
134 © 2019 Brain Circulation | Published by Wolters Kluwer Health – Medknow

Activity of p53 in human amniotic fluid 
stem cells increases their potentiality 
as a candidate for stem cell therapy
Blaise Cozene, Ivana Antonucci1, Liborio Stuppia1

Abstract:
The potential use of stem cells as a therapeutic treatment for many neurological disorders, such as 
stroke, has spiked an interest in their properties. Due to limitations of the present‑day treatments, 
regenerative and protective therapies could prove very beneficial if a safe and effective treatment 
is identified. Using human amniotic fluid stem (hAFS) cells could theoretically provide both 
neuroprotective and regenerative properties to patients, and knowledge of p53’s activity and function 
could be a key component in understanding the behavior and characteristics of these stem cells to 
harness their full potential. Many recent studies on p53 have provided new and valuable information 
that could give rise to new ideas for treatment options. More specifically, p53’s activity inside hAFS 
cells lead them closer to becoming a potential therapeutic stem cell. Other neuroprotective treatments, 
such as hyperoxia and hypoxia sessions, are showing positive results. In combination, these data 
are helping to get closer to an effective treatment for neurological disorders.
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Introduction: p53 Activity and 
Human Amniotic Fluid Stem 

Cells

In a study done on p53 inside amniotic 
fluid stem cells, it was found that 

undifferentiated human amniotic fluid 
stem (hAFS) cells express p53 at lower levels 
than cancerous cells. The p53 protein is 
found primarily in the nucleus of the hAFS 
cells. The anti‑proliferative activity of p53 
was limited. p53 regulates two target genes, 
namely igf2, a maternal imprinted gene 
and c‑jun, a proto‑oncogene. When DNA 
is damaged, the amount of p53 increases 
and consequently so does the activation of 
its target genes. Differentiation of amniotic 
fluid stem cells toward the neural lineage 
induces p53.[1] The hAFS cell line used was 
tested for several intracellular and surface 

markers. This was tested to confirm that 
the hAFS cells are in a middle state of 
pluripotency between that of ES cells and 
lineage‑restricted adult progenitor cells.[2] 
hAFS cells showed the expression of various 
mesenchymal markers, several‑related 
surface adhesion molecules, and stemness 
markers; however, they did not show 
hematopoietic surface markers.[1]

p53 Location and Function in 
Human Amniotic Fluid Stem 

Cells

It was determined that the p53 protein was 
localized in the nucleus.[1] However, p53’s 
abundance was heterogeneous with some 
cells expressing high concentration but 
mostly low and variable levels of expression 
in the early and late passages, but data 
revealed that expression of the p53 protein 
remained the same with increased passage 
numbers. Due to the restrictions on using 
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embryonic stem cells (ES), p53 abundance was compared 
with different tumor cells because they have relatively 
similar amounts to human ES cells.[1] Data concluded that 
hAFS cells had a much lower abundance of p53.

Previous f indings demonstrat ing that  p53’s 
antiproliferative activity is compromised in murine ES 
cells was tested in hAFS cells.[3] p53 was downregulated, 
and cell number was monitored. Only a slight difference 
between control cells and downregulated cells was seen. 
Results were very similar to those in the murine ES cell 
study and indicated that the anti‑proliferative activity 
of p53 in hAFS cells was compromised.[1]

igf2 and c‑jun Expressions are Regulated by 
p53 in Human Amniotic Fluid Stem Cells

p53 does not suppress the cell proliferation in unstressed 
hAFS cells.[1] Two noncanonical target genes which are 
induced by p53, c‑jun and igf2 were measured. p53 was 
downregulated, and expression of genes was measured. 
c‑jun expression was reduced, whereas igf2 expression 
was surprisingly increased. While the results of c‑jun 
expression were congruent with previous findings, the 
igf2 results contradicted the results on ES cells. To further 
investigate, p53 was overexpressed but igf2 messenger 
RNA (mRNA) levels remained the same.[1]

Induction of p53 During Differentiation in 
Human Amniotic Fluid Stem Cells

Due to the previous findings that p53 is involved 
in differentiation in ES and adult stem cells,[4‑6] it 
was investigated whether p53 had any contribution 
to differentiation in hAFS cells. hAFS cells were 
differentiated over 24 days and monitored closely. Days 
17–24 had the highest expression of p53, and at the 
same time, these were the days when Nestin, MAP2, 
and β‑tubulin III were expressed.[1] Next, to see if the 
differentiation of hAFS cells was a p53‑dependent event, 
the transcriptional activity of p53 was blocked. Following 
this, nestin amounts were seen to be reduced, which 
indicated that differentiation was reduced.[1]

