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BACKGROUND Cardiac magnetic resonance (CMR) is the gold stan-
dard for left ventricular hypertrophy (LVH) diagnosis. CMR-derived
LV mass can be estimated using proprietary algorithms (eg, Inli-
neVF), but their accuracy and availability may be limited.

OBJECTIVE To develop an open-source deep learning model to
estimate CMR-derived LV mass.

METHODS Within participants of the UK Biobank prospective
cohort undergoing CMR, we trained 2 convolutional neural networks
to estimate LV mass. The first (ML4Hreg) performed regression
informed by manually labeled LV mass (available in 5065 individ-
uals), while the second (ML4Hseg) performed LV segmentation
informed by InlineVF (version D13A) contours. We compared
ML4Hreg, ML4Hseg, and InlineVF against manually labeled LV mass
within an independent holdout set using Pearson correlation and
mean absolute error (MAE). We assessed associations between
CMR-derived LVH and prevalent cardiovascular disease using logistic
regression adjusted for age and sex.

RESULTS We generated CMR-derived LV mass estimates within
38,574 individuals. Among 891 individuals in the holdout set,
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ML4Hseg reproduced manually labeled LV mass more accurately
(r 5 0.864, 95% confidence interval [CI] 0.847–0.880; MAE 10.41
g, 95% CI 9.82–10.99) than ML4Hreg (r 5 0.843, 95% CI 0.823–
0.861; MAE 10.51, 95% CI 9.86–11.15, P 5 .01) and InlineVF
(r 5 0.795, 95% CI 0.770–0.818; MAE 14.30, 95% CI 13.46–
11.01, P , .01). LVH defined using ML4Hseg demonstrated the
strongest associations with hypertension (odds ratio 2.76, 95% CI
2.51–3.04), atrial fibrillation (1.75, 95% CI 1.37–2.20), and heart
failure (4.67, 95% CI 3.28–6.49).

CONCLUSIONS ML4Hseg is an open-source deep learning model
providing automated quantification of CMR-derived LV mass. Deep
learning models characterizing cardiac structure may facilitate
broad cardiovascular discovery.
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Introduction
Left ventricular hypertrophy (LVH) is defined as pathologi-
cally increased LV mass1 and is consistently associated
with increased risks of adverse cardiovascular events
including heart failure,1–3 stroke,1 atrial fibrillation,4 and
sudden cardiac death.5 The gold standard for LVH diagnosis
is cardiac magnetic resonance (CMR) imaging, which
provides accurate and reproducible quantification of cardiac
structure.6 However, traditional LV mass estimation using
CMR requires LV segmentation, which is typically per-
formed manually and requires substantial time and expertise.

The United Kingdom (UK) Biobank is a prospective
cohort study composed of over 500,000 individuals designed
to facilitate broad-ranging research of diseases affecting
middle-aged and older adults. Roughly 40,000 individuals
have undergone prospective CMR acquisition, with addi-
tional imaging expected in another 60,000 individuals in
the near future. However, manually quantified LV mass is
available only within roughly 5000 images,7 and additional
measurements would be challenging to obtain at scale.
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KEY FINDINGS

� We have developed an open-source deep learning left
ventricular (LV) segmentation model that facilitates ac-
curate and automated LV mass estimation using cardiac
magnetic resonance (CMR) imaging.

� CMR-derived LV hypertrophy defined using the deep
learning model was strongly associated with hyperten-
sion, atrial fibrillation, and heart failure.

� By providing accurate cardiac structural measurements
at scale, deep learning models have the potential to
facilitate broad cardiovascular discovery.
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Although automated quantification based on proprietary
segmentation methods such as InlineVF (Siemens Healthi-
neers, Erlangen, Germany) are accessible, previous work
has suggested limited accuracy of resultant LV mass esti-
mates, and the most recent software versions are not available
to the majority of researchers.8 Therefore, a freely available
method to facilitate accurate and automated quantification
of LV mass using raw CMR images could enable impactful
cardiovascular discovery research. In particular, deep
learning methods may be well suited for estimation of LV
mass using CMR.

