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Abstract: Atypical enteropathogenic Escherichia coli (aEPEC) are heterogeneous strains in terms
of serotypes, adherence patterns and the presence of novel virulence factors. This heterogeneity

is intriguing, promoting studies trying to characterize these novel proteins and to better compre-

hend this pathotype group. In a previous study analyzing low-molecular mass proteomes of four
representative aEPEC strains of three different adhesion phenotypes, we classified proteins

according to their annotated function, with most of them being involved in metabolism and trans-

port; while some of them were classified as hypothetical proteins. The majority of the hypotheti-
cal proteins were homologue products of genes identified in the genome of enterohemorrhagic

E. coli. One of the hypothetical proteins was annotated as Z2335, with orthologue in EPEC, and

by bioinformatics analysis, this protein was revealed to be the universal stress protein F (UspF).
Thus, herein we successfully obtained a recombinant UspF protein from aEPEC, which is a a/b,

ATP-binding protein involved in stress response, with comparable protein production among

the four studied strains, but showing noteworthy differences when cultivated in different stress
conditions, also present in other enterobacterial species, such as Shigella sonnei and

Citrobacter freundii. Furthermore, our results confirm that the Usp protein superfamily encom-

passes a conserved group of proteins involved in stress resistance in aEPEC and other
Enterobacteriaceae.
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Introduction

