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Multiplexed imaging analysis of the tumor-immune
microenvironment reveals predictors of outcome in
triple-negative breast cancer
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Triple-negative breast cancer, the poorest-prognosis breast cancer subtype, lacks clinically

approved biomarkers for patient risk stratification and treatment management. Prior literature

has shown that interrogation of the tumor-immune microenvironment may be a promising

approach to fill these gaps. Recently developed high-dimensional tissue imaging technology,

such as multiplexed ion beam imaging, provide spatial context to protein expression in the

microenvironment, allowing in-depth characterization of cellular processes. We demonstrate

that profiling the functional proteins involved in cell-to-cell interactions in the micro-

environment can predict recurrence and overall survival. We highlight the immunological

relevance of the immunoregulatory proteins PD-1, PD-L1, IDO, and Lag3 by tying interactions

involving them to recurrence and survival. Multivariate analysis reveals that our methods

provide additional prognostic information compared to clinical variables. In this work, we

present a computational pipeline for the examination of the tumor-immune microenviron-

ment using multiplexed ion beam imaging that produces interpretable results, and is gen-

eralizable to other cancer types.
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Triple-negative breast cancer (TNBC) is a subtype of breast
cancer that is negative for estrogen receptor, progesterone
receptor, and human epidermal growth factor receptor 2.

Representing an estimated 10–20% of breast cancers, it is char-
acterized by aggressive behavior, including earlier onset, larger
tumor size, and a more advanced grade1,2. TNBC is the subtype
of breast cancer with the poorest prognosis3, having a lower
chance of survival4,5 and higher risk of recurrence, especially
within a short timeframe6,7. The absence of common breast
cancer hormonal targets and high heterogeneity among TNBC
tumors makes treatment management difficult, creating a need
for more advanced interrogation of cellular processes within
TNBC tumors8. Currently administered treatments, such as
checkpoint inhibitors, only provide benefit to a small proportion
of treated patients and are associated with high cost and toxicity9.
Their effectiveness is limited, necessitating further interrogation
of cancer-cell cues, factors in the tumor microenvironment, and
host-related influences10. Currently, physicians are unable to
separate patients with a low risk of recurrence from patients with
a high risk of recurrence, making it difficult to deescalate treat-
ments for those who may not need it and pursue more aggressive
treatments for those who do11,12. To risk-stratify for overall
survival, the American Joint Committee on Cancer staging system
is the most commonly used technique in clinical practice; it is
based on variables such as tumor size, nodal status, and the
presence of distant metastasis. However, its survival estimates
vary considerably because other prognostically relevant factors
are excluded13. There is a need to identify additional biomarkers
of TNBC to aid prognosis14–16. Identifying predictors of recur-
rence and survival in TNBC patients would allow improved
patient stratification and targeted treatment plans, which would
lead to better outcomes and spare patients from unnecessary
aggressive therapies17.

The tumor-immune microenvironment (TIME) is a dynamic
system comprising cancer cells, immune cells, and the sur-
rounding extracellular matrix and vasculature18. The TIME is
modulated by the expression and secretion of proteins that
contribute to angiogenesis, immune suppression, and the coor-
dination of the immune response19. Previous research has
sought to discover the features of the TIME that are tumor-
promoting or tumor-rejecting using transcriptomic and pro-
teomic data20–23.

However, until recently, conventional histological techniques
lacked the ability to measure the expression of a multitude of
proteins at subcellular resolution while preserving spatial
information24,25. Advancements in high-dimensional multiplexed
imaging, such as multiplexed ion beam imaging (MIBI), have
allowed for more direct interrogation of the TIME26 while
boosting standardization and reproducibility of results27. MIBI
uses secondary ion mass spectrometry to image antibodies tagged
with isotopically pure elemental reporters28. It is compatible with
formalin-fixed paraffin-embedded (FFPE) tissue samples, the
foremost preservation method of solid tissue in routine clinical
pathology. MIBI enables in-depth analysis of the TIME, mea-
suring the expression of more than 40 proteins simultaneously
while preserving spatial information29 and avoiding spectral
overlap30 and autofluorescence31.

This study builds on the work of Keren et al.25, who found
structure in the composition and spatial organization of the
TIME. TIME architecture was broadly classified as immune cold,
mixed, or compartmentalized, based on the amount of immune
infiltration into the tumor. The immune architecture was asso-
ciated with patient survival.

However, previous research did not test the association between
single-cell features of the TIME and clinical outcomes such as
recurrence/survival. Although previous work has identified macro-

level features associated with survival, there is still a need to study
more granular features of the TIME at subcellular resolution, such
as the expression patterns of individual proteins, which can add
prognostically relevant information32 and the characteristics of
cell-to-cell interactions33.

In this work, we aim to uncover features of the TIME that are
associated with recurrence and overall survival by analyzing MIBI
scans of TNBC tissue25,28. The primary focus is to profile the
proteins involved in cell-to-cell interactions and establish a link
between the spatial organization of cells with varying expression
patterns and clinical outcomes. We examine interactions invol-
ving functional proteins and immunoregulatory proteins in par-
ticular. As corollary aims, we demonstrate an association between
protein co-expression patterns and recurrence/survival, examine
proteins whose overall expression is associated with recurrence/
survival, and test associations between immune composition and
recurrence/survival.

Results
Patient population. Our study examines 38 TNBC patients with
no neoadjuvant treatment, a subset of the 41 patients examined
by Keren et al.25. FFPE slides of breast tissue were taken from
patients, scanned using MIBI, and subsequently segmented to
demarcate cell boundaries25. Patient data regarding age, tumor
grade, stage, cancer site, and clinical outcome—recurrence and
overall survival (OS)—were also gathered (Table 1). We addi-
tionally gathered MIBI images of breast tissue of 8 healthy
patients, a subset of the patients examined by Risom et al.34.