In the current study, we aimed to develop an open-source
deep learning model to perform LV mass estimation from
CMR images. We compared 2 separate approaches to LV
mass estimation: (1) direct estimation trained on manually
labeled LV mass values (Machine Learning for Health-
Regression [ML4Hreg]), and (2) identification of LV myocar-
dial pixels followed by integration to obtain LV myocardial
volume with subsequent conversion to LV mass (Machine
Learning for Health-Segmentation [ML4Hseg]) (Figure 1).
We then compared the accuracy of both deep learning
approaches to LV mass obtained using InlineVF within an
independent holdout set using manually labeled LV mass
as the gold standard.
Methods
Study population
The UK Biobank is a population-based prospective cohort of
502,629 participants recruited between 2006 and 2010 in the
United Kingdom primarily established to investigate the ge-
netic and lifestyle determinants of disease. The design of the
cohort has been described previously.9,10 Briefly, approxi-
mately 9.2 million individuals aged 40–69 years living within
25 miles of the 22 assessment centers in England, Wales, and
Scotland were invited, and 5.4% participated in the baseline
assessment. Extensive questionnaire data, physical measures,
and biological samples were collected at recruitment, with
ongoing enhanced data collection in large subsets of the
cohort, including repeated assessments and multimodal
imaging. All participants are followed up for health outcomes
through linkage to national health-related datasets.
Participants provided written informed consent. The UK
Biobank was approved by the UK Biobank Research Ethics
Committee (reference number 11/NW/0382). Use of UK
Biobank data (application 7089) was approved by the local
Mass General Brigham Institutional Review Board.
Cardiac magnetic resonance acquisition
For all analyses, we included individuals who underwent
CMR during the UKBiobank imaging assessment and whose
bulk CMR data were available for download as of April 30,
2019. The full CMR protocol of the UK Biobank has been
described in detail previously.11 Briefly, all CMR examina-
tions were performed in the United Kingdom on a clinical
wide-bore 1.5 Tesla scanner (MAGNETOM Aera, Syngo
Platform VD13A; Siemens Healthineers, Erlangen,
Germany). All acquisitions used balanced steady-state free
precession with typical parameters.

The contours extracted from the InlineVF algorithm and
stored in each DICOM file’s metadata were further processed
into pixel masks that labeled myocardium, LV cavity, and
background. The DICOMmetadata stores the inner and outer
contours of the myocardium as a 1-pixel-wide pixel mask; we
converted these contours to polygons, which we processed
into a segmentation pixel mask using morphologic image op-
erators. The short-axis CMR sequence in the UK Biobank
contained between 6 and 13 short-axis slices extending
from base to apex. Height and width of the slices varied by
individual but never exceeded 256 in either dimension. All
CMR images were zero-padded to be 3-dimensional tensors
with shape (256, 256, 13). To facilitate the cross-entropy loss
computation the 3 anatomical labels were one-hot encoded to
be label masks with shape (256, 256, 13, 3). Each CMR im-
age was normalized on a per-image basis to have mean zero
and standard deviation 1.
Left ventricular mass models
We assessed 2 independent deep learning–based approaches
to LV mass estimation. The first model was a 3D convolu-
tional neural network regressor ML4Hreg trained with the
manually annotated LV mass estimates provided by Petersen
and colleagues,7 PðiÞ to optimize the log cosh loss function,
which behaves like L2 loss for small values and L1 loss for
larger values:
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Here batch size, N, is 4 random samples from the training
set of 3178 after excluding testing and validation samples
from the total 5065 CMR images with LV mass values
included in P. The second model,ML4Hseg, is a 3D semantic
segmenter. To facilitate model development in the absence of



Figure 1 Overview of left ventricular (LV) mass algorithms. Depicted is an overview of the 3 approaches to cardiac magnetic resonance–derived LV mass
estimation compared in the current study. The top model utilizes deep learning–based regression trained by manually labeled LV mass. The middle model per-
forms deep learning–based segmentation informed by InlineVF contours. The bottommodel utilizes the InlineVF automated contours alone. For the deep learning
segmentation and InlineVF models, LV segmentations were converted to LV mass by summing pixel volume and multiplying by the density of LV myocardium
(1.05 g/mL, see text).
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hand-labeled segmentations, we trained with the InlineVF
contours to minimize Lseg; the per-pixel cross-entropy
between the label and the model’s prediction.
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Here the batch size, N, was 4 from the total set of 33,071.
Height, H, and width, W , are 256 voxels and there was a
maximum of 13 Z slices along the short axis. There is a chan-
nel for each of the 3 labels, which were one-hot encoded in
the training data, InlineVF (IVFÞ, and probabilistic values
from the softmax layer of ML4Hseg. Segmentation architec-
tures used U-Net-style long-range connections between early
convolutional layers and deeper layers. Such an approach al-
lows the final segmentation to use high-resolution local infor-
mation with more abstract contextual features, both of which
are critical for semantic segmentation. Since not all CMR im-
ages used the same pixel dimensions, we built models to
incorporate pixel size values with their fully connected layers
before making predictions. An overview of the architectures
of both deep learning models is shown in Supplemental
Figure 1.

