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Colorectal cancer (CRC) is the second leading cause of cancer death and the third most
prevalent malignancy. Colorectal tumors exchange information with the surrounding
environment and influence each other, which collectively constitutes the tumor
microenvironment (TME) of CRC. Many studies have shown that exosome-derived non-
coding RNAs (ncRNAs) play important roles in various pathophysiological processes by
regulating the TME of CRC. This review summarizes recent findings on the fundamental
roles of exosomal ncRNAs in angiogenesis, vascular permeability, tumor immunity, tumor
metabolism and drug resistance. Certainly, the in-depth understanding of exosomal
ncRNAs will provide comprehensive insights into the clinical application of these
molecules against CRC.
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INTRODUCTION

CRC is the third most common malignancy (1). Although data from the American Cancer Society
showed a gradual decline in mortality rates for CRC, this trend hides a rise in mortality among
young adults (2). With the death rate for young people with CRC rises, a better understanding of
molecular pathogenesis and the exploration of sensitive surveillance tools for early diagnosis and
therapy are critical.

CRC is widely regarded as a heterogeneous disease, and its pathogenesis involves multiple
genetic changes and multiple pathways (3). Tumor heterogeneity causes differences between and
within CRC, which also increases the difficulty in the treatment of CRC (4, 5). TME contributes
significantly to this heterogeneity because it is the site of tumor cell formation and growth (6, 7).
TME is an intricate system, composed of primary cancer cells, associated stromal and immune cells,
which considerably affects the behavior of CRC cells at the primary tumor site as well as in
metastatic lesions (8). More evidence indicates that exosomes may impact carcinogenesis and
development as crucial players in the communication between tumor cells and surrounding
components in TME (9, 10). According to a growing amount of scientific, lots of ncRNAs
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existing in exosomes play a regulatory role in various
pathophysiological activities of CRC (11, 12). Furthermore,
ncRNAs in exosomes can influence the malignant progression
of tumorigenesis by a variety of ways, making them a research
hotspot in recent years (10, 13).

In this review, we discussed the various functions and
mechanisms of exosomal ncRNAs: microRNA (miRNA), long
non-coding RNA (lncRNA), circular RNA (circRNA) in TME,
thereby elucidating the possibility of exosomal ncRNAs being
applied clinically to treat CRC.
1 THE TME OF CRC

Cancer progression is dependent on the capacity of tumor cells to
establish a supportive TME (14). Studies have demonstrated that
the microenvironment is involved in causing a condition of
growth arrest in the tumor (15). At the same time, tumors fight
against the normal microenvironment to overcome the anti-
tumor pressure (15). While tumors communicate closely with
the surrounding microenvironment, the biochemical signals in
the microenvironment impact cell growth and tumorigenesis
(16, 17). The normal microenvironment inhibits cancer
progression in a steady state. On the contrary, when this
steady-state structure is out of control, the microenvironment
itself will send out tumor-promoting signals, promoting cell
malignant transformation (18, 19).

TME is an important factor leading to the heterogeneity and
targeted therapy of CRC (6, 20). The composition of TME is
influenced by both tumor features and patient state, which impacts
disease progression, responsiveness to cancer therapy, and survival
prognosis (21). A lot of research shows that TME plays a crucial
role in tumor growth, metastasis, and drug resistance (22).
Components of the TME in CRC include colorectal tumor cells,
blood vessels, fibroblasts, immune and inflammatory cells, the
extracellular matrix, as well as many signaling molecules and
pathways that impact the angiogenic response (18, 23, 24).