Enteropathogenic Escherichia coli (EPEC) remain

one the most important enteric pathogens infecting

children and they are considered one of the main

causes of persistent diarrhea worldwide.1 The hall-

mark of EPEC pathogenesis is the ability to cause

attaching and effacing (A/E) lesions, which results

from intimate bacterial adhesion to the intestinal

epithelium, the effacement of local microvilli, with

subsequent accumulation of polymerized actin and

other host cytoskeleton proteins at the site of bacte-

rial attachment, forming pedestal-like structures.2

A/E lesion-related genes are located in a pathogenic-

ity island named the Locus of Enterocyte Effacement

(LEE).3,4

EPEC strains have been categorized into two

subgroups, termed typical and atypical EPEC

(aEPEC) based on the presence and the absence of

EPEC adherence factor plasmid (EAF).5 The aEPEC

subgroup has been considered an emerging bacterial

pathogen, associated with both sporadic cases and

outbreaks of diarrhea.6 Indeed, aEPEC isolates have

been associated with diarrhea in several worldwide

countries, including Brazil.7–13 The emergence of

this pathogen has been intriguing and has triggered

new studies in epidemiology and pathogenicity,

which have been performed to characterize their vir-

ulence profiles and better comprehend this

pathogroup.6,14–28

One of the most interesting features of aEPEC

isolates is their variability in the adherence patterns

upon contact with epithelial cells in vitro. A previous

study from our group analyzed and compared the

low-molecular mass proteomes of four representative

aEPEC strains by 2D gel electrophoresis and LC–

MS/MS, study that comprised three different adhe-

sion phenotypes (localized-like, aggregative and dif-

fuse) and one non-adherent isolate. We identified a

total of 59 proteins, according to their annotated

function, some of them were conserved in the four

studied strains (Ec292/84, 9100/83, BA320, BA4013),

with most of them being involved in metabolism,

stress protection and transport; and some of them

were still classified as hypothetical proteins. We also

found that the majority of the hypothetical and fila-

mentous proteins identified in these isolates were

previously identified in the genome of enterohemor-

rhagic E. coli.29

One of the hypothetical proteins (Z2335, ortho-

logue in EPEC) was revealed by bioinformatics anal-

ysis to be the multispecies universal stress protein F

(UspF), also identified as the YnaF protein found in

soluble E. coli K12 extracts, which has conserved an

ATP-binding site.30 The orthologue protein UspF in

Salmonella spp is designated YnaF.31 Universal

stress proteins (Usp) are widely spread proteins in

nature. Usp proteins belong to the PF00582

superfamily (COG0589).32 The universal stress pro-

tein (Usp) superfamily represents a group of small

cytoplasmic proteins whose expression is affected by

a wide variety of internal or external stresses. As

example, UspA is involved in protection of DNA

from UV damage. In S. enterica serovar Typhimu-

rium UspA is important for resistance to metabolic

and oxidative stress and other types of stresses, like

starvation, and the protein UspA contribute to path-

ogenicity of S. Typhimurium.33

Also, in Mycobacterium smegmatis the Usp

Rv1636 was isolated and characterized, this protein

binds to cAMP specifically with high affinity and to

ATP with lower affinity.34 In M. tuberculosis, proteo-

mic analysis revealed that an increase in protein

levels of mycobacterial Usp causes an increase in

KatG protein levels, in turn increasing phenotypic

susceptibility to isoniazid which is a first line drug

for the treatment of active and latent tuberculosis.35

The UspA protein plays a significant role in protect-

ing Acinetobacter baumannii from H2O2, low pH,

and the respiratory toxin 2,4-dinitrophenol. In a

mouse model of pneumonia, UspA is essential for A.

baumannii pneumonia pathogenesis.36

Because in aEPEC no further information about

Usp family proteins is available, the aim of the pre-

sent work was to investigate the function and the

prevalence in enterobacterial isolates of the hypo-

thetical protein (Z2335). Thus, uspF gene was cloned

and the UspF protein was expressed and purified.

Herein, we successfully obtained a recombinant

UspF protein from aEPEC, which is a a/b, ATP-

binding protein, involved in stress responses, with

no production differences among the four studied

aEPEC strains, but showing significant differences

when cultivated in diverse stress conditions. Fur-

thermore, the high prevalence of this protein among

the enterobacterial species strength its universal

function.

Results

Protein prediction by computational analysis

The uspF gene (435 bp) encodes a predicted protein

of 168 amino acids, but the signal peptide was not

detected by analysis with the SignalP 4.1 server

(http://www.cbs.dtu.dk/services/SignalP/). The com-

putational analysis, based on the presence of con-

served structural and functional domains,37 revealed

that UspF belongs to the Universal Stress Protein

Family. This analiysis showed high similarity values

with universal stress proteins of E. coli, Shigella

and Salmonella (Table I).

Recombinant multispecies universal stress

protein F

The recombinant UspF protein was expressed in E.

coli BL21 (DE3) pLyS as a cytosolic protein (HT-
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UspF) fused at the N-terminal with a His-tag and

an additional sequence (20 aa) defining thrombin

cleavage site, resulting in protein yields of approxi-

mately 100–150 mg/L [Fig. 1(A)]. The protein was

purified in a single step after elution of bound pro-

tein from loaded resin with imidazole containing

buffer at concentrations ranging from 30 to 200 mM

[Fig. 1(B)]. The purified protein remained completely

soluble at high concentrations (20–30 mg/mL) even

after prolonged storage at 48C.

Prediction of secondary structure in different

conditions

Further evidence that the recombinant HT-UspF

preserved the structure of the native multispecies

UspF was obtained by determination of circular

dichroism analyses (CD) of the recombinant protein

at different pH values. The CD spectrum of HT-

UspF (Fig. 2) is characteristic of a a/b protein with

minimum at 208 and 222 nm. The CD spectra show

that the protein UspF is more stable in neutral and

basic pH, but in acid pH a structural loss occurs.

UspF protein three-dimensional model

The UspF three-dimensional model was generated

with the structural coordinates from putative fila-

ment protein/universal stress protein of K. pneumo-

niae (PDB code 3fdx), the orthologues that had the

highest sequence identity (76% over the complete

sequence of the mature protein) [Fig. 3(A,B)]. The

quality of the model is expressed by Z score and

showed per residue in Figure 3(C). In the model, it

was verified that the protein could bind ATP [Fig.

3(B)], similar to UspG protein that belong to the

same sub-family.