ForML4Hreg, an LVmass estimate was produced directly.
To compute an LV mass estimate from ML4Hseg and Inli-
neVF, we calculated LV mass based on the pixels predicted
to be myocardium. Specifically, we multiplied the number
of pixels corresponding to myocardium by the pixel depth
(calculated to be 10 mm using image metadata and visual
confirmation; Supplemental Figure 2) to yield total LV
myocardial volume in milliliters. We then multiplied the
predicted myocardial volume by the tissue density of LV
myocardium, which is 1.05 g/cm3, to yield an estimate of
LV mass.12 Given evidence of systematic overestimation in
raw estimates obtained using both InlineVF and ML4Hseg

(Supplemental Figure 3), we centered initial LV mass esti-
mates using the observed mean LV mass of the manually
labeled data within strata of sex.

All models were optimized using the Adam variant13 of
stochastic gradient descent with initial learning rate 1 !
10-3, exponential learning rate decay, and batch size of 4
on K80 graphical processing units. Additional details
regarding model training and evaluation are described in
the Supplemental Methods. All models were implemented
in tensorflow version 2.1.0 using the ML4H modeling frame-
work.14 Model architectures, trained weights, and more
metrics are available at https://github.com/broadinstitute/
ml4h/tree/master/model_zoo/cardiac_mri_derived_left_vent
ricular_mass/.
Disease associations
Given established associations between increased LV mass
and the presence of LVH with cardiovascular disease, we
assessed for associations between CMR-derived LV mass
(using each method) and prevalent hypertension, atrial fibril-
lation, and heart failure. For these analyses, LVHwas defined
as LV mass index .72 g/m2 in men and .55 g/m2 in
women,7 and alternatively as the sex-specific 90th percentile
of LV mass.1 Indexing for body surface area was performed

https://github.com/broadinstitute/ml4h/tree/master/model_zoo/cardiac_mri_derived_left_ventricular_mass/
https://github.com/broadinstitute/ml4h/tree/master/model_zoo/cardiac_mri_derived_left_ventricular_mass/
https://github.com/broadinstitute/ml4h/tree/master/model_zoo/cardiac_mri_derived_left_ventricular_mass/
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using the DuBois formula.15 Diseases were defined using
self-report and inpatient ICD-9/10 codes (updated through
March 31, 2020; Supplemental Table 1).
Statistical analysis
The primary measure of LV mass estimation accuracy was
the Pearson correlation between model-estimated LV mass
values and hand-labeled LV mass within a holdout set
independent of model training. We also calculated the
mean absolute error (MAE) and analyzed agreement using
Bland-Altman plots16 as secondarymeasures. Correlation co-
efficients were compared using Dunn and Clark’s z statistic17

for overlapping dependent correlations. Confidence intervals
for MAE were obtained using 1000-iteration bootstrapping.
A linear recalibration formula to correct for bias in
InlineVF-based measurements was obtained by regressing
manually labeled LV mass on LV mass estimates obtained
using InlineVF. Associations between LV mass and LVH
with prevalent disease were assessed using logistic regression
models with adjustment for age and sex.

Although our primary aim was to obtain accurate LVmass
estimates, given that previous deep learning segmentation
models have reported model performance in terms of pixel-
wise agreement,18 we performed a secondary model evalua-
tion in which we assessed pixel-wise agreement of regions
segmented as LV blood pool and LV myocardium by calcu-
lating Dice scores. In these analyses, ML4Hseg was compared
against its training data (ie, InlineVF) as a measure of internal
validity, and bothML4Hseg and InlineVF segmentations were
then compared against 73 gold-standard segmentations of
short-axis images manually produced by a cardiologist (J.P.).