As the most abundant cell type in TME, CAFs regulate many
aspects of tumorigenesis (25, 26). Studies have shown that cancer-
associated fibroblasts (CAFs) contribute to CRC progression
through immunosuppression, extracellular matrix (ECM)
remodeling and promotion of epithelial mesenchymal
transformation (EMT) (27). Colorectal tumor cells affect the
recruitment of CAF precursors and induce the differentiation of
normal fibroblasts into CAFs, promote tumor growth and
maintain its malignant propensity (24). Suetsugu et al. found that
colon metastatic tumor cells can recruit CAFs to metastatic sites
and contribute to tumor progression (28). In addition, the TME
shows great diversity in different types of cancer (29). In terms of
immune cells in the TME of colon cancer, high tumor-associated
macrophages (TAMs) are associated with fewer liver metastases
(30). However, another study showed that high TAM is associated
with a higher clinical stage in the TME of esophageal cancer (31).
While high TAM is associated with poorly differentiated histology
and lymph node metastasis in cholangiocarcinoma (32). Ugai et al.
found the immunological microenvironment were different
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between moderate and advanced CRC patients. Moreover,
lymphocytic response patterns, macrophages, and regulatory T
cells in the TME were associated with patients’ age. Thus, immune
cell profiles by age of diagnosis may help to explain the growth and
progression of CRC in young people (33).

Tumor and stromal cells located in the TME can secrete both
various soluble molecules and vesicles, including exosomes (24).
Exosomes have been explored as key factors mediating cell-to-cell
communication between tumor cells and the microenvironment,
which are involved in various signaling pathways regulated in the
TME. Hence, exosomes in the TME could be a promising
therapeutic target for CRC therapy (34).
2 OVERVIEW OF EXOSOMES

2.1 Composition and Biogenesis
of Exosomes
Exosomes were first described in the 1980s as membranous
vesicles in reticulocytes (35). Initially, exosomes were
considered cellular garbage, withal later studies have shown
that exosomes can transfer genetic information to achieve cell-
to-cell communication (36). The biogenesis of exosomes
mainly involves three stages: first, the fusion of endocytic
vesicles produces early endosomes (EEs), which encapsulate
the cargo of endocytic cells that share certain biomolecules and
membrane proteins; second, the late endosomes (LEs) are
composed by the inward sprouting of the multivesicular body
(MVB) membrane; finally, MVB can fuse with lysosomes or
autophagosomes for degradation, which can also fuse with the
plasma membrane to release the contained substances, namely
exosomes (37, 38). They are encased in lipid bilayers and carry
various biological molecules, such as RNA, DNA, proteins,
glycans, and lipids (39). Many studies revealed that exosomes
are rich in ncRNA (40). ncRNAs can bind to recipient target
cells through exosome carriers to transmit information and
change the gene expression and function of recipient cells, thus
affecting cancer progression to a certain extent (34, 41).

2.2 Exosome-Derived ncRNAs:
Participants in the TME of CRC
Exosome-derived ncRNAs are involved in driver mutations and
epigenetic modifications that drive various pathophysiological
processes in CRC (42). A large number of studies on exosomes
have shown that exosomal ncRNAs communicate throughout
cancer and non-cancer cells and are closely involved in the
occurrence and development of CRC (43, 44). Moreover, studies
have shown that exosomes are much easier to take up by
cancerous cells than other vesicles of an equal amount,
indicating that exosomes have a higher selectivity for cancer
targeting (45). We particularly focused on the roles of miRNAs,
lncRNAs, and circRNAs in the TME of CRC (Table 1).

2.2.1 miRNAs
Since the discovery that exosomes carry genetic material inside,
scientists have conducted extensive research on exosomes.
May 2022 | Volume 12 | Article 887532

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Exosome Derived ncRNAs in CRC
Currently, the role of exosomal miRNAs in cancer is the most
studied. miRNA is an endogenous short ncRNA sequence that
binds to the 3′ untranslated region (UTR) of a target mRNA to
suppress its production by degrading or repressing translation
(60). As we know, miRNAs are capable of regulating different
cellular processes (61). However, when some of these
mechanisms are changed and disrupted miRNA expression,
tumor growth deviates from its typical course of progression
(61). Increasing evidence shows that miRNA-carrying exosomes
released from immune cells, mesenchymal cells, and cancer cells
in the TME can shuttle from donor cells to recipient cells, even
being taken up by distant cells to alter gene expression (62, 63).