UspF is involved in stress responses
Therefore, we investigate if the UspF protein was

expressed at different serotypes of atypical EPEC

(Ec292/84, 9100/83, BA320, BA4013) in different

stress conditions. Immunoblotting assay of the heat-

extracted proteins of the strains showed that UspF

Table I. Identity Analysis of Multispecies UspF With Other Proteins Found in the BLASTp Analysis

Protein Gene identification
Multispecies UspF

(Shigella)

Multispecies UspF (Shigella) gi|15801753 100%
Putative Filament Protein (S. flexneri 2a

str. 2457T)
gi|30062868 100%

Universal Stress Family Protein (E. coli
MS 69-1)

gi|301020540 99,4%

Filament Protein (E. coli O157:H7 str.
Sakai)

gi|38703971 85,7%

Stress-induced ATP-binding protein
(E. coli str. K-12)

gi|89108222 85,1%

Putative Universal Stress Protein
(Salmonella enterica serovar
Tennessee str CDC07-0191)

gi|238911963 78,6%

Hypothetical Protein (Salmonella
enterica serovar Paratyphi B str
SPB7)

gi|161613879 78%

Figure 1. Expression of UspF protein by an IPTG-inducible

E. coli BL21 (DE3) pLyS strain and purification of soluble

fractions containing UspF protein. A – T0 total protein extract

before induction; T2, total protein extract after induction (3 h);

T3, total protein extract after induction (16–18 h). The arrow

indicates position of the UspF protein (18.4 kDa). B – Purifi-

cation of soluble fractions or UspF protein by affinity chroma-

tography using a nickel-containing resin. 1–Flow through; 2–

30 mM, 3–50 mM, 4–100 mM; 5–200 mM of imidazole.

Figure 2. Circular dichroism analyses of the UspF recombi-

nant protein in different pHs. 20 mM phosphate buffer at pH

8.0, 5 mM sodium acetate pH 4.6, 5 mM sodium citrate pH

5.6 and 5 mM of CAPS pH 10.5.
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was detected similarly in all strains and in different

stress conditions, such as oxidative stress, low pH,

high salt concentration and heat (Fig. 4). In addition

to this qualitative analysis; we also performed a sur-

vival assay, in which colony-forming units (CFU)

were counted after stressors exposure. The results

showed that differences in grow patterns of the

strains in different stress conditions. In presence of

3 M NaCl and H2O2, all strains growth was

decreased, except in BA4013, where H2O2 stimulat-

ed it. The growth for BA4013 and 9100/83 strains

was also impaired in low pH. On the other hand,

change in temperature only decreased the growth of

BA4013 (Fig. 5). The presence of UspF indicates the

potential role of this protein in resistance and sur-

vival of strains in response to adverse conditions.

Presence of the gene as a multispecies

universal stress protein F

The uspF gene presence was detected by PCR in the

majority of analyzed pathotypes, with some excep-

tions. The gene was 100% present either in patho-

genic bacteria such tEPEC and enteroaggregative E.

coli (EAEC), or in non-pathogenic bacteria, e.g., in

E. coli isolates that do not carry virulence factors

found in diarrheagenic E. coli. In Shiga toxin-

producing E. coli (STEC) and enterotoxigenic E. coli

(ETEC) isolates, the gene was present at 95.6 and

91%, respectively. Half of the tested aEPEC isolates

presented the gene and in other enterobacterial spe-

cies, the presence of uspF gene was less frequent

(33.3%), herein detected only in S. sonnei and C.

freundii (Table II).

Discussion

Different proteomic studies on E. coli have been

used to compare and to identify proteins differential-

ly expressed in tEPEC E2348/69 versus EHEC

EDL933 strains38; pathogenic versus commensal E.

coli strains39; tEPEC versus aEPEC25 and different

strains of aEPEC.29 The proteins identified in our

previous data29 consisted of the outer membrane

protein OmpX, caseinolytic protease, chain A of the

phosphocarrier protein and structure–function of

iron superoxide dismutase, described before in E.

coli without strain specification. Further, a flavopro-

tein, Trp repressor-binding protein, glucose-specific

enzyme IIA component of PTS and the iron-

containing superoxide dismutase were designated in

E. coli K12 strain.

Concerning proteins previously described in

pathogenic E. coli, we identified in aEPEC different

50S ribosomal proteins, the alkyl hydroperoxide

reductase subunit C, autonomous glycyl radical

Figure 3. Model of multispecies UspF. A. Schematic representation of the multispecies UspF, ATP is represented in stick. B.

Multispecies UspF superimposed with the PDB putative filament protein/universal stress protein F of K. pneumoniae (3fdx), ATP

is represented in stick. C. Overall quality of the predicted UspF model.