Dataset. MIBI scans produce images of protein expression from
FFPE tissue, where each image has 44 channels; each channel
conveys the expression of a certain marker on the tissue sample
(Fig. 1a). Cellular segmentations for both TNBC and healthy
patients’ images were provided by Keren et al. and Risom et al.,
who utilized DeepCell, a deep learning technique for identifying
individual cells from MIBI data25,34,35. Cell type assignment for
TNBC patients’ images was also performed by Keren et al.25

through a hierarchical methodology (Fig. 1b) (Methods).

The immune composition of the microenvironment is not
associated with recurrence or survival. We examined whether

Table 1 Patient cohort characteristics.

Characteristic Value

Patients, no. 38
Age, mean (SD) 54 (15)
CS Tumor Size, mean (SD) 38 (39)
Tumor Grade, no. (%) 1 1 (3%)

2 5 (13%)
3 29 (76%)
4 2 (5%)
Unknown 1 (3%)

TNM Classification, no. (%) 1 4 (11%)
2 1 (3%)
2A 7 (19%)
2B 3 (8%)
3 1 (3%)
3A 1 (3%)
3B 1 (3%)
3C 2 (5%)
Unknown 17 (45%)

Cells per image, mean (SD) 5006 (1527)

SD refers to standard deviation. No. refers to the number or count.
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the prevalence of certain cell populations in the TIME was
associated with recurrence and survival. We measured the
number of cells of each cell type in each patient and represented
that number as a proportion of the total number of cells in that
patient’s sample. We then performed univariate Cox regression
and performed a two-sided t-test of the variable coefficient to

determine whether each cell type’s prevalence was related to
recurrence and overall survival.

After performing Benjamini–Hochberg correction to account
for multiple comparisons36, there were no cell types whose
coefficients were significant for either recurrence (Table 2) or
overall survival (Table 3).
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Single-cell expression levels of functional proteins are not
associated with recurrence or survival. We examined whether
the expression of functional proteins in the cells of the tissue
samples was associated with recurrence and survival (Fig. 2a). We
calculated the per-pixel expression levels of each protein in each
patient. The histograms of expression for several proteins are

shown in Fig. 2b, and the histograms for all proteins are shown in
Supplementary Fig. 1. For this analysis, we included only func-
tional proteins, which stand in contrast to proteins used solely for
lineage assignment; their expression is modulated according to
the functional state of the cell. Proteins whose expression had
been implicated by previous literature as having an important role

Fig. 1 Overview of the computational pipeline. a Drawing of the layered structure of MIBI scans. Each MIBI image has dimensions of 2048 × 2048 pixels
with 44 channels, where each channel represents expression for each protein; i.e., each pixel in the image at each channel conveys the concentration of
that protein at that location. b Color-mapped image of cell segmentation performed on a MIBI image. The cell segmentation map has one channel with
dimensions of 2048 × 2048. Each cell has its own cell type represented in colors referenced in the color bar. From these cell segmentation maps and the
original MIBI images, we extract cell counts, measure protein expression, and quantify co-expression. c Voronoi tessellation diagram of the cell
segmentation map. Each polygon corresponds to a cell in the original segmentation, such that each point in the area of the polygon is closer to the centroid
of the corresponding cell than any other cell. Each polygon borders a finite number of other polygons, simulating adjacencies between cells. d Using
Voronoi diagrams, we analyze interactions between neighboring cells. e An interaction matrix is computed for each patient, with the entry at row A and
column B representing the number of times a cell positive for protein A was adjacent to a cell positive for protein B (top). The top half triangle of the matrix,
split across the diagonal, is selected, as shown with the purple rectangles. These rectangles are then flattened to form one feature vector, i.e., interaction
features, for each patient. f Interaction features are used to cluster patients, and the two patient clusters are compared with regard to recurrence/survival
using Kaplan–Meier curves and the log-rank test.

Table 2 Immune composition Cox regression results for recurrence.

Cell type Coefficient Hazard ratio Coefficient P BH-corrected FDR

Monocyte/neutrophil −0.372 0.689 0.093 0.647
CD8+ T −0.072 0.93 0.154 0.647
Macrophage −0.053 0.949 0.182 0.647
Mesenchyme 0.037 1.038 0.183 0.647
CD4+ T −0.07 0.933 0.244 0.647
Tumor 0.011 1.011 0.286 0.647
Natural killer −0.867 0.42 0.329 0.647
Dendritic/monocyte −0.118 0.888 0.345 0.647
Endothelial 0.103 1.109 0.46 0.767
B −0.013 0.988 0.68 0.899
Neutrophil −0.046 0.955 0.682 0.899
Dendritic 0.022 1.022 0.739 0.899
CD3+ T 0.039 1.04 0.779 0.899
Other 0.004 1.004 0.942 0.971
Regulatory T −0.009 0.991 0.971 0.971

There is no association between immune composition and recurrence in the cohort; no cell types had significant coefficients after correction. For this test, n= 38 TNBC images.

Table 3 Immune composition Cox regression results for survival.

Cell type Coefficient Hazard ratio Coefficient P BH-corrected FDR

Dendritic/monocyte −0.292 0.747 0.076 0.435
Tumor 0.018 1.018 0.100 0.435
Monocyte/neutrophil −0.331 0.718 0.121 0.435
Other −0.159 0.853 0.124 0.435
Macrophage −0.066 0.936 0.145 0.435
Mesenchyme −0.047 0.954 0.308 0.647
CD3+ T −0.169 0.845 0.315 0.647
Dendritic 0.048 1.05 0.41 0.647
Neutrophil −0.119 0.888 0.429 0.647
Natural Killer 0.357 1.43 0.431 0.647
Endothelial 0.102 1.107 0.505 0.689
CD4+ T −0.022 0.978 0.628 0.692
B −0.015 0.985 0.644 0.692
Regulatory T −0.129 0.879 0.646 0.692
CD8+ T 0.006 1.006 0.88 0.880

There is no association between immune composition and survival in the cohort; no cell types had significant coefficients after correction. For this test, n= 38 TNBC images.
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in tumor progression were designated functional, whereas those
with less relevant roles were deemed lineage. We counted 18
markers in the functional category and 18 in the lineage category
(Supplementary Table 1).