Exosomal miR-19a is enriched in the serum of CRC patients as
well as associated with poor prognosis (64). Treating CRC-bearing
mice with tumor-derived exosomal miR-34a significantly reduced
tumor size and prolonged survival of CRC-bearing mice (65). Dai
et al. found CRC cell-derived exosomal miR-10b transferred to
fibroblast cells and directly inhibited PIK3CA expression, reduced
PI3K/Akt/mTOR pathway activity, and boosted TGF-b and SM
a-actin expression (46). Exosomal miR-16-5p from bone marrow-
derived mesenchymal stem cells (BMSCs) acted on CRC cells,
reduced CRC cell proliferation, migration and invasion by
reducing ITGA2 (47). According to Tian et al., CRC-derived
exosomal miR-221/222 transferred to hepatic stromal cells
decreased serine protease inhibitor Kunitz type 1(SPINT1)
expression to activate liver hepatocyte growth factor (HGF),
which plays a vital role in the formation of pre-metastatic niche
(PMN) effect, leading to CRC invasiveness (48). Moreover, CRC
cell proliferation and invasion were inhibited by exosomal miR-
22-3p from BMSCs, which inhibited the PI3K/AKT pathway by
reducing RAP2B expression (49). CRC-derived exosomal miR-
106b-3p promoted CRC cell invasiveness by targeting deleted in
liver cancer-1(DLC-1) (50). CAFs-derived exosomal miR-17-5p
targeted RUNX3 to increase TGF-b1 expression and activate the
TGF-b signaling pathway. Furthermore, TGF-b1 in the TME
activated CAFs, which in turn released additional exosomal
miR-17-5p to CRC cells and resulted in a cancer-promoting
feedback loop, finally promoting CRC aggressive phenotype
(51). These findings suggested exosomal miRNAs expression is
closely related to CRC progression.
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2.2.2 lncRNAs
lncRNAs have the characteristics of low expression, moderate
sequence conservation, and high tissue-specific (66). What makes
lncRNAs unique is that most of them are specifically expressed in
certain conditions and tissues instead of having widespread roles
(66, 67). Interestingly, lncRNAs can be preferentially sorted into
exosomes, which are intercellular communication mediators and
involved in CRC development (68).

According to great research findings, lncRNAs spread to cells
via exosomes, shaping a favorable microenvironment for tumor
cell growth (69). Compared with normal cell-derived exosomes,
cancer cell-derived exosomes are enriched with specific
lncRNAs, which further accelerate the malignant progression
of cancer in recipient cells (61). Exosomal lncRNA MALAT1
secreted by metastatic CRC cells increased FUT4 expression and
activated PI3K/Akt/mTOR to sponge miR-26a/26b in primary
CRC cells, leading to CRC progression (52). CAFs-derived
exosomes delivered LINC00659 to CRC cells and sponged
miR-342-3p, which regulated ANXA2 for CRC cell
proliferation, invasion and migration (53). Moreover,
downregulation of lncRNA UCA1 in serum exosomes affected
cell migration in CRC progression by controlling the ceRNA
network (54). Through the miR-496/RAP2C axis, exosomal
lncRNA NNT-AS1 promoted CRC cell proliferation,
migration, and invasion (55). In addition, exosomal lnc CCAL
and exosomal lnc CRNDE-h have been implicated in CRC
progression (70, 71).

2.2.3 circRNAs
Circular RNA (circRNA) is an endogenous ncRNA created by
exon back-splicing (72). One study calculated the ratio of back
splicing to forward splicing product reads between cellular and
cell-derived exosomes, the data obtained showed that the ratio of
circRNA levels to linear RNA levels was approximately 6-fold
higher in exosomes than in cells. This finding indicated that
circRNAs are more present in exosomes than linear RNA (73).
Duo et al. also came to the above conclusion by identifying KRAS
mutant (DKO-1), mutant/wild-type (DLD-1) and wild-type
(DKs-8) circRNA expression profiles in cells and exosomes
(74). Moreover, numerous studies have shown that circRNAs
TABLE 1 | Roles of exosomal ncRNAs in the TME of CRC.