To assess the behavior of the deep learning segmentation
model, we generated saliency maps (maps denoting CMR
regions identified as myocardium). Statistical analyses were
Table 1 Baseline characteristics

Trainin

Age 64.2 6
Female 17,183
Race/Ethnicity
White 32,013
Asian or Pacific Islander 446
Black 207
Mixed 151
Other 159
Unknown 95

Systolic blood pressure (mm Hg) 138 6
Diastolic blood pressure (mm Hg) 79 6
HTN 10,122
Diabetes 1288
Heart failure 191
Myocardial infarction 686
CMR-derived LV mass (InlineVF, g) 154.9 6
CMR-derived LV mass (InlineVF centered, g) 90.0 6
CMR-derived LV mass (regression, g) 88.2 6
CMR-derived LV mass (segmentation, g) 88.9 6

CMR 5 cardiac magnetic resonance; HTN 5 hypertension; LV 5 left ventricula
performed using R v3.5 (packages “data.table,” “ggplot2,”
“epiR,” “pROC,” “nricens”).19,20 All 2-tailed P values , .05
were considered statistically significant.
Results
Within 33,071 individuals who underwent CMR, we trained
models to derive CMR-based LV mass using deep learning
regression (ML4Hreg) and segmentation (ML4Hseg). The
mean age was 64 6 8 years and 52% were female. Other
baseline characteristics of the training and test sets are shown
in Table 1.

Initial LV mass estimates obtained using InlineVF and
ML4Hseg demonstrated evidence of systematic overestima-
tion, which was corrected after centering each distribution
upon the mean observed manually labeled LV mass. An
example of a uniform overestimation error is depicted in
Supplemental Figure 4. The distributions of LV mass
stratified by sex using each method are shown in Figure 2.

In an independent holdout set of 891 individuals with
manually labeled LV mass estimates available, ML4Hseg

had favorable correlation with manually labeled LV mass
(r 5 0.864, 95% confidence interval [CI] 0.847–0.880;
MAE 10.41 g, 95% CI 9.82–10.99) as compared to ML4Hreg

(r5 0.843, 95% CI 0.823–0.861; MAE 10.51, 95% CI 9.86–
11.15, P 5 .01) and centered InlineVF (r 5 0.795, 95% CI
0.770–0.818; MAE 14.30, 95% CI 13.46–11.01, P , .01,
Figure 3). Bland-Altman plots demonstrated reasonable
agreement between both ML4Hseg and ML4Hreg and
manually labeled LV mass, although ML4Hreg tended to pro-
gressively underestimate greater LV mass values (Figure 4).
Saliency maps suggested that the models appropriately
identified areas of LV myocardium for LV mass estimation
(Supplemental Figure 5 and Supplemental Methods).
Correlations between manually labeled LV mass with
g set (N 5 33,071) Holdout set (N 5 5393)

7.5 63.6 6 7.7
(52.0%) 2847 (52.8%)
- -
(96.8%) 5235 (97.1%)
(1.3%) 61 (1.1%)
(0.6%) 29 (0.5%)
(0.5%) 23 (0.4%)
(0.5%) 27 (0.5%)
(0.3%) 18 (0.3%)
18 137 6 18
10 79 6 10
(30.6%) 1572 (29.1%)
(3.9%) 186 (3.4%)
(0.6%) 26 (0.5%)
(2.1%) 101 (1.9%)
38.5 154.9 6 38.2
33.1 90.1 6 32.8
16.2 87.6 6 15.6
28.4 89.1 6 27.8

r.



