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Purpose: To develop an automated method based on deep learning (DL) to classify
macular edema (ME) from the evaluation of optical coherence tomography (OCT) scans.

Methods: A total of 4230 images were obtained from data repositories of patients
attended in an ophthalmology clinic in Colombia and two free open-access databases.
They were annotated with four biomarkers (BMs) as intraretinal fluid, subretinal fluid,
hyperreflective foci/tissue, and drusen. Then the scans were labeled as control or ocular
disease amongdiabeticmacular edema (DME), neovascular age-relatedmacular degen-
eration (nAMD), and retinal vein occlusion (RVO) by two expert ophthalmologists. Our
methodwas developed by following four consecutive phases: segmentation of BMs, the
combination of BMs, feature extraction with convolutional neural networks to achieve
binary classification for each disease, and, finally,multiclass classification of diseases and
control images.

Results: The accuracy of our model for nAMD was 97%, and for DME, RVO, and control
were 94%, 93%, and 93%, respectively. Area under curve valueswere 0.99, 0.98, 0.96, and
0.97, respectively. The mean Cohen’s kappa coefficient for the multiclass classification
task was 0.84.

Conclusions: The proposed DL model may identify OCT scans as normal and ME. In
addition, itmay classify its cause among threemajor exudative retinal diseaseswith high
accuracy and reliability.

Translational Relevance: Our DL approach can optimize the efficiency and timeliness
of appropriate etiological diagnosis of ME, thus improving patient access and clinical
decisionmaking. It couldbeuseful in placeswith a shortageof specialists and for readers
that evaluate OCT scans remotely.

Introduction

There is an upward trend of population aging
and, consequently, a significant increase in the global
burden of chronic diseases.1 Diabetic macular edema
(DME), neovascular age-related macular degener-
ation (nAMD), and retinal vein occlusion (RVO)
are the three main exudative macular diseases and
are also the most prevalent and potentially blind-
ing diseases in older patients because of their struc-
tural and functional sequelae.2,3 They have a serious
impact on patients and health care systems, and their

prompt recognition allows better therapeutic decision
making.3,4 Macular edema (ME) can be associated
with fluid accumulation that occurs in the extracellular
space in the macula, which is an important area needed
for sharp vision, fine detail, and color recognition.3

Optical coherence tomography (OCT) is the gold
standard test for the appropriate evaluation, detec-
tion, and follow-up of ME, and nowadays, more than
30 million OCT scans are taken per year.5 Currently,
the diagnosis relies on the manual evaluation of OCT
scans, conducted by expert ophthalmologists, which is
a subjective, challenging, and time-consuming process,
because there is not such a large number of avail-
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able specialists for a timely reading of the impressively
huge and expansive number of examination results.6,7
OCT allows the best evaluation of ME by recognizing
the proper location, extension, and significant disease
patterns that are so helpful to determine the underly-
ing pathology.8 The most representative findings are
capable of being identified, processed, and quanti-
fied. They are known as biomarkers (BMs), which are
certain characteristics that can be objectively measured
and evaluated as indicators with diagnostic, predictive,
and prognostic values.9

According to the literature, nAMD exhibits distinc-
tive BMs such as drusen, hyperreflective foci/tissue
(HRF/T), drusenoid pigment epithelial detachment
(PED), and subretinal fluid (SRF).10 DME shows
disorganization of retinal inner layers (DRIL), epireti-
nal membrane, intraretinal fluid (IRF), and HRF.11
RVO associated with ME reveals typical BMs like
retinal macrocystoid spaces, HRF, SRF, and external
limiting membrane disruption.12

The growing incidence of these diseases increases
the number of diagnostic tests with a very limited
number of readers to analyze them. As a compre-
hensive strategy to overcome these needs, the appli-
cation of artificial intelligence (AI) arises to support
the timely reading of diagnostic images, which usually
exhibit several patterns that can be challenging to
recognize even by expert evaluators.13,14 A deep learn-
ing (DL) approach confers the inherent advantage of
the optimized processing of a large amount of data
in a very short time.13 Abràmoff et al.15 conducted
a pivotal study for automated diagnosis of diabetic
retinopathy (DR), targeting superiority endpoints at
sensitivity higher than 85% and specificity higher
than 82.5%, becoming the first Food and Drug
Administration–approved AI-based medical diagnos-
tic algorithm. These values serve as a reference to
compare AI-based models with the performance of an
expert ophthalmologist.