Exosomal ncRNAs Source cell Expression Molecular axis Functions Ref.

miR-10b CRC cells Up miR-10b/PI3K/Akt/mTOR Promote CRC growth (46)
miR-16-5p BMSCs Up miR-16-5p/ ITGA2 Reduce CRC cell proliferation, migration and invasion (47)
miR-221/222 CRC cells Up miR-221or222/ SPINT1/ HGF Promote CRC cell invasiveness (48)
miR-22-3p BMSCs Up miR-22-3p/RAP2B/PI3K/ AKT Inhibit CRC cell proliferation and invasion (49)
miR-106b-3p CRC cells Up miR-106b-3p/ DLC-1 Promote CRC cell invasiveness and metastasis (50)
miR-17-5p CAFs Up miR-17-5p /RUNX3 / MYC Promote CRC cell aggressive phenotype (51)
lncRNA MALAT1 CRC cells Up Lnc MALAT1/PI3K/Akt / mTOR/miR-26a/26b Promote the CRC cell invasion and metastasis (52)
LINC00659 CAFs Up LINC00659/miR-342-3p/ ANXA2 Promote CRC cell proliferation, invasion and migration (53)
lncRNA UCA1 CAFs Up lncRNA UCA1/ceRNA Promote CRC migration (54)
lncRNA NNT-AS1 CRC cells Up lncRNA NNT-AS1/miR-496/RAP2C Promote CRC cell proliferation, migration, and invasion (55)
circ-ABCC1 CRC cells Up circ-ABCC1/Wnt/b-catenin Promote cell stemness, sphere formation, and metastasis (56)
circ_PTPRA CRC cells Down circ_PTPRA/miR-671-5p-SMAD4 Inhibit CRC tumor growth (57)
circCOG2 CRC cells Up circCOG2/miR-1305/TGF-b2/SMAD3 Promotes CRC cell proliferation, migration and invasion (58)
circEPB41L2 CRC cells Up circEPB41L/miR-21-5p or miR-942-5p/PTEN/AKT Inhibit CRC cell proliferation and migration (59)
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are abundant and stable in exosomes and can translocate to
nearby or distant cells and performed their functions (75, 76).
Zhao et al. found that exosomal circ-ABCC1 from CRC cells
promoted cell stemness, sphere formation, and metastasis by
activating the Wnt/b-catenin pathway (56). Yang et al. found
that exosomal circ_PTPRA inhibited CRC tumor growth by
modulating the miR-671-5p/SMAD4 network (57). Through
the miR-1305/TGF-b2/SMAD3 pathway, exosomal circCOG2
can transmit from cancer cells with high metastatic potential to
cancer cells with low metastatic potential, promoting CRC
proliferation, migration and invasion (58). Additionally, CRC
cell-derived exosomal circEPB41L2 sponged miR-21-5p and
miR-942-5p to inhibit proliferation and migration of CRC cells
by regulating the PTEN/AKT signaling pathway (59).
3 POSSIBLE FUNCTIONS AND
MECHANISMS OF EXOSOME-DERIVED
NCRNAS IN TME OF CRC

The occurrence and progression of CRC require various
complicated procedures (77). Metastasis is frequently the most
dangerous and primary cause of CRC treatment failure which
goes through a complex chain of events (78, 79). Abundant
studies have shown that ncRNAs are significantly enriched in
exosomes, which spread to the TME and remodel TME,
ultimately leading to tumor metastasis, such as angiogenesis,
vascular permeability, tumor immunity, tumor metabolism, drug
resistance (Figure 1) (80–82). Additionally, drug resistance is
Frontiers in Oncology | www.frontiersin.org 4
closely linked to TME, exosomal ncRNAs play key roles in tumor
cell adaptation to the TME and drug resistance (83). Based on the
current studies, we discussed the role and mechanism of
exosomal ncRNAs in TME of CRC in this section (Figure 2).