Figure 2 Distributions of cardiac magnetic resonance (CMR)-derived left ventricular (LV) mass obtained using each estimation method. Depicted are density
plots showing the distribution of CMR-derived LV mass (x-axis) using mean-centered InlineVF (left panel), the deep learning regression model (middle panel),
and the deep learning segmentation model (right panel). Results are shown for the full sample with available CMR imaging (N538,464).
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InlineVF and ML4Hseg prior to mean centering are shown in
Supplemental Figures 3 and 6. Correlation between
manually labeled LV mass and InlineVF additionally
adjusted using linear recalibration was slightly improved
(r 5 0.838, 95% CI 0.817–0.856) and is shown in
Supplemental Figure 6. A bias-corrected InlineVF LV mass
can be calculated using the following equation:
0:543487! unadjusted inlineVF LV mass1 5:808005.
Associations between CMR-based LV mass and
prevalent disease
We assessed for associations between CMR-derived LV
mass and prevalent cardiovascular disease. At the time of
CMR acquisition, there were 11,271 prevalent hypertension,
1053 atrial fibrillation, and 241 heart failure events. When
compared to the other approaches, LVH defined using
ML4Hseg consistently demonstrated the strongest associa-
tions with hypertension (odds ratio [OR] 2.76, 95% CI
2.51–3.04), atrial fibrillation (OR 1.75, 95% CI 1.37–2.20),
and heart failure (OR 4.67, 95% CI 3.28–6.49, Table 2).
Pixel-wise agreement
We then assessed agreement between ML4Hseg and its
training data (ie, InlineVF) within a held-out test set of
Figure 3 Correlation between manually labeled left ventricular (LV) mass and d
illustrating the correlation between manually labeled LV mass (y-axis) and cardi
learning regression (middle panel), and deep learning segmentation (right panel). R
training. Estimates for InlineVF and the segmentation model are displayed after cent
LV mass (see text).
InlineVF examples (n 5 300, 15,507 voxels). Agreement
was very high for LV blood pool segmentation, with a
mean dice score of 0.955. Although slightly lower, agree-
ment for myocardial segmentation was also high (n 5 300,
17,766 voxels), with a mean Dice score of 0.900. We then
compared segmentations from the 2 segmentation-based
models (ML4Hseg and InlineVF) to hand-labeled contours.
Dice scores for ML4Hseg (0.903 for LV; 0.631 for myocar-
dium) were consistently greater than those for InlineVF
(0.890 for LV; 0.601 for myocardium), although overall
agreement for myocardial segmentations was only moderate.
The standard deviation of the study-level Dice coefficient
was lower using ML4Hseg (0.083) as opposed to InlineVF
(0.098), suggesting more consistent performance. Visual
examination of segmentations obtained using ML4Hseg vs
InlineVF suggest that ML4Hseg may be more accurate owing
to a reduction in gross segmentation errors (Supplemental
Figure 4). A comparison of ML4Hseg and InlineVF with
previously published segmentation models is shown in
Supplemental Table 2.

Discussion
Within more than 30,000 individuals with CMR imaging per-
formed as part of the UK Biobank prospective cohort study,
we developed and tested 2 deep learning–based approaches
erived left ventricular mass estimated using each model. Depicted are plots
ac magnetic resonance–derived LV mass using InlineVF (left panel), deep
esults are shown among individuals within the test set independent of model
ering the distribution upon the observed sex-stratified mean manually labeled



Figure 4 Bland-Altman plots comparing manually labeled left ventricular
(LV) mass and derived LV mass using each model. Depicted are Bland-
Altman plots16 showing agreement between manually labeled LV mass and
LVmass estimated using InlineVF (top),ML4Hreg (middle), andML4Hseg (bot-
tom). Estimates using InlineVF andML4Hseg are depicted after mean centering
(see text). In each plot, each point represents a paired observation (ie, the manu-
ally labeled LVmass estimate and the model predicted LVmass estimate). The
x-axis depicts increasingmean of the paired observations. The y-axis depicts the
difference between the paired observations, with negative values representing
pairs in which manually labeled LV mass was larger than model-predicted
LVmass (underestimation using the model). The colored horizontal line shows
the overall mean difference within each sample, and the hashed horizontal lines
show the upper and lower bounds of themeandifference (defined as61.96 stan-
dard deviations of the difference). The corresponding bounds (a surrogate for
level of agreement) and the proportion of observations within those bounds
are depicted on each plot. A total of 13 (InlineVF), 1 (ML4Hreg), and 1
(ML4Hseg) outlying observations are not depicted for graphical purposes.
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to automated LV mass estimation. When compared to a sec-
ond deep learning approach and the proprietary D13A Inli-
neVF automated segmentation software, ML4Hseg

demonstrated the greatest correlation (86%) and lowest esti-
mation error (approximately 10 g) when compared against
manually labeled LV mass in a test set independent of model
training. Importantly, greater CMR-derived LV mass ob-
tained using our segmentation model had the strongest asso-
ciations with prevalent hypertension, atrial fibrillation, and
heart failure. We have shared our model architecture publicly
and aim to return CMR-derived LV mass values to the UK
Biobank for use by other researchers in order to facilitate
future cardiovascular discovery utilizing rich cardiac struc-
tural imaging features.