Under the identification of specific BMs in OCT
images, an etiological diagnosis of ME can be made,
which consists of the proper recognition of the
causative disease of ME, not only the recognition of
ME as a single finding. However, a related automated
approach has not yet been performed. So far, multi-
class models have been developed for the recogni-
tion of diseases such as DR and AMD without
discriminating the presence of ME as a key patho-
logical finding.7,16–23 This article proposes a compu-
tational method based on DL to identify ME and
supportive BMs that allow an automated approach
to assess OCT scans and recognize the causative
disease of ME among three major exudative retinal
diseases.

Methods

Dataset

The OCT scans of this study were collected
from two free open-access databases and one private
dataset. The free open-access databases were the
ZhangLab dataset,24 which contains 207,130 OCT
scans taken from patients with choroidal neovascular-
ization, DME, drusen, and control, and the DUKE
dataset,25 which contains 269 SD-OCT volumes with
269,000 scans from people between 50 and 85 years of
age with large drusen (>125 μm) and AMD without
any vitreoretinal surgery. The OCT volumes extracted
from the ZhangLab and Duke datasets were acquired
with 49 lines in a 6 × 6 mm cube. The complete set was
exported as an E2E file into the free-open Labelbox
digital platform, where annotations were performed.
From these two open-access databases, 1343 images
with the presence of ME and BMs (disease) and 1343
images with the absence of ME (control) were selected.

The private dataset was provided from the reposi-
tory of patients who attended an ophthalmology clinic
in Colombia between 2015 and 2020. A total of 772
images with the presence of ME and BMs (disease)
and 772 images with the absence of ME (control) were
obtained. All images of all patients were supported
by clinical records that included a full ophthalmologic
examination, OCT, and fluorescein angiography (FA)
assessment, and the respective confirmation of the
proper diagnosis, performed by an experienced retinal
specialist. These OCT scans were acquired using a
Zeiss Cirrus HD-OCT 5000 device (Zeiss, Oberkochen,
Germany) capturing the area of 6 × 6 × 2 mm3

centered on the fovea and were also exported as an E2E
file into the Labelbox platform. The two expert readers
assessed the scan quality, ensuring it was suitable for
determining the presence of pathological patterns. The
poor-quality images were excluded. All scans were
de-identified before being analyzed by expert readers
to protect the safety and privacy of patients. The
ethics approval for the research followed the Ethics
Committee of the Faculty of Medicine of Universi-
dad Nacional de Colombia (Ref. 018-182; November
12, 2020). Moreover, the study was conducted accord-
ing to the tenets of Helsinki.

The ZhangLab dataset24 originally included a repre-
sentative cohort of patients with a distinct ethnicity,
including Caucasian, Asian, Hispanic, African Ameri-
can, and mixed population. The DUKE dataset25
included patients from the Age-Related Eye Disease
Study 2 Ancillary SD-OCT Study, which was origi-
nally enrolled at clinical centers in the United States.
Our patient characteristics for each diagnosis class are
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Table 1. Images Per Dataset for Segmentation and Classification Of OCT Scans

Subsets Biomarker Training Set Test Set Validation Set Total

Segmentation task
1 Drusen 498 146 70 714
2 HRF/T 486 141 68 695
3 Subretinal fluid 242 70 34 346
4 Intraretinal fluid 250 74 34 358

Binary classification task
5 nAMD 292 79 39 410
6 RVO 140 41 20 201
7 DME 107 32 15 154

Multiclass classification task
8 nAMD 296 75 39 410
9 RVO 140 41 20 201
10 DME 107 32 15 154
11 Control 238 68 36 342

shown as supplemental information (Supplementary
Table S1).