3.1 Exosome-Derived ncRNAs Promote
Colorectal Tumor Angiogenesis and
Vascular Permeability
One of the distinguishing characteristics of cancer is its ability to
stimulate angiogenesis (84). In practice, TME needs to provide
more oxygen and nutrients as the tumor continues to grow (23).
During this process, TME sends signals to endothelial cells,
causing an increase in the expression of mutiple angiogenic
factors in order to form a new blood vessel (85). In particular,
vascular endothelial growth factor (VEGF) is a powerful
angiogenic factor that is widely recognized as a critical element
in angiogenesis (86). VEGF regulates vessel formation by binding
to VEGF receptors (VEGFRs)-1, -2, and -3, which are expressed
on vascular endothelial cells (87). To create innovative anti-
angiogenic medicines, it will be necessary to have a deeper
knowledge of the cellular and molecular pathways that are
involved in tumor angiogenesis.

Abnormal expression of exosomal ncRNAs impact cancer
progression through regulating angiogenesis (88). He et al. found
that miR-21-5p is propagated from CRC cells to recipient human
umbilical vein endothelial cells (HUVECs) via exosomes, then
activated b-catenin signaling pathway, increased downstream
target expression, and regulated CRC angiogenesis and vascular
permeability (89). In another study suggested significant
A

B

D EC

FIGURE 1 | Exosomal ncRNAs contribute to the (A) tumor angiogenesis, (B) vascular permeability, (C) tumor immunity, (D) tumor metabolism, (E) drug resistance
in the TME of CRC.
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upregulation of CRC cell-derived exosomal miR-1229
suppressed HIPK protein expression and activated the VEGF
pathway of HUVECs. Moreover, exosomal miR-1229 inhibitor
substantially inhibited tumor growth and angiogenesis as
demonstrated by a nude mouse xenograft model (90). Zeng
et al. showed that cancer-derived exosomal miR-25-3p drives
CRC development by altering the expression of VEGFR2, ZO-1,
occludin and Claudin5 in endothelial cells through targeting
KLF2 and KLF4 (91). Likewise, the STAT3/VEGFR-2 signaling
axis was activated by CRC cell-derived exosomal miR-221-3p,
which promoted endothelial cells angiogenesis (92). Shang et al.
discovered that miR-185-3p was significantly expressed in cancer
cell-derived exosomes and overexpression of its target gene
FOXO1 could reverse the increase in angiogenesis-related
proteins caused by miR-183-5p in HMEC-1 cells (93). Chen
et al. revealed that cancer cells derived exosomal miR-27b-3p
trafficking into vascular endothelial cells reduced VE-Cad and
p120 expression, increased vascular permeability in vivo, and
eventually accelerated CRC metastasis (94). These studies
demonstrate that exosomal ncRNAs affect angiogenesis and
permeability to promote colorectal tumor metastasis.

3.2 Exosome-Derived ncRNAs Regulate
Colorectal Tumor Immunity
Tumor-associated immune cells are a part of the TME, which
play an important role in the TME and may have tumor-
promoting or opposing effects (95, 96). Dunn et al. proposed
the “cancer immunoediting” theory, which is based on the dual
role of immunity in the complex interaction between tumor and
host (97). In short, the immune system has the ability to prevent
tumor development and progression while suppressing its
occurrence and development (96, 97). However, some initial
tumors can evade this attack and continue to develop in the host,
increasing their chances of metastasis and recurrence (98).
Interactions between immune cells and cancer cells, as well as
Frontiers in Oncology | www.frontiersin.org 5
exosome-related intercellular communication, are vital in tumor
immune regulation, producing an immunosuppressive
environment that promotes cancer development and
progression (99).

Multiple studies demonstrate that exosomal ncRNAs mediate
complex interactions between tumor and immune cells and
induce changes in the expression of genes that regulate
immunosuppression, confirming the functional significance of
exosomal ncRNAs in immune modulation (100, 101). Another
study showed that exosomal circPACRGL generated from CRC
cells promoted neutrophil N1-N2 differentiation through the
miR-142-3p/miR-506-3p-TGF-b1 axis (102). Moreover, the
immune system normally responds to foreign antigens by
promoting the proliferation and differentiation of cytotoxic T
cells in TME (103). Xian et al. found that overexpression of
exosomal lncRNA KCNQ1OT1 secreted by CRC cell affected
cytotoxic T cells by regulating PD-L1 ubiquitination via miR-
30a-5p/USP22, leading to immune escape (104). Similarly,
exosomes ncRNAs can potentially serve as a bridge between
tumor cells and NK cells, facilitating the exchange of
information. For instance, exosomal lncRNA SNHG10 derived
from CRC cells contributed to immune escape by suppressing
NK cell function by upregulating INHBC expression as
well (105).