There were no functional proteins whose coefficients had
significant p-values after Benjamini–Hochberg correction for
either recurrence (Supplementary Table 2) or overall survival

(Supplementary Table 3). Keratin6 (coefficient= 0.025, HR=
1.025, p= 0.034) and HLA-DR (coefficient=−0.018, HR=
0.982, p= 0.045) were significantly associated with survival before
correction. We placed Keratin6 and HLA-DR in a multivariate
model to assess their relative prognostic relevance; Keratin6
remained significant (p= 0.04), whereas HLA-DR did not (p=
0.06). Expression of Keratin6 has been associated with poor
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survival outcomes in previous work37, which our finding loosely
corroborates. CD45RO (coefficient=−0.019, HR= 0.981, p=
0.051) was nearly significantly associated with recurrence before
correction. CD45RO has previously been discussed in the
literature for its role in anti-tumor immunity, especially with
regards to its expression in memory T cells38,39. Our findings
loosely corroborate this, as CD45RO expression was associated
with favorable recurrence outcomes.

Within this cohort, the expression levels of functional proteins
did not hold reliable prognostic relevance. As such, we decided to
move away from macro-level interrogation of the TIME, opting
to add spatial context to our analysis by quantifying protein co-
expression and cell-to-cell interactions.

Co-expression of functional proteins in patients’ cells is asso-
ciated with recurrence and survival. We sought to develop a
computational pipeline to test the association between localized
coordination of immune activity and recurrence/survival. We
calculated the number of times that pairs of functional proteins
were co-expressed across all cells of a patient, summarizing this
information in a “co-expression matrix.” (Fig. 2c).

The co-expression matrices provide information regarding the
phenotypes of the cells present in each patient, placing the
expression of proteins in a single-cell context. We used the co-
expression information as features to describe each patient.
Patients were grouped by hierarchical clustering, and the tree was
cut to form two patient clusters (Fig. 2d). Our choice to select two
clusters in this analysis, as well as all hierarchical clustering
analyses, was motivated by silhouette score analysis40, which
showed that division into two clusters would maximize inter-
cluster dissimilarity (Supplementary Table 4). The recurrence/
survival outcomes of the two patient clusters were compared
using two-sided log-rank tests. They diverged according to
recurrence (χ2(df= 1, n= 38) = 3.75, p= 0.053), and survival (χ2

(df= 1, n= 38)= 2.80, p= 0.094) (Fig. 2e). We also tested
patient stratification when three clusters were chosen (Supple-
mentary Fig. 2). The log-rank test (df= 2) p-value for recurrence
was 0.093 and 0.222 for survival.

We assessed the relative importance of individual co-expression
features using random forest variable importance. The four most
important co-expression features were CD45RO+H3K27me3
(score= 0.822), CD45RO+H3K9ac (score= 0.767), CD45RO+
HLA Class 1 (score= 0.646), and HLA-DR+ IDO (score=
0.604). These results show that calculating the co-expression of
proteins, namely the combinations listed above, can aid patient
stratification. CD45RO’s co-expression with HLA Class 1, an
antigen used to promote cytotoxic T cell activation, is aligned with
existing literature on melanoma41 and may evidence coordination
between memory T cells and cytotoxic T cells in cancer.

Cell-to-cell interactions contain prognostically relevant infor-
mation. We examined cell-to-cell interactions by creating Vor-
onoi tessellation diagrams out of the segmented MIBI images
(Fig. 1c). Voronoi diagrams have been used previously to define

spatial organization and cellular morphology31,42. Each cell’s
Voronoi polygon is created from the location of its centroid; its
polygon will border some number of polygons from other cells43.
These borders can be used to model cell-to-cell interactions
(Fig. 1d); cells whose polygons share a border can be considered
adjacent (Fig. 3a). Due to the geometry of the Voronoi tessellation
algorithm, polygons will only border their immediate neighbors,
which restricts the area of influence of a certain cell to the cells
that are closest nearby.

We created an interaction matrix for each patient to describe
the characteristics of the patient’s cell-to-cell interactions by
counting the number of times that specific pairs of proteins were
involved in interactions. The entry in the matrix at row A and
column B represents the number of times a cell positive for
protein A was adjacent to a cell positive for protein B (Fig. 3b).

Data for interactions involving functional proteins were used as
features for hierarchical clustering, resulting in two clusters, with
17 patients in Cluster 1 and 21 patients in Cluster 2 (Fig. 3c). The
Kaplan–Meier curves comparing the clinical outcomes of the two
patient clusters diverged according to recurrence (χ2(df= 1, n=
38)= 3.39, p= 0.065) and diverged significantly according to
survival (χ2(df= 1, n= 38)= 4.55, p= 0.033) (Fig. 3d).

Our method of quantifying cell-to-cell interactions reveals that
the spatial proximity of functional proteins contains valuable
prognostic information; the proteins involved in interactions can
be used as features to cluster patients into groups with
significantly different outcomes.

By contrast, quantifying interactions involving lineage proteins
does not hold prognostic relevance. Hierarchical clustering on
features of lineage protein interactions did not result in clusters
that differed in recurrence and survival outcome significantly
(Supplementary Fig. 3).