Finally, a total of 4230 images (half ME images
and half control images) were collected from the three
databases by two expert ophthalmologists according
to the presence of ME with 2115 images and control
(absence of ME) with 2115 images. The images were
manually annotated with four key BMs and labeled
with disease or control by two expert ophthalmologists.
The segmented BMs included IRF, SRF, HRF/T, and
drusen, taking into account retinal layers’ delineation
and the mutual agreement about the manual segmen-
tations. IRF was considered as hyporeflective cystoid
spaces within the surrounding retinal neuroepithelium,
with a minimum size of 25 μm. SRF was taken as the
hyporeflective space that separates the retina pigment
epithelium from the photoreceptor layer. HRF were
small reflective dots (<25 μm), andHRTwas defined as
larger areas than 25 μm of reflective material. Drusen
were identified as small elevations between the pigment
epithelium and Bruch membrane. Those elevations
larger than 25 μm were considered as pigment epithe-
lium detachment. In those cases of initial dissension
or uncertainty, the most experienced retinal specialist,
with more than 30 years of experience, decided on the
proper segmentation and the most relevant findings.

ME recognition was based on the presence of fluid
(IRFor SRF), and further classification of its causative
disease was made between DME, nAMD, and RVO.
The association of distinctive BMs for each disease
was initially helpful to classify remotely the underly-
ing pathology, according to the literature: the combina-
tion of drusen, HRF/T, PED, and SRF for nAMD10;
IRF (cystoid spaces), diffuse HRF (more than 30 in
number), DRIL (with loss of parallelism of retinal
layers without the ability to distinguish them), in the

case of DME11; macrocystoid spaces, SRF and perile-
sional HRF for RVO12; absence of fluid (SRF or IRF)
and BMs in control images. Then, the initial classi-
fication was cross-checked and verified, by consider-
ing the true labels specified in the two open-access
databases15,24 and the appropriate diagnosis performed
by experienced retinal specialists in the case of images
acquired from patients attended in the ophthalmology
clinic (substantiated with evidence of clinical records,
OCT, and FA evaluation). These last values were
considered the gold standard or ground truth.

The 4230 images were randomly split into eleven
different and independent subsets. Four subsets with
BMs were generated for the segmentation task, and
the remaining subsets were used for the classification
tasks: three subsets for the binary classification task of
each disease, and four subsets for multiclass classifi-
cation between control images and the three different
diseases. Finally, the balanced datasets were split into
training, test, and validation sets containing 70%, 20%,
and 10% of images, respectively. Moreover, the OCT
scans from a single volume should belong to a single
dataset for classification tasks to ensure heterogeneous
data from the subsets. The distribution of images per
set is presented in Table 1.

Deep Learning Proposed Method

The method comprises four consecutive phases: the
segmentation and identification of BMs, the combi-
nation of BMs with mask predictions, the feature
extraction performed by a convolutional neural
network (CNN) for the binary classification task
of each disease, and the multiclass classification of the
three ocular diseases and control images.
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Figure 1. Proposed architecture for segmentation in optical coherence tomography scans. Each imagewas initially preprocessed and then
explored with convolutional neural networks to achieve the proper segmentation of biomarkers, with the application of subsequent blocks
and functions like SE blocks.

Segmentation and Identification of Biomarkers
Four CNNs architectures (Res-UNet++, SE-

DRIU, SE-UNet, and DRIU) were independently
trained to perform automatic recognition of four
key BMs (IRF, SRF, Drusen, HRF/T) to diagnose
exudative macular diseases. The training process
of those CNNs was done with OCT scans accord-
ing to the distribution reported in Table 1, and
the manual segmentation of these BMs was done

manually by two expert ophthalmologists using the
Labelbox digital platform as presented in the Methods
section.

Figure 1 shows the CNN architecture proposed
for the segmentation task. The images were first
preprocessed: normalized, and data augmentation
transformations such as flip and random crops over
images were applied to raw scans for training segmen-
tation models.
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Figure 2. Example of combination of biomarkers in neovascular age-relatedmacular degeneration. (a) Single scan. (b) Scanwith subretinal
fluid (red), intraretinal fluid (green), hyperreflective tissue (blue), and drusen (magenta) predicted by the model.