Figure 4. Bacterial lysates from strains Ec292/84, 9100/83,

BA320 and BA4013 submitted or not to stress conditions.

LB; LB pH 4.8; 3 M NaCl; 0.045% of H2O2; LB at 428C (10

mg) were separated by SDS-PAGE (12,5%) and transferred to

a nitrocellulose membrane. Nitrocellulose membranes were

incubated with anti-UspF rabbit polyclonal serum followed by

goat anti-rabbit IgG peroxidase-conjugate. Immunodetection

signals were visualized by addition of DAB/H2O2.
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cofactor, caseinolytic protease, DNA starvation/sta-

tionary phase protection protein, DNA-binding tran-

scriptional dual regulator H-NS, ferritin, galactose-

binding transport protein, the hypothetical proteins

Z0175, Z2335 and Z3776, KHG/KDPG aldolase,

universal stress protein A and D, stringent starvation

protein A, putative transport protein, a protein of the

fucose operon, peptidase E; also a putative filament

protein defined in enterohemorrhagic E. coli O157:H7

EDL933 and in Sakai strains. Further, hypothetical

Figure 5. Stress survival assay. After stressors exposure the aEPEC strains: Ec292/84, 9100/83, BA320 and BA4013 were plat-

ed on LB agar and then the CFU were counted. The CFU values from triplicates of three independent experiments were ana-

lyzed by Graph PrismVR 5.01, using unpaired Student’s t-test. Differences were statistically significant compared the strains

incubation in LB at 37oC. **** (P<0.0001); *** (P 5 0.0002 to 0.0008); ** (P 5 0.002 to 0.0034) or non-significant.

Table II. Presence of UspF (%) Gene in Bacterial Isolates Detected by PCR

Pathotypes
No. of bacterial

isolates
uspF gene
presence

Gene
presence (%) Total

aEPEC 72 43 59.7 43/72
tEPEC 37 37 100 37/37
STEC 46 44 95.6 44/46
ETEC 11 10 90.9 10/11
EAEC 10 10 100 10/10
NVF E. coli 6 6 100 6/6
Enterobacterial species 6 2 33.3 2/6

aEPEC 5 atypical enteropathogenic E. coli; tEPEC 5 typical enteropathogenic E. coli; STEC 5 Shiga-toxin producing E. coli;
ETEC 5 enterotoxigenic E. coli; EAEC 5 enteroaggregative E. coli; NVF E. coli 5 non-DEC virulence factors E. coli.
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proteins c1034, c2185 and c4636, dihydropteridine

reductase, ribose-5-phosphate isomerase A previously

described in uropathogenic E. coli CFT073 strain

were identified. The inorganic pyrophosphatase

described in tEPEC O127:H6 E2348/69 strain, the

molybdenum cofactor biosynthesis protein described

in atypical EAEC 101-1 strain and the hypothetical

protein O2ColV76 described in a bird pathogenic E.

coli strain A2363.

In this previous work from our group, we

described the first low-molecular mass comparative

proteomic study of extracted proteins from four rep-

resentative aEPEC isolates. After fimbrial extrac-

tion, we sought that analyzing low-molecular

proteins one can found some fimbrial adhesin

involved in the in vitro interaction between bacteria

and cell lines, but we observed proteins usually

involved in cell structure, protection, metabolism,

transport, as well as in gene regulation.29 One of the

identified proteins was annotated with the hypothet-

ical name of Z2335 orthologue in EPEC, and by bio-

informatics analyses we observed that this protein

belongs to the UspF. The annotation has changed

recently and now the protein (NP_287771.1) in

PubMed is denominated the multispecies universal

stress protein F (Shigella). The alignment of the

multispecies UspF (Shigella) with UspF of E. coli

K12 showed a high identity (99.3%). No signal pep-

tide was observed by using signal 4.1 P server,

although a 24 residues in the N-terminal region of

the Z2335 sequence does not seems to be part of the

codifying sequence as observed by the ORF finder

program.

Herein, for the first time a hypothetical protein

from aEPEC was successfully cloned, expressed,

purified and characterized. The newly characterized

UspF preserved the structure of the native multispe-

cies UspF as a a/b and it is an ATP binding protein.