A drawing comparing the clusters formed from clustering on
functional protein interaction features to the morphology
distinction described by Keren et al.25 is shown in Supplementary
Fig. 4.

Interactions involving immunoregulatory proteins predict
recurrence and survival. We further examined a subset of
functional proteins, the immunoregulatory proteins PD-1, PD-L1,
IDO, and Lag3, which are in consideration as immunotherapy
targets9,44–48. Prior research did not answer whether interactions
involving these four proteins are associated with recurrence and
survival, information that would be valuable in understanding
their roles in TNBC progression.

To answer this question, we quantified spatial interactions
between cells expressing immunoregulatory proteins, excluding
all other proteins from the analysis (Fig. 4a). We reasoned that
if interactions between cells positive for these proteins were
associated with recurrence or survival, the result would point to
the prognostic relevance of these proteins. Similar to the previous
analysis, the counts of interactions were used as features to cluster
patients (Fig. 4b). The Kaplan–Meier curves of the clusters
formed from this analysis diverged significantly according to
recurrence (χ2(df= 1, n= 38)= 7.60, p= 0.0058) (Fig. 4c). We

Fig. 2 Quantification and analysis of protein expression. a Drawing showing how protein expression is calculated. The black squares each represent one
pixel in the image. Expression levels are measured for each pixel in the cell and then summed across all pixels in the cell. The resulting number is divided by
the size of the cell (in pixels), resulting in the average per-pixel expression level of the cell for each protein. b Histograms showing the distributions of log
per-pixel expression levels for several relevant proteins. Per-pixel expression in the background channel (the positivity threshold) is shown with the vertical
dotted line. c Heatmaps showing the cube root of co-expression of pairs of functional proteins in two different patients. The color bar also shows the cube
root, so color value 16 indicates 163 instances of co-expression. d Clustermap showing flattened features for all 38 patients. Two clusters were chosen from
the dendrogram. The red line shows the way that the two clusters were separated. e Kaplan–Meier curves comparing clusters formed from co-expression
features for recurrence and overall survival. Two-sided log-rank test (df= 1) p-values are shown in the plot legend.
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also tested patient stratification when three clusters were chosen
(Supplementary Fig. 5). The three clusters diverged significantly
with regards to recurrence (χ2(df= 1, n= 38)= 5.40, p= 0.020),
demonstrating that the efficacy of risk-stratification was robust to
the number of clusters chosen.

Ablation analyses reveal prognostically relevant groups of
features. We further examined the cell-to-cell interaction data by
performing multiple ablation analyses.

First, we examined individual functional proteins one at a time,
including only the interactions that involved this protein as

Fig. 3 Analysis of cell-to-cell interactions. a Drawing showing how interactions are analyzed to find which combinations of proteins are involved in the
interaction. The interaction is characterized by the adjacency of the two Voronoi polygons. Each cell involved in the interaction has a unique protein
expression pattern, resulting in complex interactions. b Heatmaps showing the cube root of the number of interactions between pairs of functional proteins
in two patients. The entry at row A and column B in the heatmap represent the cube root of the number of times that a cell positive for protein A was
adjacent to a cell positive for protein B in that patient’s MIBI image. Pairs that had zero interactions are excluded from the plot. c Clustermap of patients’
functional protein interaction features. d Kaplan–Meier curves of recurrence and overall survival comparing clusters formed from interaction features. Two-
sided log-rank test (df= 1) p-values are shown in the plot legend.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02361-1 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:852 | https://doi.org/10.1038/s42003-021-02361-1 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


Fig. 4 Analysis of subsets of interactions. a Heatmaps of the interaction matrices of immunoregulatory proteins (IDO, Lag3, PD-L1, PD-1) for two patients,
whose outcomes are shown above the heatmaps. b Clustermap of patient’s immunoregulatory protein interaction features. The place at which the
dendrogram was split is indicated with a red line. c Kaplan–Meier curves for recurrence and survival comparing clusters formed from immunoregulatory
protein interactions. Two-sided log-rank test (df= 1) p-values are shown in the plot legends. d Diagram showing how the interactions of individual proteins
are evaluated through ablation analysis one at a time. The only interactions included as features are the ones that involve a specific protein. The diagram
gives the example of CD63. e Diagram showing the set of homotypic interactions. As shown by the red boxes, only the entries in the diagonal are included
as features.
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features (Fig. 4d). For example, when examining the interactions
involving PD-1, we constructed feature vectors to include PD-1/
Lag3 interactions, PD-1/Ki67 interactions, PD-1/PD-L1 interac-
tions, and so on. Performing two-sided log-rank tests (df= 1)
using these features revealed several proteins whose interactions
were significantly associated with recurrence: IDO (p= 0.008),
HLA Class 1 (p= 0.011), H3K27me3 (p= 0.011), and Beta
Catenin (p= 0.023). Phospho-S6’s interactions were significantly
associated with survival (p= 0.041).

We also examined “homotypic” interactions—interactions
involving the same protein. Homotypic interactions are found
in the diagonal of the interaction matrix—they represent the
number of times in a patient that a cell positive for protein A is
adjacent to a cell positive for protein A (Fig. 4e). This information
communicates the spatial proximity of cells with similar
expression patterns. We used all of the homotypic interactions
of functional proteins (the entire diagonal) as features for each
patient and repeated the clustering analysis. The Kaplan–Meier
curves diverged according to recurrence, χ2(df= 1, n= 38) =
3.43, p= 0.064, and diverged significantly according to survival,
χ2(df= 1, n= 38) = 4.90, p= 0.027, indicating that the frequency
of homotypic interactions is relevant information for survival
prognosis.