Specifically , the known CNN architectures UNET
andDRIU (DeepRetinal ImageUnderstanding) based
on VGG-19 CNN were explored with some modifi-
cations.26 Res-UNet++ is an architecture based on
UNET architecture with residual blocks. The resid-
ual units allow learning the residual functions between
inputs and outputs.27 On Res-UNet++ squeeze-and-
excitation (SE) blocks on the encoder path were added
after each block.28

Some modifications were explored and analyzed in
DRIU architecture to ensure an outstanding perfor-
mance in segmentation tasks: the first was adding batch
normalization layers to improve the training speed and
training convergence, and then the batch normalization
layer also improved the network generalization ability;
another change was adding SE blocks on the last layers
of the CNNDRIU to create a newCNN termed as SE-
DRIU.

Combination of BMs andMask Predictions
The models used to predict BMs segmentation were

combined and associated to recognize the etiology of
ME. Three relevant studies10–12 supported the defini-
tion of diagnostic rules for the proper identification
of diseases, through recognition and combination of
certain biomarkers, as follows:

• nAMD: drusen, PED, SRF and HRT in the outer
retinal layers (Keane et al.10) (Fig. 2)
• DME: IRF (Cystoid spaces), multiple HRF (> 30
in number), DRIL (Panozzo et al.11)
• RVO: Macrocystoid spaces, SRF, perilesional
HRF (Ozer et al.12)

• Control: absence of fluid (SRF and/or IRF) and
BMs

Feature Extraction With CNNs to Perform the Binary
Classification Task

The overall pipeline for segmentation and classifica-
tion of OCT scans is shown in Figure 3. The first stage
included automatic BMs segmentation (IRF, SRF,
HRF/T, and drusen). Once a CNN model is trained
for the recognition of each BM, a suitable prediction
can be made per each scan, so they can be combined
to identify all the BMs present in each scan. Then,
the second step included the processing of the scan
with combined BMs and certain patterns (as previ-
ously explained with the diagnostic rules), through a
CNN, to achieve three different classifiers, one for each
retinal disease. Every single classifier must be capable
to determine the presence versus the absence of disease,
as appropriate, for each of the three exudative diseases
(nAMD, DME, and RVO).

OCT Scans Classification

The classification of the OCT scans was performed
by combining the raw OCT scan and the predicted
segmentation of SRF (red color), IRF (green color),
and HRF/T (blue color) placing each prediction on an
image color channel respectively. The drusen (magenta
color) predicted image was generated with a linear
combination resulting from stacking red and green
channels, as presented in Figure 2. The new image
obtained was superimposed on the original OCT scan
and it was termed as a scan with predictions as shown
in Figure 3.
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Figure 3. Block diagramof the proposedmethod to segment (upper) and classify (bottom)OCT scans. The predicted segmentation of each
different biomarker was combined and superimposed on every single scan. Through the Inception-ResNet-v2 architecture, it was possible
to achieve three different classifiers, one for each retinal disease.

Finally, an Inception-ResNet-v2 architecture was
used for training the classification model using the
new images obtained from data augmentation opera-
tions such as horizontal flip, zooming, and cropping
images. Inception-ResNet-v2 architecture uses residual
connections for Inception-v4 network.29

Multiclass Classification of Diseases
The classification among the three macular exuda-

tive diseases or absence of disease (control) was
achieved with a multiclass classification task. The
multiclass approach allows joining the three separated
and previously reported CNN architectures for each
disease, through a multiple logistic regression opera-
tion with the Softmax activation function.30 By
integrating all of the architectures, a single scan is
processed and analyzed with the entire CNNs, in such
a way that every single scan is finally labeled with the
corresponding class as control (absence orME), DME,
nAMD, or RVO associated with ME.