The production of this protein was detected using a

specific rabbit serum in the four studied strains in

diverse stress conditions, which indicates its poten-

tial role in resistance and survival of the strains in

response to adverse conditions.

Our result emphasizes previous data showing

that the Usp protein superfamily encompasses a

conserved group of proteins involved in stress resis-

tance, these proteins promote cell survival during

prolonged exposure to stress and may activate a

general mechanism for stress endurance. UspA in

Salmonella was showed causing resistance to oxida-

tive stress.33 Cells of E. coli BL21 harboring a

SbUSP gene from Salicornia brachiata, an extreme

halophyte, showed about 1.5- to 1.8-fold increased

stress tolerance (1.8 and 1.4-fold for NaCl and KCl,

respectively, and 1.5-fold for osmotic stress) com-

pared to control E. coli BL21-DE cells and cells

expressing GST only.40 Salmonella needs to enter in

host organism, and therefore, the bacteria is exposed

to a hostile environment with low pH, lack of oxygen

and need to survive to the immune response of the

host, so the tolerance to diversity of stress in Salmo-

nella is probably mediated by Usps proteins (UspA,

UspE, UspF).41

Indeed, the stress assays showed that when the

strains were exposed to different conditions, such as

oxidative, temperature, osmolarity and low pH, sig-

nificant changes in growth were observed, mainly

increase with osmolarity and oxidative. It’s worth to

mention that when the aEPEC strains were cultivat-

ed 24 h in those stressors conditions, the growth

was completely abolished (data not shown). These

data suggest that this UspF is important for mainte-

nance of aEPEC in adverse conditions. Indeed, Usps

are among the most highly induced genes when bac-

teria are subjected to several stress conditions, such

as heat shock, nutrient starvation or the presence of

oxidants or other stress agents.42 Therefore, expres-

sion of this protein is plausible and important for

bacterial stress resistance.32,43–47

Here, we showed a high prevalence of UspF

either in commensal or in the different E. coli patho-

types, which reinforces that the UspF presence

might be important for E. coli. By circular dichroism

it was verified that the protein is more stable in

basic pH, which is in agreement with the intestine

pH, where aEPEC strains colonize humans. In con-

clusion, a hypothetical protein from aEPEC was

characterized showing that it is UspF which pre-

served the structure of the native multispecies UspF

as a a/b and ATP binding protein which is involved

in bacterial stress.

Material and Methods

Bacterial strains and plasmids

The following E. coli K12 strains were used: DH10b

(Stratagene, USA) and BL21 (DE3) pLyS (Novagen,

USA). The plasmid vector pET28a (Novagen, USA)

and the pGEM-T Easy Vector System kit (Promega,

USA) were used in order to construct the pGE-

M_uspF and pET28a_uspF plasmids, respectively.

Bacterial isolates used in this study consisted of four

atypical EPEC strains presenting different adhesion

patterns, i.e., Ec292/84, 9100/83, BA320 and

BA4013.29 Also, a collection of different bacterial

pathogroups were analyzed for the presence of the

uspF gene, i.e., typical EPEC (tEPEC), atypical

EPEC (aEPEC), ETEC and STEC,17,48–51 as well as

other Enterobacteriaceae isolates, including Morga-

nella morganii, Klebsiella pneumoniae, Shigella boy-

dii, Proteus mirabilis, Salmonella spp., and

Citrobacter freundii. Further, groups of E. coli iso-

lates that do not carry virulence factors found in

diarrheagenic E. coli and belonging to our bacterial

collection were also analyzed.
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Computational analysis

The nucleotide sequence and corresponding amino

acid sequence of UspF protein [E. coli O157:H7

strain EDL933] and gene (Gene ID: 961019) were

retrieved from gene bank (Accession No.

NP_287771.1). Search of orthologs sequences were

carried out using BLASTP, available at the National

Center of Biotechnology Information server (http://

www.ncbi.nlm.nih.gov/BLAST) and ClustalW (www.

ebi.ac.uk/clustalw/). Prediction of signal peptide and

transmembrane sequences were determined with

SignalP and DAS programs, respectively (http://

www.cbs.dtu.dk/services/SignalP/) and (http://www.

sbc.su.se/~miklos/DAS/). Protein parameters of UspF

were calculated applying programs available at the

Expasy Bioinformatics Portal (http://www.expasy.

org/).