We calculated the importance of interaction features by fitting
a random forest model with interactions as predictors and cluster
assignments as the response variable. Feature importance was
scored using the mean decrease in Gini Index. The highest-
importance feature was the Beta Catenin + CD45RO interaction
feature (score= 0.794), followed by CD45RO+HLA-DR (score
= 0.738), PD-1+CD45RO (score= 0.716), PD-1+H3k27me3
(score= 0.709), Lag3+ CD45RO (score= 0.706), IDO+ PD-1
(score= 0.694), and Lag3 + PD-1 (score= 0.647). CD45RO was
present in 4 of the 7 most important interactions, PD-1 was
present in 4, and Lag3 was present in 2. These results point to
interactions involving these proteins as being particularly useful
for patient stratification; they contributed the most to clustering,
and the resulting clusters differed significantly in terms of
recurrence and survival.

Extracted features differ between healthy samples and TNBC
samples. To confirm the validity of the features we extracted, we
tested whether they differed between healthy tissue samples and
TNBC tissue samples. The healthy tissue used in our analysis
came from a different study, which profiled a different set of
markers. There were 6 proteins common between the healthy
images and TNBC images: FoxP3, IDO, Ki67, PD-1, PD-L1, and
phospho-S6.

We calculated expression levels for the healthy tissue (n= 8) and
compared them against the TNBC tissue (n= 38) using a two-sided
Wilcoxon rank-sum test. Five out of the six proteins were
significantly different across tissue: FoxP3 (W= 2.06, p= 0.040),
Ki67 (W= 3.06, p= 0.022), PD-1 (W= 3.622, p= 0.0003), PD-L1
(W= 2.42, p= 0.020), and phospho-S6 (W= 4.00, p= 6.35e−05).
Bar plots comparing healthy and TNBC tissue for each protein are
shown in Supplementary Fig. 6a.

We also validated our method of profiling cell-to-cell
interactions on the healthy tissue by subjecting it to our
computational pipeline and testing whether the cell-to-cell
interaction features of healthy tissue would be different from
TNBC tissue. We reduced the interaction features for healthy and
TNBC patients to two dimensions using uniform manifold
approximation and projection (UMAP)49 and plotted the reduced
features for visualization. The resulting scatterplot showed
separation between healthy and TNBC tissue (Supplementary
Fig. 6b).

These results suggest that our computational pipeline
succeeded in extracting tumor-specific single-cell spatial features
that are prognostic for recurrence and overall survival. In
addition, they demonstrate that our computational pipeline is
applicable to a variety of MIBI datasets, as we applied the same
methods to the two distinct datasets.

Multivariate analysis reveals features with independent prog-
nostic relevance for recurrence and survival. To assess the
prognostic importance of the features we identified, we fitted
three multivariate Cox regression models, each of which included
one of the cluster variables, two clinical variables (grade and age),
and the immune architecture distinction described by Keren
et al.25. We obtained coefficients and hazard ratios to determine
whether the cluster variables added prognostic information.

Both of the clusters formed from cell-to-cell interaction
features contained additional prognostic information for at least
one clinical outcome. The immunoregulatory proteins interaction
cluster contained independent prognostic information for
recurrence (coefficient=−1.32, HR= 0.27, p= 0.02). The func-
tional proteins interaction cluster contained independent prog-
nostic information for survival (coefficient=−1.24, HR= 0.29,
p= 0.04). These results suggest that our computational pipeline
was able to extract additional prognostically relevant features and
use them to risk-stratify patients.

Next, we assessed the relative prognostic relevance between
each of the cluster variables. To do this, we fit random forests
with six predictors: the three cluster variables, two clinical
variables (tumor grade and age), and the immune architecture
distinction. We then measured variable importance by calculating
SHAP (Shapley additive explanations) values50 and overall
goodness-of-fit using Harrell’s c-index51.

The random forest analysis corroborated our results from the
multivariate Cox regression analysis. The immunoregulatory
protein interactions cluster was the most relevant feature for
recurrence (Fig. 5a), and the functional protein interactions
cluster was the most relevant feature for survival (Fig. 5b). These
features were more important than tumor grade, age, and tumor
architecture. The c-index for the recurrence model was 0.718, and
the c-index for the survival model was 0.731, indicating a good fit.

Discussion
TNBC is the most aggressive breast cancer subtype, with a higher
risk of recurrence and lower probability of survival. It lacks
clinically approved biomarkers for patient risk stratification,
making treatment planning and management difficult. Previous
research involving TNBC and multiplexed imaging did not ana-
lyze the prognostic relevance of protein co-expression patterns
and cell-to-cell interactions. In this study, we aimed to examine
the association between these features and recurrence/survival in
TNBC patients by constructing a computational pipeline for the
analysis of MIBI.

Our contributions are threefold. First, we identify possible
predictors of recurrence and overall survival in TNBC, demon-
strating that the information contained within cell-to-cell inter-
actions and protein co-expression patterns can aid patient
stratification and therapeutic design, as proven through evalua-
tion of patient groups, statistical tests, and predictive modeling.
Second, we demonstrate that the immune composition of the
TIME does not always hold prognostic relevance, and should
therefore be examined with caution. Third, we present a com-
putational pipeline for the interrogation of the TIME that pro-
duces interpretable and conclusive results, making it potentially
viable in a clinical setting.
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Our primary focus was to examine cell-to-cell interactions in
the TIME for the purpose of patient risk stratification and
treatment management. Our findings showed that the type and
number of cell-to-cell interactions involving functional proteins
quantified by our pipeline were associated with both recurrence
and survival in our cohort, and could possibly serve as a tool for
prognosis. The two most important interaction pairs were
CD45RO+ Beta Catenin and CD45RO+HLA-DR, a finding
that corroborates underlying biology. CD45RO marks memory
T cells, which have been shown to mediate anti-tumor
immunity38,39. Beta Catenin is expressed on tumor cells
primarily52,53, so its interaction with CD45RO evidences the anti-
tumor actions of memory T cells. HLA-DR is expressed on
antigen-presenting cells54, so its interaction with CD45RO+ cells
evidence coordination between different immune cells to suppress
tumor growth. The biology behind these interactions demon-
strates that computational analysis of cell-to-cell interactions can
elucidate immunological mechanisms playing a role in patients’
tumors. The biological relevance of the proteins involved in these
interactions could be further investigated through biological
analysis of animals or clinical trials. Further, we found that
“homotypic” interactions—interactions involving the same pro-
tein—hold predictive power. This finding indicates a coordinated
immune response characterized by the localized enrichment of
functional proteins.