Performance Metrics

The Dice coefficient (DC) was used to evaluate the
performance of the CNN architectures for the BMs
segmentation tasks, which corresponds to amatrix that
identifies the coincidence between the manual segmen-
tation by the expert ophthalmologists and the system
prediction. The range of DC is between 0 to 1, where
1 is a perfect agreement between original segmentation
and predicted segmentation. In the classification task
is intended that BMs were detected, so DC values >0.5

are required as shown in the next equation31:

DC = 2TP/ (2TP + FP + FN) (1)

where TP is the true-positive pixels, FP is the false-
positive pixels, and FN is the false-negative pixels,
resulting from comparing the original segmentation
(ground-truth) and the predicted segmentation.

The performance of CNN in the classification task
is done using the following metrics: accuracy, sensi-
tivity, specificity, and the Cohen’s Kappa coefficient
(κ), which are shown below, where TN stands for true
negative, ρagree is the probability of correct classifica-
tion, and the ρchance is the probability of chance agree-
ment.31

Accuracy = (TP + TN) / (TP + TN + FP + FN)
(2)

Sensitivity = TP/TP + FN (3)

Specifficity = TN/TN + FP (4)

Cohen’s Kappa coeflicient

= (
ρagree − ρchance

)
/ (1 − ρchance) (5)

The value for κ varies from 0 to 1, accord-
ing to the level of agreement, where 0 indicates no
agreement, and 0–0.20 means slight agreement, 0.21–
0.40 fair agreement, 0.41–0.60 moderate agreement,
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0.61–0.80 substantial agreement, 0.81–0.99 almost
perfect agreement and 1 states for perfect agreement.31

Results

Biomarker Segmentation

Res-UNet++, SE-DRIU, SE-UNet, and DRIU
architectures were explored for the segmentation task.
The CNNs were trained for 200 epochs. Table 2 shows
the results of DC for BMs segmentation.

Figure 4 shows the segmentation process of
BMs in OCT scans, which includes the result of
manual segmentation performed by expert readers, the
automatic segmentations of HRF/T, IRF, and drusen
performed by the Res-UNet++, and the SRF segmen-
tation performed by SE-DRIU.

Binary Classification

The classification of OCT was done using an
Inception-ResNet-v2. The performance obtained with
the Res-UNet++ segmentations was systematically
analyzed. Table 3 shows the accuracy, sensitivity, speci-
ficity, and κ of the binary classification task performed
by the model. Figure 5 presents the ROC curves
and confusion matrices for retinal classification tasks
provided by our trained model.

Multiclass Classification

The Softmax activation function in the ResNet-
v2 architecture produces a probability of belonging
to one of the three diseases and control groups for
each image.21 Then, OCT class is the highest proba-
bility value provided by ResNet-v2 architecture and it
was used to calculate all performance metrics. Figure 6
shows the confusion matrix for multiclass classifica-
tion tasks and the ROC curves for individual predic-
tion of each disease. The values of diagnostic accuracy,

sensitivity, specificity, and κ of our proposed model are
reported in Table 4. The area under the curve values
obtained for DME, nAMD, RVO, and control images
were 0.99, 0.98, 0.96, and 0.97, respectively.

The calculation of the Gradient Weighted Class
Activation Map (Grad-CAM) was implemented to
provide a visual explanation of the more relevant
areas to classify into a disease.32 Figure 7 shows
model interpretability with feature maps as heat maps,
where red zones mean activated parts of our proposed
method, to distinguish the main characteristics that
the model considers when it differentiates diseases.
For example, drusen, SRF, and HRF/T were the
most significant BMs for detecting nAMD (Fig. 7a).
DME was activated in regions with IRF, HRF, and
DRIL (Fig. 7b). RVO associated with ME exhibited
macrocystoid spaces, HRF, and SRF (Fig. 7c). The
control scans had neither fluid nor biomarker findings.
(Fig. 7d).

