j into the estimating equation is developed below to calibrate
estimated clusters from the independent scan statistic. Specifically, let 𝜃∗i,+ = exp

{
0.5�̂�2

s + 𝜇s +
∑K0

k=1𝜉k,+𝛿Ik (si)
}

and 𝜽s =(
𝜃∗1,+,… , 𝜃∗n,+

)′
. We then use the estimating equation (4) to estimate (𝜇s, 𝜉1,+,… , 𝜉K0,+). However, in practice, the true

covariance parameters in Vs are usually unknown. We therefore implement the estimates �̂�s and �̂�S
i,j from (9) into 𝜎s and

𝜌S
i,j, respectively, for 𝚺s of (3). Let �̂�s denote the estimate of 𝚺s from the variogram method, and let V̂s = 𝚯s�̂�s𝚯s. The

spatial estimating equation for the multiple-cluster model associated with I1,… , IK0 now becomes D′
sV̂

−1
s (Ys − 𝜽s) = 0,

where V̂−1
s is an inverse matrix of V̂s.

Let (�̂�s, 𝜉1,+,… , 𝜉K0,+) denote the corresponding QL estimates for (𝜇s, 𝜉1,+,… , 𝜉K0,+). By the limiting distribution (7),
we can obtain the P-values of 𝜉k. The significance of each estimated cluster Ik, k = 1,… ,K0, is evaluated again by the
corresponding P-value. For those estimated clusters with nonsignificant P-values, we remove them from the collection of
estimated clusters. Let G1,… ,GK1 , K1 ≤ K0, denote the significant identified clusters by the spatial scan statistic.

3.2 A combination procedure for geographic clusters

To regroup geographic clusters G1,… ,GK1 such that temporal patterns are different between TH clusters but similar
within the clusters, we first estimate the temporal pattern in each geographic cluster Gk, k = 1,… ,K1. For the given
cluster Gk, a spatial-temporal model from (1) for the marginal mean is given as

𝜃
(k)
i,t = exp

{
0.5𝜎2 + 𝜇0 + 𝜉k,t𝛿Gk (si)

}
, (10)

where 𝜉k,t denotes a cluster coefficient associated with Gk at time t. Note that in (10), the intercept parameter 𝜇0 is set
to be the same for all k, k = 1,… ,K1, so that the temporal patterns can be compared under the same baseline. The
spatial-temporal estimating equation (6) is then applied to estimate the parameters 𝝃k = (𝜉k,1,… , 𝜉k,T)′. Since the true
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covariance matrix V of (5) is unknown, we use V̂ = 𝚯(IT ⊗ �̂�)𝚯 to replace V in the spatial-temporal estimating equation,
where �̂� is the estimate of 𝚺 with 𝜎2

s and 𝜌S
i,j being estimated by the variogram method. Let �̂�k = (𝜉k,1,… , 𝜉k,T)′ denote the

estimated temporal pattern by the QL estimating equation for 𝝃k, k = 1,… ,K1.
Based on the estimated temporal patterns, we now propose a chi-squared test to evaluate whether two geographic

clusters Gk and Gk′ (that may not be adjacent) should be combined. Let 𝜽(k) =
(
𝜃
(k)
1,1,… , 𝜃

(k)
n,1,… , 𝜃

(k)
1,T ,… , 𝜃

(k)
n,T

)′
and 𝜽(k′) =(

𝜃
(k′)
1,1 ,… , 𝜃

(k′)
n,1 ,… , 𝜃

(k′)
1,T ,… , 𝜃

(k′)
n,T

)′
. Let D𝜉k = 𝜕𝜽(k)∕𝜕𝝃k and D𝜉k′ = 𝜕𝜽(k′)∕𝜕𝝃k′ denote derivative matrices of 𝜽(k) and 𝜽(k′)

with respect to 𝝃k and 𝝃k′ , respectively. By Assumptions 1 and 2, it is reasonable to assume that n−1D′
𝜉k

V−1D𝜉k → 𝚼𝜉k as
n → ∞. The chi-squared test statistic,

Uk,k′ = n
(
�̂�k − �̂�k′

)′(�̂�−1
𝜉k + �̂�−1

𝜉k′

)−1 (
�̂�k − �̂�k′

)
, (11)

is proposed to evaluate temporal heterogeneity between the two geographic clusters Gk and Gk′ , where �̂�𝜉k denotes 𝚼𝜉k

evaluated at the estimated parameters. When the two geographic clusters Gk and Gk′ have the same temporal pattern, Uk,k′

follows a chi-square distribution with degrees of freedom T. Thus, Gk and Gk′ are combined if Uk,k′ ≤ 𝜒2
T,1−𝛼 , where 𝜒2

T,1−𝛼
denotes a 100(1 − 𝛼)-percentile of the chi-squared distribution with degrees of freedom T. In the data analysis, we present
a regrouping procedure based on a forward selection procedure associated with the chi-squared statistic Uk,k′ . Details can
be seen in Section 5.3. Note that this procedure can also be applied to further partition larger clusters into smaller ones.