Multivariate analysis revealed that the interactions of func-
tional proteins contained independent prognostic information for
survival, even when compared to clinical variables like tumor
grade, age, and the immune architecture distinction determined

by Keren et al.25, pointing to the potential efficacy of this tech-
nique for patient stratification and treatment management of
TNBC. We also profiled the cell-to-cell interactions of healthy
tissue. The interactive features of the healthy tissue were distinct
from the interaction features of TNBC tissue in our cohort,
indicating that profiling cell-to-cell interactions may also be able
to convey information regarding the pathological state of the
tissue. However, further research with larger sample size is
necessary to confirm this.

We further analyzed four immunoregulatory proteins—IDO,
Lag3, PD-1, and PD-L1—which are in consideration as immu-
notherapy targets9,44–48. We found that the expression profiles of
these proteins were prognostically relevant, suggesting that these
proteins can play a role in modulating tumor progression. A host
of literature has described the importance of these proteins in
TIME processes9,32,44,55, but only a small subset of such literature
examines them in the context of paired cellular interactions.
Interestingly, the individual expression levels of these proteins
were not prognostically relevant; after Benjamini–Hochberg
correction, none of the proteins had expression levels significantly
associated with recurrence or survival. However, the cluster
variable formed from their interactions was highly predictive of
recurrence, as shown by multivariate analysis. Profiling the cell-
to-cell interactions involving immunoregulatory proteins revealed
independent prognostic information when compared to tumor
grade, age, and the immune architecture distinction.

Our methods differ from the previous analysis of these data in
several ways. Keren et al. calculated interaction matrices by
defining a distance of 39 micrometers to establish adjacent cells25;

Fig. 5 Random forest variable importance. a Bar plot showing the mean SHAP value for each variable in a random forest predicting recurrence, with n=
38 TNBC images. SHAP (Shapley additive explanations) values are a measure of variable importance that quantifies how the expected model prediction
would change when conditioning on a certain variable. They are more aligned with human intuition than other feature attribution methods. b Bar plot
showing the mean SHAP value for each variable in a random forest predicting survival, with n= 38 TNBC images.
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however, the features within these interaction matrices did not
result in patient clusters that differed significantly with respect to
clinical outcome. This may suggest that using a set distance for
adjacency is of insufficient spatial resolution to differentiate
microenvironments. Our analysis also used a much lower
threshold for cell protein positivity. This lower threshold may
have improved the detection of important interactions. Voronoi
diagrams and Delaunay triangulation have been used previously
to define and examine cellular neighborhoods in colorectal
cancer31,56. In contrast, we use Voronoi diagrams to examine
protein expression in pairwise cellular interactions, rather than
larger neighborhoods. We then use these pairwise cellular inter-
actions to explain higher levels of abstraction, building interaction
matrices to summarize patients’ TIME overall.

We found that the co-expression profile of functional proteins
in patients’ cells was associated with recurrence and survival. The
four most important co-expression pairs were CD45RO+
H3K27me3, CD45RO+H3K9ac, CD45RO+HLA Class 1, and
HLA-DR+ IDO. These results point to highly specific cellular
phenotypes, a trademark of a complex TIME25,57,58. Our com-
putational pipeline presents an efficient, interpretable way to
identify co-expression patterns and use them to risk-stratify
patients.

Our methodology allowed for analysis of the cell types present
in the TIME as a whole, providing a macro-level view of immune
coordination. Our findings indicate that caution should be exer-
cised when using the immune composition as a biomarker in
clinical settings. After Benjamini–Hochberg adjustment, there
were no cell types with significant prognostic value. This does not
corroborate existing literature regarding the prognostic relevance
of certain cell types, including the monocyte/neutrophil cell
type59, the dendritic cell/monocyte cell type60, natural killer
cells61,62, CD8+ T cells27,63, macrophages64, B cells65, CD4+
T cells66,67, and CD3+ T cells68.

The subcellular resolution achieved by MIBI allowed us to
quantify the expression of individual molecules on a single-cell
basis. After Benjamini–Hochberg correction, there were no pro-
teins significantly associated with either recurrence or survival.
Keratin6 and HLA-DR were associated with survival before
adjustment, and Keratin6 remained significantly associated with
survival when placed in a multivariate model with HLA-DR. This
aligns with some existing literature. CD45RO was almost sig-
nificantly associated with recurrence before adjustment, but its
prognostic relevance was more clearly highlighted through its
cell-to-cell interactions and co-expression patterns. This suggests
that adding spatial context to the TIME can reveal otherwise
hidden prognostically relevant information, a potential benefit of
our developed computational pipeline for MIBI analysis.

A limitation of our work is that our results are derived from a
sample of 38 TNBC patients that were treated at Stanford hospital
from 2002 to 2015—further work is needed to validate these
results on a larger cohort of patients. Although it was known that
the patients had not undergone neoadjuvant treatment, further
data regarding treatments pursued was not available; future
research is necessary to examine associations across treatment
types. In addition, this study was retrospective and performed
with patients at a single institution. Our cell type classifications
were found computationally, derived only from the expression of
molecules that were a part of our chosen assay—future work
should repeat this analysis using other biologically relevant
molecules.