Cloning of the gene that encodes the

multispecies uspF gene

The nucleotide sequence (gi|16445223:2115267-

2115773) (without the first 72 base pairs, as indicat-

ed by ORF finder program) was amplified by PCR

(forward primer 5’ GGA TCC ATG AAC AGA ACG

ATT CTT GTC C 3’ and reverse primer 5’ AAG CTT

TCA GCG CAC AAC CAG CAC 3’) using Platinum

Taq High Fidelity (Invitrogen) and standard amplifi-

cation conditions: an initial step at 958C for 5 min,

958C for 1 min; followed by 30 cycles at 558C for 1

min, at 688C for 2 min; and followed by a final

extension at 688C for 10 min. The forward primer

included a BamHI site, and the reverse primer a

HindIII site (underlined). The resulting amplified

fragment, with a total length of 435 nucleotides, was

first cloned into the vector pGEM T-Easy Vector

(Promega).

After transformation into E. coli DH10b cells and

screening of recombinant colonies, a recombinant plas-

mid, named pGEM_uspF, was selected, amplified, and

cleaved with BamHI and HindIII enzymes (Invitrogen)

to release the 435 bp fragment, which was purified in

agarose gels and subsequently cloned into the expres-

sion vector pET28a (Novagen), previously treated with

BamHI/HindIII. Transformation efficiencies of approxi-

mately 107 CFU/log DNA were routinely achieved with

chemically competent E. coli DH10b cells. One recombi-

nant colony, selected out of 10 chosen colonies, was sub-

jected to restriction analysis and nucleotide sequencing.

The recombinant plasmid, named pET_UspF, was fur-

ther purified and transformed into the E. coli BL21

(DE3) pLyS strain (Novagen). One recombinant clone

was chosen at random among the recombinant colonies

and selected for further analysis for protein expression

and purification. The recombinant UspF protein was

expressed as a His6-tagged cytoplasmic protein geneti-

cally fused at the N-terminal end (HT-UspF).

Expression and purification of HT-UspF

recombinant protein
Cultures of the recombinant E. coli BL21 (DE3)

pLyS strain-carrying pET_UspF were grown aerobi-

cally in Erlenmeyer flasks containing LB medium

with 50 lg/mL kanamycin until mid-log phase

(OD600 0.4–0.6) before adding the inducer (0.1 mM

IPTG). The cultures were induced aerobically

(200 rpm) either, for 4 h at 378C. Cells were collected

by centrifugation and stored at 2208C for approxi-

mately 16 h before cell extracts preparation.

Cell pellets from 1 L of bacterial culture were

resuspended in 10 mL in 20 mM Tris–HCl, pH 8.0,

containing 500 mM of NaCl, 0.5 mM of PMSF and

20 mM of imidazole and incubated with lysozyme

(final concentration of 100 lg/mL) for 30 min on an

ice bath. Cells were maintained on ice and disrupted

by sonication after 4 pulses of 20 s in a cell disruptor

(Bandelin) with 30% amplitude, followed by centrifu-

gation at 12,000 g for 30 min, in order to obtain the

soluble and non-soluble cellular fractions. The HT-

UspF protein was purified from soluble protein

extracts after addition of a nickel-charged Sepharose

(ProBond, Invitrogen) slurry (1 mL of resin for

15 mg of total protein) previously washed with two

volumes of water and one volume of 20 mM Tris–

HCl or NaCl, pH 8.0, containing 500 mM of NaCl,

0.5 mM of PMSF and 20 mM of imidazole. The

charged resin was transferred to a plastic column

and washed with 10 volumes with 20 mM Tris–HCl,

pH 8.0, containing 500 mM of NaCl, 0.5 mM of

PMSF and 20 mM of imidazole followed by washing

with three volumes of 20 mM Tris–HCl or NaCl, pH

8.0, containing 500 mM of NaCl, 0.5 mM of PMSF

and 30 mM of imidazole.