Let C1,… ,CK denote the final TH cluster from the regrouping procedure. For the spatial-temporal model (1) asso-
ciated with C1,… ,CK , we apply the spatial-temporal estimating Equation (6) again to estimate 𝝃k = (𝜉k,1,… , 𝜉k,T)′
for k = 1,… ,K. The expected standardized incidence rate can thus be estimated from the TH cluster model by �̂�i,t =
exp

{
�̂�0 +

∑K
k=1𝜉k,t𝛿Ck (si)

}
. The whole identification procedure shown in Section 3 is therefore called the TH scan statistic

method.

4 SIMULATION

In this section, we conduct a simulation study by using the geographic structure of Kaohsiung City, which consists of 891
villages. The purpose of the simulation study is to evaluate whether the proposed method can cluster hot-spot villages
whose temporal patterns of elevated incidence rates are the same. Let Ω denote a collection of the 891 villages, and let
si ∈ Ω denote the administrative centroid for the ith village. Since Kaohsiung is partitioned by rivers and hills, using
nearest neighbors to construct candidate clusters would probably be better than traditional distance methods. We thus
use the concept of nearest neighbors to define candidate clusters. Specifically, for a given village si, we define its lth-order
neighbors B(l)

i to be a collection of villages that share a common border with B(l−1)
i , l = 1, 2,…, with B(0)

i ≡ {si}. Similar to
the procedure used in Section 5, candidate clusters associated with the centroid si are unions of its neighbors up to the
third order. That is, the candidate clusters associated with si are given by

{
∪L

l=0B(l)
i ,L = 0,… , 3

}
. More details on how to

choose centroids to make candidate clusters can be seen in the data analysis of Section 5. In total, there are 855 candidate
clusters. Besides using the TH scan statistic, we also employ the SaTScan method with two different settings to analyze
the simulated data for comparisons.

In the simulation study, we consider two scenarios. The first mainly follows the dengue data analysis result shown
in Section 5. Five geographic clusters identified by the spatial scan statistic in the data analysis, G1,… ,G5, are cho-
sen as hot-spot regions. Figure 1A shows the locations of G1,… ,G5 on a map of downtown Kaohsiung with |G1| = 34,|G2| = 21, |G3| = 10, |G4| = 23, and |G5| = 23. (Downtown Kaohsiung consists of 528 villages with most dengue cases
happening there.) Four of the five geographic clusters, G2,… ,G5, are set to have the same temporal pattern, while geo-
graphic cluster G1 has its own temporal pattern (Figure 1B). Let C1 ≡ G1 and C2 ≡ G2 ∪ · · · ∪ G5 denote the TH clusters.
The total numbers of villages in C1 and C2 are 34 and 77, respectively. As can be seen in Figure 1B, some villages in
the TH cluster C2 are in proximity, but others are not contiguous. Also, some villages (cluster G5) in the TH cluster
C2 are next to the TH cluster C1, while clusters G5 and C1 have similar annual incidence rates but different tempo-
ral patterns. These characteristics may make traditional scan statistics difficult to accurately identify the TH clusters
C1 and C2.

In the second simulation scenario, we choose two proximate geographic clusters G1 ≡ C1 and G5 (representing
C2) with various sizes a|G1| and a|G5|, a = 0.5 or 1. The temporal patterns set in G1 and G5 are also the same as
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F I G U R E 1 In the dengue data analysis, locations of the estimated clusters by the (A) spatial scan statistic and (B) regrouping
procedure for temporal heterogeneity

those set in the first simulation scenario. Note that the geographic clusters G1 and G5 belong to the TH clusters C1
and C2, respectively, and therefore the temporal patterns in G1 and G5 are different. Figure A1 in the Supplemen-
tary Material depicts locations of the half-size geographic clusters, say, 0.5G1 and 0.5G2. We use the second simulation
scenario to evaluate finite sample properties for the TH scan statistic. To simulate responses for both scenarios, we
first generate a spatial-temporal noise 𝜖i,t from a Gaussian random field with mean zero, variance 𝜎2 = 0.01, 0.02, or
0.05, and correlation corr(𝜖i,t, 𝜖j,t′ ) = 𝜌S

i,j(h)𝜌
T
t,t′ (l). In the simulation, the spatial correlation function is set to be 𝜌S

i,j(h) =
0.55 − 0.83(h∕1.23) + 0.28(h∕1.23)3, which is the same as that given in (13) from the data analysis. Also, due to sea-
sonal dengue infection in Taiwan, we set 𝜌T

t,t′ (l) = 𝜅|t−t′| if t and t′ are both in the interval [30, 51], and 0, otherwise.
In the simulation setting, we consider 𝜅 = 0, 0.1, or 0.3. Let 𝜖r

i,t denote the simulated spatial-temporal noise for the
rth simulation run, r = 1,… ,R, where R denotes a total number of simulation runs. Given 𝜖r

i,t, a temporal pattern of
responses for village si, i = 1,… , 894, is simulated by Y r

i,t = exp{−0.077 + 𝜉1,t𝛿C1(si) + 𝜉2,t𝛿C2(si) + 𝜖r
i,t}, t = 1,… , 52, where

𝛿Ck (si) denotes an indicator variable for whether si is in Ck, and values of 𝜉k,t, k = 1, 2, are the same as those given in
model (16). (Figure 2B also depicts 𝜉k,t, k = 1, 2, t = 1,… , 52.) In the simulation, we simulate R = 200 replicates for each
setting.