Discussion

ME is a leading cause of decreased visual acuity and
potential irreversible visual loss, and the main causes
correspond to three particularly frequent diseases in
older patients: AMD, DR, and RVO.2,3 They may even
coincide in the same patient and usually exhibit similar
characteristics that challenge the proper diagnosis of
the underlying disease, even by experienced retinal
specialists.3 The prognostic value and therapeutic
orientation depend on their adequate recognition,
including the selection of the most suitable molecule
in cases of intravitreal management with antiangio-
genic and steroid agents.3,4 The clinical evaluation is
supported with diagnostic tools such as FA and OCT,
which is considered the gold standard for the diagno-
sis and monitoring of ME.5 No study has designed an
automated algorithm for the recognition of the cause
of ME among the three main retinal exudative diseases
from the exclusive evaluation of OCT images to the

Table 2. Dice Coefficient for Segmentation of Biomarkers Over Tested Architectures

Subretinal Fluid HRF/T Intraretinal Fluid Drusen

CNNs Validation Test Validation Test Validation Test Validation Test

Res-UNet++ 0.6650 0.6213 0.5728 0.5686 0.8269 0.8211 0.6346 0.6037
SE-DRIU 0.6968 0.6657 0.5834 0.5432 0.8183 0.8000 0.6806 0.5973
SE-UNet 0.6639 0.6594 0.5344 0.4537 0.8321 0.7200 0.5967 0.5269
DRIU 0.6508 0.6213 0.5369 0.5209 0.8151 0.7877 0.6646 0.5291

The best values in the test set are in bold.
CNNS, convolutional neural networks.



Automated Classification of Macular Edema in OCT TVST | September 2022 | Vol. 11 | No. 9 | Article 29 | 8

Figure 4. Examples of segmentation of the four key biomarkers:
subretinal fluid (red), intraretinal fluid (green), hyperreflective foci
and tissue (blue), and drusen (magenta). From left to right: origi-
nal optical coherence tomography scan, biomarker segmentation
performed by expert ophthalmologists, and model prediction.

Table 3. Accuracy, Sensitivity, Specificity, and Cohen’s
Kappa Coefficient for Binary Classification Task on the
Test Set for the Three Major Exudative Retinal Diseases

Test

Cohen’s Kappa
Disease Accuracy Sensitivity Specificity Coefficient

nAMD 0.96 0.93 1 0.924
RVO 0.99 0.98 1 0.99
DME 1 1 1 1

best of our knowledge. Previous works are limited to
the recognition of retinal fluid and its location, as well
as the isolated identification of certain BMs,16–23 which
are not grouped for the classification of the causative
disease of ME. Additionally, the specific case of RVO
associated with ME has not been explored with an
automated approach.

This study proposes a DL method applied to OCT
scans for the automatic segmentation of BMs and
the classification of macular diseases. Our proposed
approach method achieved a state-of-the-art perfor-
mance, showing an improvement over the original
architecture (DRIU) for OCT scans segmentation.
Res-UNet++ and SE-DRIU CNNs presented better
results for fluid segmentation compared to DRIU
and UNet models. However, our proposed SE-DRIU
method got better performance because it reduced the
number of trainable parameters, which means less time
for training and predicting.27

Our method is based on the recognition of key BMs
and their appropriate combination for the diagnostic
approximation of the causal disease of ME, according
to the literature,10–12 which is in specific the analytical
exercise that an expert reader should normally do, with
the challenge of differentiating similar findings between
themain underlying conditions and sometimes without
the support of clinical information or additional
diagnostic tools.

The segmentation of BMs and the performance
of the model for their detection revealed interest-
ing findings that are evident in clinical practice when
recognizing and interpreting OCT images. Thus, for
example, IRF exhibited the best recognition perfor-
mance, while HRF had lower values of DC. This is
explained by the greater facility for the right identifi-
cation and demarcation of the retinal cystoid spaces,
because of their size and the convenient contrast
with the surrounding neuroepithelium, both at the
time of reading by an expert and when determining
their presence by the automated model. On the other
hand, smaller and often multiple findings with difficult
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Figure 5. Confusion matrixes and ROC curves for binary classification task of each disease. (a) NAMD. (b) DME. (c) RVO.

Figure 6. ROC curves, area under the curve (AUC) and global confusionmatrix for the multiclass classification task. Themodel was trained
for the appropriate recognition of four classes: nAMD, DME, RVO, and control images.