Human Amniotic Fluid Stem Cell DNA 
Damage Activates p53

After DNA damage, one of p53’s jobs is to arrest the cell 
cycle and induce apoptosis.[7] p53 abundance and activity 
are increased in response to DNA damage.[8] It was found 
that p53 is important in the DNA damage response 
because of its activation of caspases and apoptosis.[9‑12] 
Caspase 3 is responsible for cleaving the poly [ADP‑
ribose] polymerase (PARP) protein. Therefore, PARP 
cleavage during DNA damage response was monitored 
under the normal expression of p53 and when p53 

was downregulated. It was shown that when p53 was 
downregulated, the increase in cleavage was less than 
that of when p53 is normally expressed, showing that 
p53 is actively involved in DNA damage response.[1]

Why p53?

Since the identification of p53, an essential transcription 
factor found in multicellular organisms, it has been at 
the center of cancer research due to its contributions to 
many cellular processes such as proliferation, senescence, 
differentiation, apoptosis, ferroptosis, DNA repair, 
metabolism, angiogenesis, and autophagy.[4,13‑16] As a 
transcription factor, p53 primarily functions by activating 
transcription of target genes.[1] However, its ability to 
directly interact with proapoptotic and antiapoptotic 
proteins also gives it the potential to promote apoptosis.[17] 
Concurrent with its role in adult somatic cells, p53 seems 
to be involved with self‑renewal and differentiation of ES 
cells as well as some adult stem cells. p53 also possesses 
the ability to negatively regulate and maintain quiescence 
of adult stem cells such as neural and hematopoietic 
cells.[18‑20] hAFS cells, found in a median state between ES 
cell pluripotency and lineage‑restricted adult progenitor 
cells, possess the p53 tumor suppressor gene.[1,21] hAFS 
cells also proliferate quickly as well as exhibit a wide 
differentiation range, including the ability to become 
hematopoietic, neurogenic, osteogenic, chondrogenic, 
adipogenic, renal, and hepatic lineages.[21‑23] Alongside 
these promising attributes, during laboratory trial, when 
hAFS cells were transplanted into nude mice, they did 
not cause the formation of teratomas while ES cells 
did.[24] Although very promising in the potentiality of 
being a source of therapeutic stem cells, the activity of 
p53 in hAFS cells is not well known. Defects or loss in 
p53 function can have detrimental effects on genomic 
stability.[1] This article presents that p53 is active in 
hAFS cells and is found primarily in the nucleus. Under 
nonstressed conditions, p53’s anti‑proliferative activity 
is limited, however, becomes active in response to DNA 
damage. Furthermore, two genes are regulated by p53 
in hAFS cells: c‑jun, a proto‑oncogene, and igf2, a gene 
important in cellular proliferation and development.[1]

Human Amniotic Fluid Stem Cells Could 
Be a Potential Therapeutic Stem Cell

Several lines of investigation were conducted to identify 
a potential cell type for therapeutic stem cell injections 
into humans. Recent findings have found that the 
once‑promising candidate of ES cells, frequently generate 
mosaic alterations and that p53 is often mutated in 
human ES cell lines.[25,26]

The ideal stem cell candidate would have no ethical 
controversy, be easy to obtain, divide rapidly in culture, 
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and shows broad plasticity.[1] Along with fulfilling all 
these requirements, hAFS cells do not form tumors 
when transplanted into mice. ES cells, on the other hand, 
formed teratomas when transplanted into mice.[24,27] 
The function and activity of p53, an important tumor 
suppressor protein, must be identified before hAFS 
cells are used in therapy. Overall, hAFS cells show great 
potential to 1 day be used as a therapeutic stem cell.

When initially identified, the p53 protein was discovered 
to be localized in the nucleus of hAFS cells.[1] Consistent 
with these data, the results of a previous report locate 
p53 in the nucleus of murine ES cells.[3] Other previous 
reports about p53 mRNA concentration also stay 
congruous with the results that p53 protein levels 
remained relatively constant and did not change with 
increasing passage numbers.[28,29]

While wild‑type p53 is an anti‑proliferative protein, when 
mutated, it is commonly associated with tumor growth.[1] 
Therefore, the effect of p53 on the proliferation rate of hAFS 
cells was monitored. The results suggested no difference 
in proliferation capacity between control cells and cells 
where p53 was downregulated.[1] These data are consistent 
with the previous findings with murine ES cells where 
anti‑proliferative activity of p53 was compromised.[3]