In applying the TH scan statistic for the simulated data, we conduct an identification procedure similar to the one
used for the data analysis of Section 5. Recall that the collection of candidate clusters used for the TH scan statistic is the
same as that in the data analysis (Section 5.1), which has 855 candidate clusters. The level of significance for the FDR is
controlled at 𝛼 = 0.05. In use of the SaTScan software, the first setting for SaTScan, say LR1, is to use the default setting,
which means each candidate cluster including up to 50% of the population. On the other hand, in the second setting for
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identified clusters (clusters C1 and C2) and whole study area (Kaohsiung City). (B) Estimated incidence rates by the spatial-temporal
estimating equation in the identified clusters
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T A B L E 1 The average number of regions in the true cluster
Ck, k = 1, 2, that are classified into Ĉk′ , k′ = 1, 2, 3, by the TH scan
statistic and two SaTScan methods (LR1 and LR2) for 𝜎2 = 0.01 and
temporal correlation 𝜅 = 0

C1 C2 C

|C1| = 34 |C2| = 77 |C| = 780

TH Ĉ1 30.0 0.0 0.0

Ĉ2 4.0 73.8 4.7

Ĉ3 0.0 3.2 4.5

LR1 Ĉ1 34.0 74.7 167.5

Ĉ2 – – –

Ĉ3 – – –

LR2 Ĉ1 29.0 22.0 26.0

Ĉ2 0.0 44.0 35.0

Ĉ3 5.0 1.0 65.0

Note: Ĉ3 denotes a union of clusters other than Ĉ1 and Ĉ2, and C = Ω − C1 − C2

denotes regions that are not in the true clusters. The simulation result is based on
200 replicates.

SaTScan, say LR2, the radius of each candidate cluster is restricted to a maximum value of 2.5 km, which is twice the
range of the estimated spherical correlation function shown in model (13). For each scan statistic method, we use Ĉk to
denote the estimated cluster that has the greatest number of overlapping regions with Ck, k = 1, 2. Additionally, we use
Ĉ3 to denote a union of estimated clusters other than Ĉ1 and Ĉ2. For convenience, we also use Ĉr

k, k = 1, 2, 3, to denote
the corresponding Ĉk in the rth simulation, r = 1,… ,R.

In the first simulation scenario, the TH scan statistic has very close identification results in all the simulation settings
(𝜎 = 0.01, 0.02, 0.05, and temporal correlation 𝜅 = 0, 0.1, 0.3). Also, the LR1 and LR2 scan statistics also present similar
identification results in all the simulation settings. The simulation results may thus indicate that the proposed method is
quite robust when the sample size and correlation satisfy certain conditions, as we discuss further in Section 6. Therefore,
in the main context, we present only the simulation result for 𝜎 = 0.01 and 𝜅 = 0, while the other identification results
are shown in the Supplementary Material. Table 1 lists average numbers of villages in Ck, k = 1, 2, which are classified
into Ĉk′ , k′ = 1, 2, 3, by each scan statistic. That is, in Table 1, we compute

∑200
r=1|Ĉr

k′ ∩ Ck|∕200 for each k = 1, 2, and
k′ = 1, 2, 3. We also use Figure 3 to show the location of Ĉk identified by each scan statistic in part of the Kaohsiung map.
(The identified clusters are very similar in all simulation runs.) For each Ĉk, let 𝝃k = (𝜉k,1,… , 𝜉k,52)′ denote an average
temporal pattern over the simulation runs, where 𝜉k,t =

∑200
r=1

∑
si∈Ĉr

k
Y r

i,t∕(200|Ĉk|), k = 1, 2, 3. We use 𝝃k as an estimated
temporal pattern for cluster Ĉk. Figure 4 depicts the estimated temporal pattern for each identified cluster by each scan
statistic.

To ensure no ambiguity, in the following discussion, we also use ĈTH
k , ĈLR1

k , and ĈLR2
k to denote the identified

clusters Ĉk, k = 1, 2, 3, by the TH, LR1, and LR2 scan statistics, respectively. First, for the LR1 scan statistic, Table 1
shows that it identifies only one big cluster, ĈLR1

1 , which includes all the villages of C1, 97% of the villages in C2,
and many villages not in the true clusters. Note that the number of villages in ĈLR1

1 that do not belong to any true
clusters is about 168. Figure 4B maps the identified cluster by the LR1 scan statistic, indicating that about 61% of
the villages in ĈLR1

1 are not in any true clusters. Also, we find from Figure 3B that only one peak in the estimated
temporal pattern has been identified by the LR1 scan statistic, while the true simulation setting has two waves of out-
breaks (Figure 2B). Since ĈLR1

1 is mixed with almost all villages of C1 and C2, it is hard to compare the LR1 scan
statistic with the other scan statistics. So, only the TH and LR2 scan statistics will be evaluated next for identification
performance.