The bound HT-UspF was eluted with buffers

containing increasing imidazole concentrations

(50 mM, 100 mM, 200 mM, 500 mM). Eluted HT-

UspF fractions were dialyzed with 20 mM Tris–HCl

pH 8.0 and 50 mM NaCl. Samples were concentrat-

ed with Ultrafree MWCO 10,000 centrifugal filters

(Amicon Millipore) to a final concentration of 15 mg/

mL. The eluted protein fractions were analyzed by

12% SDS–PAGE gels.52

Prediction of secondary structure in different

conditions
All experiments were carried out using a JASCO J-

810 spectropolarimeter equipped with a Peltier-type

temperature controller and a thermostatic cell holder,

interfaced with a thermostatic bath. CD spectra were

recorded using 0.1 cm path length quartz cells at a

protein concentration of 0.25 mg/mL (10 lM). The

protein stability was determined at four different

pHs (25 mM sodium acetate at pH 4.6; 5 mM sodium

citrate at pH 5.6; 20 mM sodium phosphate at pH
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8.0, and 5 mM N-cyclohexyl-3-aminopropanesulfonic

acid (CAPS) at pH 10.5.

Polyclonal antibody

Polyclonal serum was obtained from a New Zealand

white female rabbit (60 days old) which was immu-

nized intramuscularly three times at 2-week inter-

vals with a dose of 200 lg of UspF recombinant

protein adsorbed to 2.5 mg alum (Al31) as adjuvant.

Serum was obtained 45 days after immunization.

Immune serum reactivity was tested by indirect

ELISA. Serum samples were obtained in order to be

used as negative control in specific antibody evalua-

tion, just before immunization by auricular-venom

method. The experiments were conducted in agree-

ment with the Ethical Principles in Animal

Research, adopted by the Brazilian College of Ani-

mal Experimentation, and they were approved by

the Ethical Committee for Animal Research of

Butantan Institute (571/09).

Stress assays and heat extracted proteins

analyses
The aEPEC strains: Ec292/84, 9100/83, BA320 and

BA4013, were grown 16–18 h on LB media. Thus,

the bacterial cultures concentrations were adjusted

spectrophotometrically (600 nm) to 4 x 109 CFU.

The cultures were pelleted by centrifugation at

3,000 g for 10 min, and then the pellets were resus-

pended in media (LB, LB pH 4.8, LB with 0.045%

H2O2, LB with 3 M NaCl),33,44 and submitted to 30

min of stress conditions at 378C. Also, one tube con-

taining only LB was placed at 428C for the same

time. After that bacterial cultures were diluted and

plated onto Luria Bertani (LB) agar plates. The

number of bacteria was determined by counting the

CFU.53 The CFU values from triplicates of three

independent experiments were analyzed by Graph

PrismVR 5.01, using unpaired Student’s t-test. The

differences were considered statistically significant

when P� 0.05.

For protein heat extraction, after the bacteria

was submitted to the above mentioned stress condi-

tions, the samples were incubated at 608C for 30

min, and then pelleted by centrifugation at 3,000g

for 10 min. The supernatant was transferred to a

new tube, SDS-sample buffer was added, and sam-

ples were boiled at 1008C for 10 min. The samples

were separated in 12.5% SDS-PAGE gels and immu-

noblotting was performed using the anti-UspF poly-

clonal antibody.

Presence of the uspF gene in different bacterial
pathotypes

The presence of uspF gene was investigated by PCR

reaction in a collection of different bacterial patho-

types. The PCR reaction was performed using the

primers sequence (forward 5’ GGA TCC ATG AAC

AGA ACG ATT CTT GTC C 3’ and reverse 5’ AAG

CTT TCA GCG CAC AAC CAG CAC 3’) using Taq

recombinant enzyme (Invitrogen) and amplified

using standard conditions: an initial step at 958C for

5 min, 958C for 1 min; followed by 30 cycles at 558C

for 1 min, 728C for 2 min; and a final extension at

728C for 10 min. The gene amplification in different

bacterial isolates was analyzed in agarose gels stain-

ing with Gel Red (Biotium).

Modeling
The structural model of the UspF protein was con-

structed using the Yasara software. The pdb used to

construct the model was the 3fdx (Putative filament

protein/universal stress protein F of Klebsiella pneu-

moniae). For model validation, the Yasara used the

WHAT CHECK Program.54
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