Table 4. Accuracy, Sensitivity, Specificity, and Cohen’s
Kappa Coefficient for the Multiclass Classification of
the Three Major Exudative Retinal Diseases and Control
Images for the Test Set

Multiclass Classification

Mean Cohen’s
Kappa

Disease Accuracy Sensitivity Specificity Coefficient

Control 0.93 0.96 0.85
nAMD 0.97 0.98 0.93

0.84
RVO 0.93 0.97 0.73
DME 0.94 0.94 0.93

differentiation of contrast from the surrounding retinal
layers, such as drusen and specifically in the case of
HRF, make manual segmentation difficult for precise
demarcation and it becomes a great challenge to
guarantee coverage of the entire of these findings,
which can also be confused if they are located close to
the retinal hyperreflective layers. These same difficul-
ties that the clinicians undergo, even the most experi-
enced, are also present at the time of being evaluated
and performed by an automated method.

The accuracy, sensitivity, and specificity achieved
by our model were comparable to the performance of
an expert specialist for the classification of the three
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Figure 7. Heatmap visualization of regions considered by the model to perform disease classification. The original optical coherence
tomography scan, manual annotation performed by expert ophthalmologists, andmodel prediction are shown from left to right to provide
a visual comparison. (a) Detection of subretinal fluid, hyperreflective foci/tissue and drusen was highlighted for recognition of nAMD.
(b) Detection of intraretinal fluid and diffuse hyperreflective tissue conducts to recognition of DME. (c) Macrocystoid spaces, subretinal fluid
and hyperreflective foci are highlighted on RVO. (d) No fluid or biomarker was highlighted by the deep learning model in the control scan.

diseases, as verified by the good results obtained with
the κ, which also confirms a remarkable interobserver
concordance. The best results were obtained for the
DME and nAMD classification. Although the speci-
ficity for RVO was lower compared with the other
diseases, the manual detection and segmentation is not
an easy task due to the great similarity in ME patterns
between DME and associated with RVO, which can be
confused even by highly experienced readers.

Li et al.33 developed a classification algorithm for
the automatic detection of choroidal neovasculariza-
tion, DME, drusen, and normal images on OCT scans
using the ResNet50 neural network. They achieved

an outstanding classification performance with an
accuracy of 0.973, a sensitivity of 0.963, and a speci-
ficity of 0.985.33. Tsuji et al.22 proposed a method
to improve classification accuracy by replacing convo-
lution neural networks with a capsule network and
achieved an accuracy of 0.996. Taking these models
as a baseline to compare our results, a method
was proposed with excellent accuracy, sensitivity, and
specificity for the classification of ME caused by the
three major macular exudative diseases and normal
images, in a way comparable to the reading of an
expert specialist. The application of our model could
be especially useful in the support of the diagnostic
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process at different moments of the overall process of
patient care. Thus, for example, it can be supportive
at the primary care level for optometrists and general
practitioners as a screening tool. It can also be very
useful for general ophthalmologists in the diagnostic
and referral process, as well as for retina specialists
in making clinical decisions, collecting information for
the evaluation of local epidemiology, and the predic-
tive study of these conditions.34 It can also be incorpo-
rated into digital health strategies such as telemedicine,
in light of the additional challenges posed by public
health contingencies, such as the recent SARS-CoV-2
pandemic, to try to overcome these added barriers to
prompt care.35

Moreover, there was an interobserver comparison.
The scans were properly labeled and classified by two
experienced ophthalmologists, who also had access to
medical records and other diagnosis tools such as FA,
to be consistent with the right classification in the case
of the private dataset, and to the true labels speci-
fied in the two open-access databases (ZhangLab24
and Duke25 datasets). It is well known that in some
locations, very few ophthalmologists read the scans
remotely, and the demand outstrips supply. Then, our
method could be especially useful to optimize the
efficiency and timeliness of appropriate diagnosis, as
well as clinical decision making, thus improving patient
access and care, particularly in places with few readers
who must issue their medical opinions without other
supportive tools.