We use two criteria, the true positive rate (TPR) and precision, to compare the identification performance of Ĉk
for Ck, k = 1, 2, between the TH and LR2 scan statistics. Specifically, for Ĉk, we define the TPR 𝜙ck and precision
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F I G U R E 4 In the simulation, average temporal patterns within the identified clusters by the (A) TH scan statistic, (B) LR1 scan
statistic, and (C) LR2 scan statistic

𝜓ck by

𝜙ck = |Ĉk ∩ Ck|∕|Ck| and 𝜓ck = |Ĉk ∩ Ck|∕|Ĉk|, (12)

k = 1, 2, respectively. We also use 𝜙T
ck

and 𝜙L
ck

to denote the corresponding value 𝜙ck by the TH and LR2 scan statis-
tics, respectively, and likewise 𝜓T

ck
and 𝜓L

ck
for 𝜓ck . For the identification results of C1, Table 1 shows that the TPRs

of Ĉ1 by the TH and LR2 scan statistics are 𝜙T
c1
= 0.88 and 𝜙L

c1
= 0.85, respectively. A t-test then shows no significant

difference in the TPR of Ĉ1 between both scan statistics. Nevertheless, for the precision of Ĉ1, Table 1 gives 𝜓T
c1
= 1.0

and 𝜓L
c1
= 0.38 for the TH and LR2 scan statistics, respectively. By using the t-test to evaluate the difference between

the precisions of Ĉ1, we find that the TH scan statistic performs significantly better than the LR2 scan statistic (P-value
.
= 0) in the simulation. As can be seen from Figure 2C, the LR2 scan statistic is also unable to identify two outbreaks
of epidemics in C1, while Figure 3A indicates that the TH scan statistic can accurately predict the true temporal
pattern in C1.

For the identification result of C2, Table 1 shows that for the TH and LR2 scan statistics, the respective TPRs are
𝜙T

c2
= 0.96 and 𝜙L

c2
= 0.57, and the respective precisions are 𝜓T

c2
= 0.89 and 𝜓L

c2
= 0.56. These values indicate that, in

the simulation for C2, the TH scan statistic has significantly better performance than the LR2 scan statistic in the TPR
(P-value

.
= 0) and precision (P-value

.
= 0). To see the reason, we note from Figure 4C that the geographic cluster G5, which
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belongs to C2 but is next to C1, is misclassified into the circular cluster ĈLR2
1 by the LR2 scan statistic, while Figure 4A

depicts that the TH scan statistic can identify almost all villages in C1 and C2 into ĈTH
1 and ĈTH

2 , respectively. Addi-
tionally, in the simulation result for C2, Figure 4C also shows the LR2 scan statistic groups the geographic clusters G2
to G5 and some villages not in the true cluster into a “big” circular cluster ĈLR2

2 . These results may reveal that the LR
scan statistic has a tendency to overestimate cluster regions in circular shapes, while the TH scan statistic could iden-
tify localized clusters more precisely. So, by the simulation study, we learn that, under suitable conditions for cluster
sizes, the TH scan statistic could be more flexible than the LR scan statistics in detecting TH clusters with arbitrary
shapes.

In our study of how cluster size could affect scan statistics, from the second simulation scenario, we find that
when a = 1, simulation results are close to those in the first simulation scenario. That is, the TH scan statistic can still
identify C1(≡G1) and C2(≡G5) very well when a = 1. However, when a = 0.5, the TH scan statistic could fail to iden-
tify 0.5G1 and 0.5G2 as two different TH clusters. Specifically, the TH scan statistic would combine regions in 0.5G1
and 0.5G5 together as an estimated cluster. This simulation result may thus indicate that, for two different TH clus-
ters in proximity, each cluster should contain at least a number of n1∕2 geographic units so that the TH scan statistic
can work well. Note that n1 = |G1| = 34 and n5 = |G5| = 23, which are close to the value of n1∕2. For the SatScan
method, both the LR1 and LR2 scan statistics fail to classify C1 and C2 separately in the second simulation scenario.
That is, the LR1 and LR2 scan statistics identify only one big cluster in all the settings of the second simulation sce-
nario. Finally, for the TH scan statistic, we also conduct another simulation study by using a collection of candidate
clusters that include all villages as centroids. Corresponding simulation results are very similar to those shown in
Table 1.

5 ANALYSIS FOR DENGUE DATA

5.1 Background

To illustrate the TH scan statistic, we use the 2014 Kaohsiung data collected by the Taiwan Centers for Disease Con-
trol (https://od.cdc.gov.tw/eic/DengueDailyEN.csv) to analyze the propagation pattern of the dengue infection. The
Kaohsiung city consists of 891 villages with a total of 2,778,992 persons. In 2014, Kaohsiung experienced one of its largest
dengue outbreaks with 15,043 confirmed cases and 20 deaths. Let Ni denote the number of population at risk in village
si, i = 1,… , 891. Under the null hypothesis H, the expected number of dengue cases in village si at week t, t = 1,… , 52,
can be expressed by Ei,t = 𝜏Ni, where 𝜏 = 0.0001 denotes the average weekly infection rate. Let Oi,t denote the (weekly)
number of cases in village si at week t. The spatial-temporal incidence rate (or, weekly incidence rate in si) for the dengue
infection in village si at week t is thus given by Yi,t = Oi,t∕Ei,t. Also, let Oi,+ =

∑52
t=1Oi,t denote the (yearly) number of

dengue cases in village si. We then define the spatial incidence rate (or, yearly incidence rate at si) of the dengue infection
in village si by Yi,+ = Oi,+∕(52Ei,t).