Nonetheless, this study presents a computational pipeline for
the robust interrogation of multiple features of the TIME. We
demonstrate the potential for cell-to-cell interactions and protein
co-expression to improve prognosis and patient stratification. We
found several statistically significant results within a limited

cohort, suggesting that they may have large effect sizes and merit
further exploration. Our methods produce interpretable results,
which may make them beneficial in therapeutic design69. Fur-
thermore, they can be applied to other cancer types, as they are
generalizable to any MIBI scan.

Methods
Patient population and dataset. Our study examined 38 TNBC patients who were
treated at Stanford Hospital from 2002 to 2015, a subset of the cohort examined by
Keren et al.25. None of the 38 patients had undergone neoadjuvant treatment.
Although the original cohort contained 41 TNBC patients, 3 of the patients were
unusable for our analysis. Patients 22 and 38 lacked recurrence outcomes, and
Patient 30’s images were corrupted. These patients had no special type, with
estrogen receptor and progesterone receptor positivity less than 1% and HER2
unamplified. 1 mm cores were taken from each patient and H&E stained. All
samples were then stained with an antibody mix and scanned using MIBI-TOF. A
computational pipeline converted the output of MIBI-TOF into images.

The dataset included two separate sets of 2048 × 2048 pixel images, representing a
region of 8002 square micrometers. The first set of images were 44-channel TIFFs that
represent protein expression levels, where each patient had one TIFF. Each channel in
the TIFF corresponded to one of the 44 molecules profiled in the study. Of the 44
molecules, 36 were biological macromolecules, such as double-stranded DNA or IDO,
and 8 were elemental reporters. Each pixel in the image had a value representing the
expression of the protein in that location. The second image set contained 38
grayscale segmentation of cells in the patient’s sample. Patient data regarding age,
tumor grade, stage, and recurrence, and survival outcomes were also gathered.

The cellular segmentation and cell lineage clustering were performed by Keren
et al.25. To perform nuclear segmentation, the authors utilized DeepCell, a deep
learning-based method for segmentation of MIBI data35. The model was trained
using manual segmentations of patients 1 and 2 and run on the images of all
patients. Cell boundaries were defined as a 3-pixel radial expansion around the
nuclei. Cells were clustered hierarchically. First, they were clustered into “Immune”
and “non-immune” using the expression levels of CD45, FoxP3, CD4, CD8, CD3,
CD20, CD16, CD68, MPO, HLA-DR, Pan-Keratin, Keratin17, Keratin6, p53, Beta-
catenin, and EGFR. Non-immune cells were clustered into Epithelial, Mesenchyme,
Endothelial, and Unidentified using Vimentin, SMA, CD31, Beta-catenin, EGFR,
Keratin16, Keratin6, and Pan-Keratin. Immune cells were further clustered into 12
groups (Fig. 1b) using CD4, CD16, CD56, CD209, CD11c, CD68, CD8, CD3,
CD20, HLA-DR, CD11b, MPO, and FoxP3.

We additionally gathered 8 MIBI images of breast tissue of healthy patients.
These MIBI images were originally collected for a different study, and they profiled
a different set of markers. Six proteins overlapped between the TNBC samples and
healthy samples: FoxP3, IDO, Ki67, PD-1, PD-L1, and phospho-S6.

The cellular segmentation of MIBI images of healthy patients was performed by
Risom et al.34 using DeepCell. Two distinct segmentations were performed. The
first applied a three-pixel radial expansion and a stringent threshold for splitting
cells. The second applied a one-pixel radial expansion and a lenient threshold. A
post-processing step gave preference to the lenient threshold when the two
segmentations were combined.

The authors complied with all ethical regulations involving human clinical data.
Informed consent was obtained for all participants by previous studies. The study
protocol was approved by the Stanford University Institutional Review Board.

Analysis of cell prevalence. We examined whether the cellular composition of the
TIME was associated with recurrence and survival. We quantified the number of
cells of each cell type in each patient. To isolate specific cell types at a time, we
created binary masks of each grayscale value. Then, we found the number of
connected components in each mask, which provided the number of cells of each
cell type. After noticing a large variation in the total number of cells per patient, we
divided each patient’s cell type count by the total number of cells in their TIME to
control for this lurking variable. Univariate Cox regression was then performed for
each cell type to assess its association with recurrence and survival. Regression
coefficients were examined using two-sided t-tests. P-values were adjusted using
the Benjamini–Hochberg method36.

Single-cell protein expression. We examined whether the expression levels of
functional proteins within patients’ TIME were associated with recurrence and sur-
vival. For this analysis, we analyzed functional proteins, which modulate the activity of
the cells in the TIME. These proteins stand in contrast to proteins used solely for
lineage assignment; their expression is related to the functional state of the cell.

We labeled connected components and created a binary mask of each
component to isolate the space taken up by each cell. We then applied this mask to
the MIBI protein expression images, summing the value in each channel of the
TIFF for each pixel in the mask. This created a 44-length vector of protein
expression per cell. We realized that per-cell expression levels are dependent on cell
size, so we divided the 44-length expression vector by the size (in pixels) of the cell.
This left a 44-length vector representing the average per-pixel protein expression
for a certain cell.
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We calculated protein positivity thresholds from the expression levels of the
image background, which lacks cells and therefore can act as a negative control. We
calculated total protein expression in all background pixels in all patients and
divided these values by the total number of background pixels across all patients
(~67,000,000 pixels). We used each protein’s threshold value to determine whether
a cell was positive for a certain protein. Then, we counted the number of cells in
each patient that were positive for each protein and divided the number by the total
number of cells in the patient. The result was the proportion of cells in the patient
that were positive for this protein. For example, 100% of a patient’s cells would be
positive for DNA, but only 30% might be positive for PD-1. Univariate Cox
regression was used to determine the association between protein expression
proportions and clinical outcomes. Regression coefficients were examined using
two-sided t-tests. P-values were adjusted using the Benjamini–Hochberg method.