Our study supports and extends previous work demon-
strating the potential for deep learning to provide automated
quantification of imaging phenotypes. Over the last few
years, several deep learning–based approaches to LV seg-
mentation have been proposed, primarily utilizing variants
of a convolutional neural network architecture.18 Within
the UK Biobank, Aung and colleagues21 utilized a combina-
tion of deep learning and manual segmentation to extend LV
mass estimates to approximately 16,000 images, in order to
facilitate genetic analyses. Similarly, Bai and colleagues22

utilized a neural network to estimate several cardiac
structural features to enable broad phenotypic association
testing. In keeping with most previous models,22 we utilized
a convolutional neural network architecture with U-net style
connections between convolutional layers and deeper layers,
allowing models to learn abstract contextual features to
inform semantic segmentation. For training, we utilized
contours extracted from the InlineVF proprietary algorithm,
allowing us to leverage a comparatively large training set.
Furthermore, we explicitly compared several approaches to
automated LV mass estimation, observing that an image seg-
mentation model demonstrated favorable performance when
compared to deep learning–based regression and a recali-
brated InlineVF-based method. Importantly, we validated
the performance of our best-performing algorithm by
assessing correlation and agreement against manually labeled
estimates, and by testing for expected associations with
prevalent disease.

Our results provide insight into the comparative accuracy
of potential methods to estimate cardiac structural features,
suggesting that automated segmentation may provide supe-
rior performance. Specifically, we compared 3 approaches
to automated LV mass estimation: deep learning–based
segmentation (ML4Hseg), deep learning–based regression
on hand-labeled LV mass estimates (ML4Hreg), and use of
the automated contours provided by the InlineVF D13A pro-
prietary software. Even when compared to the deep learning
regressor trained to estimate LV mass directly, we observed
favorable accuracy using ML4Hseg, which more closely mir-
rors the manual process of clinical LV mass estimation, in
which cardiac radiologists manually label pixels as LV
myocardium. Of note, even though we trained ML4Hseg

using InlineVF contours, ML4Hseg resulted in substantially



Table 2 Associations between deep learning segmentation–derived left ventricular mass index and prevalent disease

N events†
Odds ratio with covariate (95% CI)

LVMI (per 1 SD) LVH LVH (90th percentile)

Hypertension
InlineVF 11,271 1.43 (1.39–1.47) 2.30 (2.15–2.46) 2.33 (2.17–2.50)
Regression 11,271 1.27 (1.24–1.30) 1.67 (1.38–2.01) 1.64 (1.53–1.76)
Segmentation 11,271 1.55 (1.51–1.59) 2.76 (2.51–3.04) 2.39 (2.23–2.57)
Atrial fibrillation
InlineVF 1053 0.99 (0.93–1.05) 1.19 (0.99–1.44) 1.27 (1.04–1.53)
Regression 1053 1.00 (0.93–1.07) 1.13 (0.59–1.93) 0.99 (0.80–1.21)
Segmentation 1053 1.13 (1.06–1.21) 1.75 (1.37–2.20) 1.61 (1.34–1.93)
Heart failure
InlineVF 241 1.45 (1.29–1.63) 2.92 (2.16–3.89) 3.02 (2.23–4.04)
Regression 241 1.39 (1.23–1.57) 3.94 (1.75–7.67) 2.36 (1.71–3.20)
Segmentation 241 1.71 (1.51–1.93) 4.67 (3.28–6.49) 3.73 (2.78–4.95)

LVH 5 left ventricular hypertrophy; LVMI 5 left ventricular mass index.
†Total N 5 37,261 with available phenotypic data and cardiac magnetic resonance–derived left ventricular mass estimates obtained using each method.
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more accurate LV mass estimates than InlineVF alone.
Improvement upon the InlineVF training data may be related
to a lower likelihood of committing gross segmentation
errors or an intrinsic robustness to noise present in training
labels, as described previously with deep learning architec-
tures.23,24 Although ML4Hseg also outperformed ML4Hreg,
our results demonstrate that a regression approach can
achieve reasonable accuracy, which may be improved as
more gold-standard LV mass estimates become available.
Future work is needed to better understand the relative
strengths and weaknesses of various approaches to deep
learning–based cardiac structural characterization, as well
as to assess the comparative generalizability of such
approaches when transferred to external datasets.