As have been explained in Section 4, we use the nearest neighborhood structure to define candidate clusters because of
the geographic surface in Kaohsiung. To construct candidate clusters for the QL scan statistic, we first make two remarks
for characteristics of the dengue data. First, in the Kaohsiung data, most dengue cases (87%) happened in downtown
Kaohsiung (with 528 villages), while other dengue cases seemed to randomly scatter in remote villages. Figure 5 shows an
image map for spatial incidence rates of the dengue infection in downtown Kaohsiung. So, candidate clusters are set only
in downtown Kaohsiung. Second, in the dengue data, we find that some villages si had yearly incidence rates Yi,+ lower
than the expected value (ie, Yi,+ < 1), but Yi,t > 1 for some t ∈ T. This phenomenon is probably due to dengue-control
intervention that was immediately undertaken after dengue cases were found in these villages. To explore how the epi-
demics “naturally” propagated, the village with Yi,+ less than the expected value would not be considered as a “center”
of candidate clusters. (Nevertheless, these villages with Yi,+ < 1 could still be included in some candidate clusters if their
neighbors had yearly incidence rates greater than one.) Finally, recall that in Assumption 2, the number of villages in
each candidate cluster should be restricted. A candidate cluster with a center at si is thus limited to include villages up to
B(0)

i ∪ B(1)
i ∪ B(2)

i . Let Ω+ = {si′ ∶ Yi′,+ > 1} denote a set of villages with Yi′,+ greater than one. The collection of candidate
clusters is thus given by 𝚲 = {B(0)

i′ ,B(0)
i′ ∪ B(1)

i′ ,B(0)
i′ ∪ B(1)

i′ ∪ B(2)
i′ ∶ si′ ∈ Ω+}. The number of villages in the largest cluster

among 𝚲 is 41, which is just little higher than n1∕2 ≈ 30. In total, 855 candidate clusters are used in the data analysis. For
convenience, we use Λm ∈ 𝚲, m = 1,… , 855, to denote a given candidate cluster.

https://od.cdc.gov.tw/eic/DengueDailyEN.csv
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F I G U R E 5 A heat map for the spatial incidence rates of the dengue infection in downtown Kaohsiung in 2014
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5.2 Cluster identification for spatial data

For the candidate clusters in 𝚲, we first use the independent scan statistic to find localized clusters. In the first step
of the independent scan statistic, we test significance for each single cluster Λm ∈ 𝚲. Given Λm, we fit a scan model
by Yi,+ = exp{𝜇s + 𝜉m𝛿Λm(si) + 𝜖s

i }, and then estimate parameters 𝜇s and 𝜉m by the estimating Equation (4) under the
independence assumption. We thus have 855 estimated cluster coefficients 𝜉1,… , 𝜉855. To address the multiple-testing
issue, we use the BH procedure to control the FDR at 𝛼 = 0.05. Specifically, let p̂m denote a P-value associated with 𝜉m,
and let p̂(m) denote the mth order statistic for {p̂1,… , p̂855}. (That is, p̂(1) ≤ · · · ≤ p̂(855).) Also, let Λ(m) denote the cluster
associated with p̂(m). The BH procedure will select a candidate cluster Λ(m) as an estimated cluster if p̂(m) ≤ 0.05m∕855. In
the data analysis, 22 single clusters, Λ(1),… ,Λ(22), are selected as (initial) estimated clusters after the BH procedure. The
total number of villages in {Λ(1),… ,Λ(22)} is 137.

However, some of Λ(1),… ,Λ(22) had overlapping regions, which would cause a collinearity problem in the mul-
tiple regression model. To avoid collinearity, we use a forward selection procedure to partition Λ(1),… ,Λ(22) into
disjoint clusters. Specifically, for J = 1,… , 22, we sequentially updated each initial estimated cluster by the following
criteria:

Algorithm 1. Partition procedure

(i) If
(

J
∪

j=1
Λ(j)

)c

∩ Λ(J+1) ≠ ∅, then Λ(J+1) is replaced by
(

J
∪

j=1
Λ(j)

)c

∩ Λ(J+1) and {Λ(1),… ,Λ(J)} remains the

same, or

(ii) if
(

J
∪

j=1
Λ(j)

)c

∩ Λ(J+1) = ∅ (that is, Λ(J+1) ⊆
J
∪

j=1
Λ(j)), then Λ(J+1) is removed.

After the partition procedure, we have 13 disjoint clusters, I1,… , I13. Note that the total number of villages in I1,… , I15
is still 137.

To investigate whether the independence assumption is suitable for the cluster model associated with I1,… , I13, we
fit a multiple regression model by log(Yi,+) = 𝜇s +

∑13
k=1𝜉k,+𝛿Ik (si) + 𝜖s

i , and obtained residuals 𝜖s
i under the independence

assumption. By applying the variogram method (9) for the residuals 𝜖i, we get an estimate for the spatial correlation
function by

�̂�S
i,j(h) = 0.55 − 0.83(h∕1.23) + 0.28(h∕1.23)3, (13)

where the value of 1.23 (km) denotes the range for the spherical correlation. Also, an estimate for the spatial variance is
given by �̂�2

s = 1.03.
A permutation test for the variogram estimates �̂�s and �̂�S

i,j ≡ �̂�S
i,j(h) suggests the existence of spatial correlation for the

cluster model. We hence implement �̂�s and �̂�S
i,j into the spatial estimating Equation (4) to reestimate parameters in the

multiple cluster model. The limiting distribution (7) is used to evaluate P-values for estimated parameters. We find that
only five geographic clusters are significant with associated P-values less than .05. Let G1,… ,G5 denote the resulting
estimated (geographic) clusters by the spatial scan statistic. The total number of villages in G1,… ,G5 is 111 with |G1| = 34,|G2| = 21, |G3| = 10, |G4| = 23, and |G5| = 23. Figure 1A shows the locations of the five geographic clusters, which include
most historic hot spots of the dengue infection.