Regulation of two noncanonical target genes of p53, 
c‑jun, and igf2, was measured in hAFS cells. These genes 
were also regulated by p53 in ES cells.[3] The result 
was that repression of c‑jun by p53 in hAFS‑matched 
previous data from ES cell research. However, igf2 
mRNA was repressed in ES cells, it was found that in 
hAFS cells, p53 induced igf2 mRNA levels.[3] c‑jun, a 
proto‑oncogene, achieves its growth‑promoting function 
through heterodimerization with c‑Fos, binding to AP‑1 
responsive elements in promoters of their target genes, 
and repression of tumor suppressor genes, namely p53, 
p21, and p16.[30] c‑jun has also been shown to have the 
ability to directly bind to and repress the p53 promoter.[1]

igf2, a proto‑oncogene involved in the development, is 
another target gene of p53 and is often overexpressed 
in tumors.[31,32] While no reduction in igf2 mRNA was 
seen during overexpression of p53, the downregulation 
of p53 strongly induced igf2 mRNA.[1] There is no 
clear understanding of why this inconsistency exists. 
Furthermore, the expression of igf2 was seen in cells with 
a female karyotype, but not male karyotyped cells.[1] This 
could be due to that eventually in males, igf2 expression 
is not required and that during deletion of the igf2 gene, 
male cells are still viable. However, female cells are 
strongly dependent on igf2.[33]

As differentiation progressed in hAFS cells, p53 was 
strongly induced.[1] When transcription of p53 during 

differentiation was blocked, it resulted in decreased 
nestin amounts, exhibiting that p53 contributes to 
the differentiation of hAFS cells.[1] Surprisingly, p53’s 
increase in abundance during differentiation contradicts 
previous studies in ES cells, where p53 abundance 
decreased as differentiation progressed.[16,34‑36] p53 
plays a role in the DNA damage response.[37] In hAFS 
cell experiments, p53 became activated and its levels 
increased, and target genes p21 and mdm2 were induced. 
Interestingly, it was found that in response to the DNA 
damage, the cleavage of PARP, a DNA repair protein, 
was a partly p53‑dependent event.[1] No other DNA 
damage agents were tested, and further experimentation 
must be done to determine if this response is specific to 
some agents or universal among many.

Amniotic fluid contains cells derived from the fetus 
and amnion; there is a possibility of donor‑to‑donor 
heterogeneity that could influence proliferation rate, 
differentiation capability, and DNA damage response.[1] 
These experiments were conducted using a single donor 
hAFS cell line. Further experiments must be conducted 
with different donors to rule out any genetic factors that 
would influence the hAFS cell activity.

In summary, evidence suggests that p53 is active in hAFS 
cells. Differences in p53 activity between hAFS cells 
and ES cells have been indicated, leading to inferences 
that there is no generalized activity of p53 across stem 
cells.[1] This is also demonstrated by differences in p53 
expression across different mesenchymal stem cell 
types.[38] While hAFS cells are of potential usage for stem 
cell therapy, heterogeneity must be further investigated 
to rule out any possibility of differences in the behavior 
of cells among donors.

The Further Investigation of the Role of p53 
in Human Amniotic Fluid Stem Cells Could 
Lead to Pioneering Medical Advancements

Stroke is a leading cause of death and often results in 
long‑term disability.[39] Developing safe and effective 
treatments poses a great challenge. With a few current 
treatment options, stroke researchers are identifying 
many possible therapies to better treat stroke patients. 
Currently, the only stroke treatment approved by the 
Food and Drug Administration is a thrombolytic drug 
or a tissue plasminogen activator.[39] While it has been 
demonstrated effective in dissolving clots, there is 
a massive time constraint due to the requirement of 
administering the drug within 4.5 h after a stroke.[39] 
Other treatments such as surgical thrombectomy or 
embolectomy are effective, but pose more risks with older 
patients.[39] Neuroprotectant treatments and regenerative 
therapies could also prove very beneficial as effective 
treatments for strokes. Stem cells could potentially 
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serve as both a regenerative and neuroprotective agent. 
However, stem cell treatments often lead to ethical 
controversy, and it is challenging to secure an ideal 
candidate.