The limitations of this study include the limited
number of OCT scans, expert readers, and the restraint
to one ophthalmology center and two free open-
access databases. Moreover, the use of retrospective
data restricts the opportunity to include clinical infor-
mation and imaging follow-up, which may enhance
the performance of the model. Although the focus
of our method was on the three major exudative
macular diseases, other retinal conditions could be
associated with the presence of retinal fluid, as is
already the case of vitreomacular traction syndrome
(VMT). The VMT disorders are often clearer and
more consistent for their remote identification with
the exclusive evaluation of OCT images, consider-
ing the evident finding of epiretinal membranes and
the tractional pull on the macula, with the conse-
quent alteration of retinal architecture. Because of the
relative ease in recognizing cases of VMT without the
need for supportive automated tools, the classification
of these conditions was not included in this study.
However, it is recognized that it is an important differ-
ential diagnosis that should be explored together with
the three main exudative macular diseases in future
studies.

In an attempt to include ME images from patients
of different ethnicity, our study included: OCT scans
from the Latin American population attended at the
ophthalmology clinic, random images acquired from
the ZhangLab dataset (which originally included a
representative cohort of Caucasian, Asian, Hispanic,
African American, and mixed population)24 and
random images obtained from the DUKE dataset that
included the United States Population.25 However, the
inclusion of multiple ophthalmological centers and the
proper demographic characterization of their patients
in different locations will allow assessing the generaliz-
ability in future studies. Then this study offers a basic
architecture that can be enriched by multiple ophthal-
mological centers, feeding the system with a greater
number of images and expert readers, to improve the
diagnostic behavior.

The Grad-CAM exploration opened the black box
of the model by conferring interpretability and a visual
explanation of the performance of the CNNs that
highlights key BMs and their combination. This issue
should be validated in future studies by performing
proper training of CNNs on raw OCT scans. In this
regard, the model provides qualitative information that
is of great importance for clinical practice. Because
of that, it could be a teaching tool for the reading
and interpretation of OCT scans by comparing the
performance of students with different levels of train-
ing and the model lecture, which would be theoretically
comparable to the diagnosis made by a retina profes-
sor. In future studies, the integration of complemen-
tary models for the diagnosis, treatment, and progno-
sis of diseases could provide a valuable strategy for
the comprehensive clinical analysis of patients, promot-
ing the opportunity for timely attention and clinical
decision making in a fast, efficient, and reliable way.

In this article, we also release our entire image
dataset for the segmentation of biomarkers and the
classification of ME diseases, including the codes
for their corresponding models. This allows future
researchers to compare their performance with our
method, as well as to enrich the architecture of the
artificial neural network (https://github.com/yeisonlega
rda/EtiologicClassificationOfMacularEdemaUsing-A
DeepLearningApproachOpticalCoherenceTomograph
yScans).

Conclusion

Our method not only recognizes macular edema,
as has been explored in previous studies through fluid
identification, but it also may classify its cause among

https://github.com/yeisonlegarda/EtiologicClassificationOfMacularEdemaUsing-ADeepLearningApproachOpticalCoherenceTomographyScans
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three different maculopathies, which are the major
exudative retinal diseases. The proper recognition of
key BMs and their specific combination, including
location and quantity of the findings, allowed pattern
determination of ME that in turn achieved the right
identification of the underlying disease. The Grad-
CAM exploration opened the black box of the devel-
oped mathematical model, conferring interpretability
to our automated method and a corresponding visual
explanation of the performance of the CNNs, reveal-
ing the importance of the automated identification of
BMs and their association. Furthermore, this model
may help to deal with the high demand for several
tests, lifting the burden for ophthalmologists, partic-
ularly in places where the availability of experts is
scarce. Likewise, this approach may become especially
useful considering that it is not uncommon that many
readers must issue their medical opinions exclusively
from the evaluation of OCT scans, with no access to
medical records and other diagnostics and guidance
tools, for which an automated etiological approach
could provide greater accuracy in diagnosis, allowing
them to make the timeliest and appropriate medical
decisions.
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