5.3 Clusters for temporal heterogeneity

We next propose a combination procedure based on the test given in Section 3.2 to regroup the estimated clusters
G1,… ,G5 by their temporal heterogeneity. For each Gk, we fit a spatial-temporal model by

log(Yi,t) = −0.077 + 𝜉k,t𝛿Gk (si) + 𝜖i,t, (14)
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where 𝜖i,t follows a Gaussian process with mean 0, variance 𝜎2 = 0.02(≡�̂�2
s∕T), and the covariance structure given by

(5) with 𝜌S
i,j being implemented by �̂�S

i,j of (13). The value of −0.07 in (14) comes from a logarithm of an average of all
spatial-temporal responses. Since the dengue infection was seasonal in Taiwan in 2014 (Figure 2A), to reduce estimation
variation caused by the log-transformation of small disease rates, we directly set 𝜉k,t = 0 if

∑
i∈Gk

Yi,t < |Gk|. That is, we
set 𝜉k,t = 0 if log(Y k,t) < 0, where Y k,t =

∑
i∈Gk

Yi,t∕|Gk|.
Let 𝝃k = (𝜉k,1,… , 𝜉k,52)′ denote a vector of the log-spatial-temporal risks. We use the spatial-temporal estimating

Equation (6) to estimate 𝝃k for each cluster Gk. The test statistic Uk,k′ in (11) is then computed to measure heterogene-
ity between �̂�k and �̂�k′ . Let 𝜒2

52,0.95 denote a 95th percentile of the chi-squared distribution with 52 degrees of freedom.
If some values of Uk,k′ are less than 𝜒2

52,0.95, then the pair of geographic clusters Gk and Gk′ with the smallest value
of Uk,k′ will be combined. When Gk and Gk′ are evaluated to be combined as Gk′′ , we then update the correspond-
ing risk to 𝜉k′′,t = (𝜉k,t|Gk| + 𝜉k′,t|Gk′ |)∕(|Gk| + |Gk′ |). Table 2 shows the regrouping process for temporal heterogeneity
between the geographic clusters. After the regrouping process for the dengue data, the previous five geographic clus-
ters, G1,… ,G5, are combined into two TH clusters, say C1 and C2, with C1 ≡ G1 and C2 ≡ (G2 ∪ · · · ∪ G5). The total
number of villages in C1 ∪ C2 is still 111 with |C1| = 34 and |C2| = 77. Figure 1B maps the locations of the TH clusters
C1 and C2.

Based on the TH clusters C1 and C2, a final model associated with Yi,t becomes

log(Yi,t) = −0.077 +
2∑

k=1
𝜉k,t𝛿Ck (si) + 𝜖i,t. (15)

T A B L E 2 A flow chart for the regrouping process based
on Uk,k′ for geographic clusters G1,… ,G5

G1 G2 G3 G4 G5

G1 — — — — —

G2 258.7 — — — —

G3 189.2 16.4 — — —

G4 161.7 25.8 22.4 — —

G5 89.5 31.6 16.5 19.4 —

⇓G2+G3→G2

G1 G2 G4 G5

G1 — — — —

G2 239.8 — — —

G4 161.7 24.9 — —

G5 89.5 25.0 19.4 —

⇓G4+G5→G4

G1 G2 G4

G1 — — —

G2 239.8 — —

G4 121.0 31.3 —

⇓G2+G4→G2

G1 G2

G1 — —

G2 171.9 —

Note: The bold number indicates the smallest value of Uk,k′ in each step.
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Again, we set 𝜉k,t = 0 if
∑

i∈Ck
Yi,t ≤ |Ck|. Applying the estimating Equation (6) for (15) gives an estimate for the expected

disease rate by

�̂�i,t = exp{−0.077 + 𝜉1,t𝛿C1(si) + 𝜉2,t𝛿C2(si)}, i = 1,… , 891, t = 1,… , 52. (16)

Figure 2A shows temporal patterns for averaged incidence rates in C1, C2, and Ω, while Figure 2B depicts estimated inci-
dence rates for the TH clusters C1 and C2. Details for the estimated log-risks 𝜉1,t and 𝜉2,t can be seen in the Supplementary
Material.

5.4 Analysis result

By comparing Figure 2A,B, we find that the estimated disease rates by the TH scan statistic are quite close to the observed
values, although for cluster C1, the TH scan statistic would slightly underestimate the average disease rate in week 34.
Also, as can be seen from Figure 2A, the identified clusters, C1 and C2, had very different temporal patterns for dengue
epidemics. On the other hand, an exploratory analysis for weekly disease rates across the study area shows a relatively
flat AR(1) model for dengue infection. Figure 2A also indicates three waves of dengue outbreaks in the year 2014: the first
was in cluster C1, which was transmitted to cluster C2 and finally went back to cluster C1. Note that part of cluster C2 was
next to cluster C1, as can be seen from Figure 1B.