Macrophages are innate immune cells that play a variety of
roles in host defense and tissue homeostasis in TME (106).
Exosomes have also been found to affect the pre-metastatic
niche and promote cancer metastasis by altering the
localization and function of tumor-associated macrophages
(TAMs) through related mechanisms (11, 107, 108). Wang
et al. found that when CXCL12/CXCR4 axis is activated, CRC
cells produce exosomal miRNAs (miR-25-3p, miR-130b-3p, and
miR-425-5p), which macrophages may take up and target PTEN
through activation of PI3K/Akt signaling pathway, resulting in
the M2 phenotypic transfer. Crucially, M2-polarized
FIGURE 2 | Possible mechanisms of exosome-derived ncRNAs to regulate tumor metastasis, tumor immunity, tumor metabolism and drug resistance.
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macrophages in turn secrete VEGF, which promotes CRC
angiogenesis and liver metastases (109). Zhao et al. showed
that tumor-derived exosomal miR-934-induced M2
macrophage polarization promotes CRC liver metastasis
through activation of the CXCL13/CXCR5 axis (110).
Meanwhile, another study found that CRC cell-derived
exosomal lnc-RPPH1 promotes CRC cell metastasis and
proliferation in vivo through mediating macrophage M2
polarization by binding to TUBB3 (111).

These studies confirmed that exosomal ncRNAs can alter the
immunological microenvironment via influencing immune
cell phenotypic.

3.3 Exosome-Derived ncRNAs Reprogram
Colorectal Tumor Metabolism
In addition, reprogramming of energy metabolism is also seen as
a hallmark of cancer (84). Glycolysis is the primary source of
energy metabolism in tumors and obtains more sugar
breakdown capacity, which can convert glucose into lactate to
generate ATP, resulting in the formation of an acidic TME that is
more conducive to cancer growth (112). Tao et al. found that
exosomal miR-101-3p targeted and decreased HIPK3 expression
in CRC cells, reduced mitochondrial membrane potential and
produced reactive oxygen species (ROS), while increasing
aerobic glycolysis and encouraging colorectal tumor
development (113). Exosomal circ_0005963 from drug-
resistant cells were delivered to drug-sensitive cells to inhibit
glycolysis via the circ_0005963/miR-122/PKM2 pathway (114).
Moreover, exosomes can mediate communication between
cancer cells and adipocytes, which facilitate the transfer of
nutrients such as lipids in the TME (115). Exosomal miR-
146b-5p was released by cancer cells to promote browning of
white adipose tissue (WATs) and increase lipolysis. Further
study indicated that exosomal miR-146b-5p inhibited HOXC10
overexpression to increase WAT browning, reduce oxygen
consumption and regulate lipolysis (116).

Furthermore, the nutritional status of oxygen has a
substantial impact on cancer’s ability to use energy, and
differences in energy storage between normoxic and hypoxic
cells present various transfer potentials in the TME (117).
Exosomal circ-133 generated from Hypoxic cells was
transported into normoxic cells and promoted CRC metastasis
by acting on the miR-133a/GEF-H1/RhoA axis (117). Yang et al.
found that CAFs-derived exosomal circEIF3K was delivered to
CRC cells and promoted CRC progression by regulating the
miR-214/PD-L1 axis in the hypoxic microenvironment (118).
According to these studies, targeting exosome cargoes that
govern energy metabolism might provide a novel and
successful method for cancer therapy.