hAFS cells have shown great potential to be utilized as 
therapeutic stem cells [Figure 1]. As an ideal candidate, 
hAFS cells display pluripotency in that they can 
differentiate into all three germ layers. Furthermore, 
there are minimal ethical issues surrounding the harvest 
and usage of hAFS cells. They are harvested during 
amniocentesis and provide a heterogeneous cell pool, 
including amniotic fluid‑specific cells, fibroblastic cells, 
and epithelioid cells. Derived hAFS cells can become 
human amniotic mesenchymal stromal cells that serve 
as anti‑inflammatory and anti‑fibrotic agents effective in 
treating other neurological diseases.[40] hAFS cells show 
great efficacy in treating neurological conditions such as 
Parkinson’s disease, Alzheimer’s disease, amyotrophic 
lateral sclerosis, spinal cord injury, and more.[40] A study 
was done to investigate the regenerative properties of 
hAFS cells after an ischemic‑reperfusion injury was 
induced in mice. First, a 60‑min middle cerebral artery 
occlusion was induced, followed by a 7‑day reperfusion 
phase. Intracerebroventricular delivery of hAFS cells was 
completed, resulting in reduced neurological sequelae 
as well as behavioral deficits.[40] Furthermore, behavioral 
tests were recorded before and after the occlusion, 
and transplantation of hAFS cells was completed on 
day 35. The data suggest a lessened infarct volume, 
reduction in neuron loss, memory degradation, learning 
deficiency, and greater cell proliferation.[21] Along with 
promising neuroregenerative function, another study 
with mice showed that stem cells have neuroprotective 
abilities with the release of trophic factors.[41] Vascular 
endothelial growth factor (VEGF) was monitored and 
demonstrated that when overexpressed there were 

fewer neurological deficits and smaller infarct volumes 
than in mice; where VEGF was not overexpressed.[41] 
It is thought that this result is due to VEGF inhibition 
of pro‑apoptotic genes such as p53.[41] Another study 
indicated that transplantation of ES cells into rats often 
formed teratomas, whereas hAFS cells did not.[42] This 
could be due to differences in the activity of p53 in the 
two cell types.

p53 is an important tumor suppressor gene in 
multicellular eukaryotes while also possessing apoptotic 
function. This gene could be a major factor in which 
stem cells could potentially be a therapeutic agent in 
stroke recovery and protection. Utilizing knowledge of 
p53 in the brain suggests other treatment possibilities. 
Research has shown that following an ischemic event, 
p53 mRNA and protein are upregulated, leading to an 
increase in p53‑dependent apoptosis in the penumbra.[43] 
Utilizing this knowledge, treatment options arise such as 
a study done on methylene blue (MB) for neuroprotective 
function. This study found that MB modulated the 
p53‑Bax‑Bcl2‑caspase3 cascade inhibiting apoptotic 
signaling pathways. It was also found that MB 
modulated the p53‑5' adenosine monophosphate 
‑activated protein kinase‑Tuberous Sclerosis Complex 
2‑ mammalian target of rapamycin cascade, enhancing 
autophagic signaling pathways.[44] The manipulation of 
p53‑induced pathways with treatment shows positive 
results, and the studies should be continued to find new 
ways to manipulate p53 pathways, producing better 
stroke outcomes. Stem cells also need to present neural 
markers,[45] and p53 may provide a way to regulate 
these. In particular, nestin, implicated in radial growth 
of axons, is demonstrated to be regulated by p53. In an 
experiment where p53 transcription was suppressed, 
nestin abundance was lowered, suggesting that nestin 
is regulated in some way by the p53 gene.[1] Research on 

Figure 1: The use of human amniotic fluid stem cell as donor transplantable cells offers many therapeutic and logistical advantages
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other areas of the body regarding ischemic‑reperfusion 
injury has produced results that could potentially be 
useful in stroke research. Organ transplant is a common 
area with ischemic‑reperfusion injury, and researchers in 
this field have begun looking at ischemic conditioning as 
a way of preconditioning the body to tolerate prolonged 
ischemia.[46] This runs alongside previous stroke 
research where stem cells are preconditioned by mild 
hypoxia exposure before transplanted into the brain.[47] 
Hypoxia causes the hypoxia‑inducible factor‑1 alpha 
to increase the expression of its target genes thought to 
provide neuroprotection.[48] Also proving effective as 
preconditioning treating is hyperbaric oxygen treatment. 
Introducing hyperoxia over various treatment sessions 
before an ischemic event can induce mild stress and 
prepare cells for future stressors.[49] Further research 
should be conducted to gain more knowledge on hypoxic 
and hyperoxic preconditioning to treat ischemic events.

Conclusions

Knowledge of activity and function of p53 in stem cells, 
the brain, and signaling pathways can lead to potential 
treatment options. p53 still requires much more research, 
especially regarding hAFS cells. However, when 
compared to ES cells, there are many differences that 
make hAFS cells a promising potential candidate for 
stroke therapy.
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