When exploring why the first strike of the dengue epidemics happened in cluster C1, we find that cluster C1 included
several industrial parks, where guest workers from Southeast Asia were often employed. In Taiwan, some scientists
believed that no local dengue virus existed, due to cold currents in winter.10 Since dengue epidemics occur very frequently
in Southeast Asian countries, in cluster C1, the imported cases could play a crucial role to initiate the dengue outbreaks. On
the other hand, cluster C2, which included two major areas of Kaohsiung, had more local people and merchant activities,
which could speed up dengue transmission. Specifically, the geographic cluster G3 includes a station for the high-speed
train system, and G4 has the main train station for Kaohsiung. Also, as shown in Figure 1A, the geographic cluster G2 is
close to a lake, which could provide a suitable environmental situation for the growth of mosquitos. This could be why
cluster C2 appears to have more severe and widespread dengue outbreaks than cluster C1, as shown in Figure 2A.

Another interesting finding from Figure 2A is that the dengue epidemic in cluster C2 started in week 38, about 6 weeks
later than that in cluster C1. A cross-correlation map (not shown here) between the number of cases and temperature
also indicates that, for the 2014 Kaohsiung dengue infection, higher temperatures were associated with a larger number
of cases in a 6-week lag. Since an extrinsic incubation period of dengue is normally considered to be positively correlated
with temperature, the 6-week lag between the outbreaks in clusters C1 and C2 may show that the proposed method can
reflect the extrinsic incubation period.

We also use the SaTScan method with two different settings, the LR1 and LR2 statistics, to analyze the dengue
data. However, the LR1 scan statistic identifies only one big circular cluster, which is very similar to the one identified
by the LR1 scan statistic in the simulation. The big circular cluster can be seen in Figure 4B. So, in the data analy-
sis, we compare the identification performance between only the TH and LR2 scan statistics. The LR2 scan statistic
identifies nine geographic clusters, say, D1,… ,D9, in various time intervals. Information about the spatial-temporal
clusters identified by the LR2 scan statistic can be seen in Table A4 of the Supplementary Material. Let Tk denote the
corresponding time interval of elevated disease rates associated with Dk, k = 1,… , 9. We compute a sum of squared
errors (SSE) for each scan statistic to compare the performance. In the computation of SSEs, only responses in the
identified spatial-temporal clusters with Yi,t > 0 are considered. For the LR2 scan statistic, the sum of squared errors
is given by SSE1 =

∑9
k=1

∑
i∈Dk

∑
t∈Tk

{log(Yi,t) − log(Y k,t)}2 = 4418, where Y k,t =
∑

si∈Dk
Yi,t∕|Dk|. The total number of

spatial-temporal units identified by the LR2 scan statistic is 3778. For the TH scan statistic, let 𝜖i,t = log(Yi,t) − log(�̂�i,t)
denote the residual, and let �̂� denote a vector formed by 𝜖i,t. The sum of squared errors for the TH scan statistic is
SSE2 = �̂�′V̂−1

𝜖 �̂� = 1100, where V̂𝜖 is an estimated covariance matrix by the variogram estimation. The total number
of spatial-temporal units identified by the TH scan statistic is 1196. So, the mean squared errors (MSEs) are MSE1 =
4418∕3778

.
= 1.17 for the LR2 scan statistic, and MSE2 = 1100∕1196

.
= 0.92 for the TH scan statistic. A comparison

between the value of 1.27 (=MSE1∕MSE2) and an F-distribution with degrees of freedom 3378 and 1196 gives a P-value
around 3 × 10−7, which may provide evidence that the TH scan statistic could have better identification results than the
LR2 scan statistic in this data analysis.
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6 DISCUSSION

Identifying transmission of hot spots and characterizing the temporal trends are important for understanding infectious
disease propagation. In this article, we propose a novel scan statistic by combining the spatial scan statistic for geographic
clusters and chi-squared test for temporal heterogeneity to identify clusters whose temporal patterns are similar within
clusters but different between clusters. The proposed scan statistic could be more flexible than traditional methods in
the sense that contiguous and nonproximate regions with similar temporal patterns can be identified simultaneously.
Although some scan statistics, such as those produced by SaTScan, can also be used to search for geographic clusters
with similar temporal trends, they are mainly designed to group contiguous hot-spot regions as clusters in certain types
of shapes. The simulation indicates that such scan statistics may thus have difficulty in distinguishing proximate clusters
that have different temporal patterns. The proposed approach, on the other hand, can be used to explore different routes
of epidemic propagation from a common source of an infectious disease, as we illustrated in the data analysis for the
dengue infection. Although Lin and Zhu11 developed a method that also can connect spatial clustering and classification
approaches, their work focuses on dealing with spatial heterogeneity.