3.4 Exosome-Derived ncRNAs Impact
Colorectal Tumor Drug Resistance
Exosomal ncRNAs are involved not only in cancer progression
and metastasis, but also in treatment resistance development
(119). Obviously, one of the challenges in the treatment of tumor
processes during chemoradiotherapy is the development of drug
Frontiers in Oncology | www.frontiersin.org 6
resistance. Exosomes present important mediators of
intercellular communication, may contribute to the horizontal
spread of drug resistance in heterogeneous cancer cell
populations, which might make it impossible to treat many
cancers effectively (120).

Methotrexate (MTX) is an antineoplastic drug that is widely
used as standard chemotherapy in the treatment of various
malignancies (121). Under MTX treatment, downregulation of
the CDX2/HEPH axis by CAFs-derived exosomal miR-24-3p
inhibitor accelerates the resistance of colon cancer cells to MTX
(122). Recently, studies have demonstrated that exosomal miR-
208b promotes regulatory T cells (Tregs) expansion by targeting
PDCD4, and exosomal miR-208b upregulation was the most
pronounced in oxaliplatin-resistant cells. That may be associated
with reduced oxaliplatin-based chemosensitivity in CRC (123).
Exosomal miR-208b can thus be employed as an oxaliplatin
treatment response indicator. CAFs delivered exosomal lncRNA
CCAL to cancer cells inhibited apoptosis in CRC cells, activated
the b-catenin pathway, and promoted oxaliplatin resistance both
in vitro and in vivo (70). Hon et al. found that exosomal circ-
0000338 can transfer chemoresistance from FOLFOX-resistant
cells to sensitive cells (124).

Furthermore, CRC patients who are undergoing chemotherapy
commonly develop resistance to the drug 5-fluorouracil (5-FU)
(125, 126). Similarly, overexpression of exosomal miR-181d-5p
suppressed 5-FU sensitivity of CRC cells (127). According to Hu
et al., exosomal miR-92a-3p was shown to be considerably higher in
5-FU/L-OHP resistant CRC patients than in 5-FU/L-OHP sensitive
CRC patients. Further research found that CAFs-derived exosomal
miR-92a-3p transfer to CRC cells then promoted the Wnt/b-
catenin pathway, directly inhibited FBXW7 and MOAP1 to
suppress mitochondrial apoptosis, which affects cancer growth
and medication resistance (128). In addition, Ren et al. discovered
that exosomal lncRNA H19 acted as a competitive endogenous
RNA sponge for miR-141 to activate the Wnt/b-linked protein
pathway, hence increasing resistance to oxaliplatin in CRC cells
(129). These results implied that exosomal miRNAs might be as
useful biomarkers for the development of CRC metastases
and chemoresistance.

The above-mentioned evidence revealed that using exosomal
ncRNAs to induce tumor cell resistance to anticancer drugs,
cancer-associated cells were reprogrammed in the TME. We can
determine that exosomal ncRNAs can also be potential
therapeutic targets for overcoming drug resistance, thereby
contributing to cancer patients.
4 TREATMENT STRATEGIES FOR CRC
TARGETING NCRNA DERIVED FROM
EXOSOMES

4.1 Exosome-Derived ncRNA as a
Potential Colorectal Tumor Biomarker
CRC can be a preventable and treatable disease, and with current
treatment, early diagnosis can greatly improve five-year survival
May 2022 | Volume 12 | Article 887532
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rates (130). Biomarkers in bodily fluids can help identify the
presence of cancer, metastasize and assess the response of
treatment. Apparently, the methods of obtaining bodily fluids
are significantly less invasive than traditional biopsies (131).
Since exosomes can be detected in all bodily fluids and are
produced by all cells, exosomes are great liquid biopsies that can
be used to track the progression of sickness over time (37).
Moreover, exosomal ncRNA is stable, abundant, reproducible
and disease-specific, which lays the foundation for the early
diagnosis of CRC (132, 133).