The current work highlights the potential for deep
learning to derive clinically relevant imaging phenotypes
in an efficient and automated manner. Increased LV mass
and LVH have long been implicated as important risk fac-
tors for adverse cardiovascular events.1–5 The detection of
LVH is clinically relevant, since the majority of cases are
related to hypertension, for which treatment can lead to
regression of hypertrophy and improvement in
cardiovascular risk profile.25,26 The associations and effect
sizes we observed between CMR-derived LVH and preva-
lent hypertension, atrial fibrillation, and heart failure were
consistently strongest using ML4Hseg and are broadly
consistent with prior studies.2,4 On balance, our findings
suggest that deep learning may facilitate recognition of
clinically relevant degrees of increased LV mass in a
manner deployable at scale.

We submit that our findings may directly enable future
cardiovascular research focused on CMR-derived LV mass,
and potentially additional imaging phenotypes. The UK Bio-
bank has performed CMR in more than 35,000 individuals,
with imaging expected to extend to nearly 100,000 individ-
uals in the near future. Although LV mass and LVH reflect
clinically important aspects of cardiac structure, quantifica-
tion of LV mass using gold-standard CMR is traditionally
performed manually, which is time-consuming and requires
specialized expertise. Although UK Biobank images include
the InlineVF D13A automated contours that may be used to
estimate LV mass, our findings support previous studies
demonstrating substantial overestimation.8 Furthermore,
InlineVF is a proprietary algorithm whose latest versions
are not accessible to all investigators.8 To this end, our
deep learning model ML4Hseg provides more accurate and
substantially less biased estimates, and the code underlying
the model is available for public use. For investigators opting
not to deploy our deep learning model, we also provide a for-
mula to obtain linearly adjusted LV mass using InlineVF
D13A, which demonstrated considerable bias correction
and only moderately lower correlation as compared to our
segmentation model.

Our study should be interpreted in the context of design.
First, although the correlation between our deep learning
model and manually labeled LV mass was very good
(86%), it was not perfect, which may result in some misclas-
sification of LV mass. Nevertheless, it was the best-
performing model of the approaches tested in terms of
correlation, agreement, and absolute error. Second, the num-
ber of manually labeled LV mass values available to train
ML4Hreg and evaluate each model was relatively limited.
Future models trained on a greater number of ground truth
examples may enable the development of more accurate
deep learning–based LV mass estimates. Third, although
pixel-wise agreement with hand-labeled segmentations was
favorable using ML4Hseg as opposed to InlineVF, overall
agreement using ML4Hseg was only modest, and initial LV
mass estimates using both ML4Hseg and InlineVF showed
evidence of systematic overestimation. Therefore, it is
possible that InlineVF (and secondarily ML4Hseg) tends to
result in contours that are systematically too large, with sim-
ple mean centering resulting in correction of the resulting
distributional shift. Since InlineVF is proprietary, we are
unable to fully evaluate the mechanism by which such over-
estimations may occur, although approaches to modify or
exclude inaccurate labels may further improve the perfor-
mance of future models. Fourth, although higher pixel-wise
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agreement has been reported using previous deep learning
approaches,18,27–31 we note that the majority of such
models were trained using hand-labeled segmentations pro-
vided on standardized image sets, which may not be directly
comparable to our UK Biobank test set images. Owing to
absence of pretrained weights or incompatibility of older
models with our codebase, we were unable to directly
compare the performance of ML4Hseg with previous models
within our test set. In light of these limitations, we
acknowledge that external validation of ML4Hseg would be
needed prior to deployment in datasets outside of the UK
Biobank.
Conclusion
Utilizing a unique resource of CMR images obtained within
more than 35,000 individuals, we developed ML4Hseg—a
deep learning segmentation model that provides automated
LV mass estimation with favorable accuracy as compared
to deep learning regression or the InlineVF proprietary algo-
rithm. Importantly, model-derived LV mass estimates
demonstrated expected associations with cardiovascular
disease. We have made our algorithm publicly available for
future use, and submit that such deep learning approaches
may facilitate broad cardiovascular discovery by enabling
future analyses of CMR-derived cardiac structural pheno-
types available at scale.
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