To see when the proposed method could work well, three remarks summarized from the asymptotic property and
simulation study are listed below. We recall that in the limiting distribution (7), the error rate for the spatial scan statistic
is an order of n1∕2. So, first, if one geographic cluster with a disease rate p% higher than the expected value does exist,
then the true cluster should consist of at least (log(1 + 0.01p))−2 geographic units to make the statistical inference valid.
For example, if we would like all geographic clusters that are not in proximity with disease rates at least 40% higher
than the expected value to be identified, then each of the true clusters should contain at least nine geographic units.
In the simulation and data analysis, we find that the TH scan statistic is able to identify geographic cluster G3, which
consists of 10 villages. Second, if two clusters are in proximity but have different temporal patterns, then by the simulation
result in the second scenario, each of the true clusters should contain at least a number of max{n1∕2, (log(1 + 0.01p))−2}
geographic units such that the TH scan statistic can work well. On the other hand, if a study area consists of n geographic
regions, then only TH clusters with disease rates (exp(n1∕4) − 1)% higher than the expected value could be identified by
the proposed method. Third, in the identification process of the TH scan statistic, we characterize the temporal pattern
of each cluster by estimating its risk coefficient at each time t. This approach could work well for data with separable
spatial-temporal correlations, as can be seen from the simulation result. Nevertheless, the number of temporal coefficients
in the corresponding model would then be an order of T, and this could make estimation less efficient, unless the study
area consists of geographic units many enough. In the data analysis and simulation, the largest geographic cluster consists
of (n1 =)34 villages, while the whole Kaohsiung city has 891(≈n2

1) villages. We find that in such a situation, the temporal
pattern in each TH cluster can still be estimated well.

While traditional scan statistics can generally allow larger sizes of candidate clusters, the TH scan statistic is required
to restrict the size of candidate clusters up to n1∕2 for valid statistical inference. To evaluate whether the size limitation on
candidate clusters would make the TH scan statistic infeasible to identify “big” clusters, in the simulation, the number of
villages in the true clusters is set to be proportional to the number of sampling villages n. The simulation shows that, with
a suitable regrouping procedure, the TH scan statistic can still identify the true clusters very accurately. Finally, because
the dengue virus is transmitted mainly by the mosquito, whose range of activities and life period are usually short, the
dengue infection may have different epidemic circles in different TH clusters. In this article, we consider that each cluster
has its own risk coefficient at each time period. Nevertheless, an interesting extension to this article would be to com-
bine the TH scan statistic and generalized linear dynamic model for temporal coefficients. We leave this topic for future
research.
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APPENDIX

Derivation of (2): Let bi,+ = exp
(∑K

k=1𝜉k,+𝛿Ck (si)
)

and let bi,t = exp
(∑K

k=1𝜉k,t𝛿Ck (si)
)

. Then, log(Yi,+) = log(bi,+) + 𝜇s +

log
{∑T

t=1
(

bi,t exp(𝜖i,t)
)
∕bi,+

}
, where 𝜇s = 𝜇0 + 1∕T. Let

∑T
t=1

(
bi,t exp(𝜖i,t)

)
∕bi,+ = Bi,+. Since the logarithm for sum of

log-normal variables can be approximated by another log-normal variable, Bi,+ approximately follows a log-normal dis-
tribution. So, under suitable conditions, we have Bi,+

.
= exp(𝜖s

i ), where 𝜖s
i ∼ N(0,T𝜎2). This then leads to the desired

result.

Proof of (7). For convenience, let 𝝃s,+ = (𝜇s, 𝜉1,+,… , 𝜉K,+)′. Let Qs(𝝃s,+) = D′
sV−1

s (Ys − 𝜽s). Also, let Q̇s(𝝃s,+) denote a
derivative function of Qs(𝝃s,+)with respect to 𝝃s,+. Since D′

sV−1
s = O(1) by Assumption 1(a), consistency of �̂�s,+ comes from

a method similar to that by Lin et al.5 By a first-order Taylor expansion, we have Qs(�̂�s,+) = Qs(𝝃s,+) + Q̇s(�̂�s,+) ⋅ (�̂�s,+ −
𝝃s,+) + op(||�̂�s,+ − 𝝃s,+||), and therefore �̂�s,+ − 𝝃s,+ = −{Q̇s(�̂�s,+)}−1Qs(𝝃s,+) + op(||�̂�s,+ − 𝝃s,+||) as n → ∞. Furthermore, it
can be shown that −n−1Q̇s(�̂�s,+) = n−1D̂−1

s V̂−1
s D̂s + op(n−1∕2) as n → ∞. A central limit theorem thus gives the desired

result.

Consistency of the chi-squared test (11): Since V can be approximated by a spatially block-diagonal matrix by
the discussion for Assumption 1, we have D′

𝜉k
V−1D𝜉k = O(n) by Assumption 1(a). It is thus reasonable to assume that

n−1D′
𝜉k

V−1D𝜉k converges to a positive-definite matrix 𝚼𝜉k as n → ∞. An argument similar to the proof of (7) then gives
consistency of �̂�k and �̂�k′ . Also, we have n1∕2�̂�k → N(𝝃k,𝚼−1

𝜉k
) and n1∕2�̂�k′ → N(𝝃k′ ,𝚼−1

𝜉k′
) as n → ∞, where 𝚼−1

𝜉k
denotes an

inverse matrix of𝚼𝜉k . Under suitable conditions, it follows from consistency of �̂�k and �̂�k′ that �̂�𝜉k → 𝚼𝜉k and �̂�𝜉k′ → 𝚼𝜉k′ as
NT → ∞. Consequently, Uk,k′ = n(�̂�k − �̂�k′ )′(�̂�

−1
𝜉k + �̂�−1

𝜉k′ )
−1(�̂�k − �̂�k′ ) approximately follows a noncentral chi-squared dis-

tribution with degrees of freedom at T and mean 𝝃k − 𝝃k′ as n → ∞, which validates the consistency of selection for
Uk,k′ .