Min et al., found that miRNAs in exosomes, such as Let-7b-
3p, miR-139-3p, miR-145-3p and miR150-3p, can be used as
biomarkers for early diagnosis of CRC and have been validated in
large cohorts (134). Besides, they had more discriminative power
for multiple miRNA-binding diagnoses than for single miRNA-
binding diagnoses (134). Moreover, high level of exosomal miR-
19a expression in serum suggest the possibility of CRC
recurrence (64). Pan et al. screened circ-0004771 as a potential
diagnostic biomarker for CRC, and the ROC curve area of
circ0004771 can distinguish benign intestinal diseases (BID),
stage I/II CRC patients, and healthy controls (HCs) (135). Zhao
et al. studied the exosomes taken from the plasma of CRC
patients and discovered that the more severe the CRC patients,
the lower the expression of miR-193a and the higher the
expression of let-7g (136). Exosomal circR1 had specificity in
CRC diagnosis and was associated with overall survival. In
addition, the combination of exosomal circLPAR1, CEA, and
CA19-9 enhanced the AUC value to 0.875 (137). As reported by
Gao et al., CRC patients with high serum lncRNA 91H
expression levels were generally at a higher risk of tumor
recurrence or metastasis than other patients. Furthermore,
CRC recurrence or metastasis can be predicted by detecting
serum exosomal lncRNA 91H (138).

The above examples all demonstrate the potential and possibility
of exosomal ncRNAs in various aspects, such as differential
diagnosis, prognostic diagnosis, and staging characteristics.

4.2 Potential Application of Exosome-
Derived ncRNAs in CRC Therapy
Numerous studies have established that exosomes serve crucial
biological functions in cancer growth. Therefore, specifically
targeting exosomes may be a promising therapeutic approach.
Interfering with CRC progression by modulating exosome
expression or blocking its transport pathway may be a
therapeutic strategy.

Exosomes, with their lipid bilayer structure, can delivery anti-
tumor chemicals to target cells, so as to achieve the effect of
treatment (139–141). Researchers have packaged interfering
RNAs and chemical drugs into exosomes through various
methods and targeted transport to specific cells (142, 143).
This engineered exosome technology can achieve the purpose
of treating disease areas or cells. Tian et al. targeted exosomes by
intravenous injection to specifically deliver doxorubicin (DOX)
to tumor tissue in nude mice to inhibit tumor growth (144).
Bagheri et al. created a MUC1 aptamer-modified exosome for
DOX administration and showed promising efficacy in reducing
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colorectal tumor development in vivo, laying the groundwork for
the use of exosomes in preclinical cancer treatment (145).
Asadirad et al. found that exosomes carrying miR-155 could
stimulate bone marrow-derived DC cells to release inflammatory
factors IL-12p70 and IFN-gto achieve anti-CRC effect (146).
Furthermore, Zhan et al. designed exosomes as a nanoplatform
capable of precisely delivering drugs and miR-21i to tumor cells,
and animals treated with this technique showed increased tumor
suppression without severe adverse effects (147). Liang et al. used
exosome engineering to deliver the combination of miR-21 and
the chemotherapeutic drug 5-FU to recipient cells, which
effectively overcame drug resistance and increased the
cytotoxicity of 5-FU-resistant colon cancer cells (148). With
the continuous refinement and diversification of engineered
exosome technology, the exosomal drug delivery system holds
a lot of promise for use in the medical field as a natural nanoscale
drug delivery platform.

Taken together, the potential applications of exosome-derived
ncRNAs in cancer therapy are not limited to these aspects. Their
roles in TME have great potential and application prospects in
the future.
CONCLUSION

Exosome-derived ncRNAs play non-negligible roles in reshaping
the CRC microenvironment. They serve as novel means of cell-
to-cell crosstalk in TME, regulating signaling pathways that
occupy their roles in cancer development and progression.
Although research progress on functions and mechanisms of
exosomal ncRNAs provide broad prospects for cancer diagnosis
and therapeutic applications, the gap between their discovery
and clinical practice cannot be ignored.

In the continuous research on the clinical application of
exosomes, the technology of sensitive and accurate separation
and detection of exosomes has not yet reached the expected level.
Additionally, given the various advantages of exosomes, further
research on how to maximize their loading efficiency is also
required. The application of exosomes to cancer therapy will
undoubtedly accelerate as more undiscovered areas are explored.
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