Functional protein co-expression. The co-expression of functional proteins in a
single cell reveals functional status and immune coordination. We assessed the
association between co-expression of functional proteins and recurrence and sur-
vival. We had previously measured single-cell protein expression and determined a
threshold to designate cells as “positive” for each protein. We defined co-expression
as an instance in which an individual cell is positive for a pair of proteins. For
example, if a particular cell is positive for IDO, Lag3, and PD-1, it would have three
instances of co-expression: IDO/Lag3, IDO/PD-1, and Lag3/PD-1. We constructed
an 18 × 18 co-expression matrix for each patient to summarize the number of cells
in the patient that co-expressed each pair of proteins. Because these matrices were
symmetrical (a co-expression of IDO/Lag3 is the same as a co-expression of Lag3/
IDO), we divided the matrix in two across the diagonal and flattened the top half to
create a feature vector for each patient. To control for lurking variables, we stan-
dard scaled features across patients. We then performed hierarchical clustering to
segment patients according to these features.

Silhouette analysis40 revealed that choosing two clusters would lead to the
optimal segmentation, so we cut the dendrogram into two distinct clusters and
compared the two groups using a two-sided log-rank test. Then, to assess the
importance of individual co-expression features, we fit a random forest with all of
the co-expression pairs as predictors and the cluster assignment as the response.
We assessed variable importance using a mean decrease in the Gini index.

Voronoi tessellation. Analyzing cell-to-cell interactions requires a method of
defining cell adjacencies. We used Voronoi tessellation diagrams to model cellular
adjacencies within the TIME. Voronoi tessellation divides a planar space into a
number of regions such that each point in the plane has its own region in the
tessellation43. The sides of each Voronoi polygon are constructed to bisect two
input points. Therefore, each line segment in the Voronoi tessellation represents
the borders between two input points. Voronoi diagrams have been applied to
single-cell imaging technology in the past, specifically for visualizing the spatial
organization of colorectal cancer cells31,42. Due to the geometry of the Voronoi
tessellation algorithm, polygons will only border their immediate neighbors.

We labeled connected components from the cell segmentation images to find each
cell’s centroid, which was then used to create Voronoi diagrams for each centroid.
Therefore, every cell in the original cell segmentation images has a corresponding
Voronoi diagram. We considered cells with bordering Voronoi regions to be adjacent
and therefore interacting. This created a reliable foundation for upstream analysis.

Cell-to-cell interaction analysis. We used the borders created by Voronoi dia-
grams to iterate over all cell adjacencies in each MIBI image. Each adjacency
represented an individual interaction between two cells. We constructed two lists:
List 1 contained the names of the proteins that Cell 1 was positive for, and List 2
contained the names of the proteins that Cell 2 was positive for. We took the
Cartesian product of the two lists to find all of the combinations of proteins present
in this interaction. For example, if Cell 1 was positive for PD-L1 and Lag3, and Cell
2 was positive for PD-1 and IDO, then we would count the following: PD-L1+
PD-1, PD-L1+ IDO, Lag3 + PD-1, and Lag3 + IDO. These pairs would be tallied
in the overall interaction matrix for each patient, in which the value at row A and
column B represents the number of times a cell positive for protein A was adjacent
to a cell positive for protein B. For this analysis, we only counted interactions
between functional proteins, excluding proteins used for lineage assignment.

We selected the top half of the symmetric matrix and flattened it to create feature
vectors for each patient. Hierarchical clustering was performed and the dendrogram
was cut to produce two clusters based on silhouette score analysis. These two clusters
were compared using Kaplan–Meier curves, a two-sided log-rank test, and Cox
regression. To assess the importance of individual interactions, we fit a random forest
with all interactions as predictors and the cluster assignment as the response. We
measured variable importance using the mean decrease in the Gini index.

Healthy tissue analysis. We applied our computational pipeline to a set of 8 MIBI
images of healthy tissue to validate our methods. We examined 6 proteins: FoxP3,
IDO, Ki67, PD-1, PD-L1, and phospho-S6. We calculated the expression levels of
the proteins in an identical fashion to the previous analysis of the TNBC images.
We performed a two-sided Wilcoxon rank-sum test to compare expression levels
between TNBC tissue and healthy tissue.

We also profiled cell-to-cell interactions in the healthy tissue in an identical
manner to previous analysis. After obtaining interaction features, we performed
dimensionality reduction using UMAP49. The resulting reduced features were
compared to UMAP-reduced features of TNBC images.

Multivariate analysis. To assess whether the features identified by our compu-
tational pipeline contained independent prognostic information, we performed
multivariate Cox regression. We fit three Cox Proportional Hazard models, each
of which contained one of the three cluster variables identified by our study
(protein co-expression, functional protein interactions, immunoregulatory pro-
tein interactions), two clinical variables (tumor grade and age), and the immune
architecture distinction determined by Keren et al.25. We found the hazard ratio
of each cluster variable and hypothesis tested the coefficient of each cluster
variable to determine whether the variables contained additional prognostic
information.

We also fit random forests to measure relative variable importance. We included
all six variables in the random forests and calculated SHAP50 values to get stable
estimates of variable importance. SHAP values quantify the change in the model
prediction that would result from conditioning on a certain feature. They have been
shown to be more aligned with human intuition regarding feature importance and
attribution. We measured overall goodness-of-fit using Harrell’s c-index.

Statistics and reproducibility. Primary statistical analyses were performed using
Python (v3.7.3, Python Software Foundation, https://www.python.org/) with the
lifelines (v0.24.0), scipy (v1.4.1), seaborn (v0.10.1), and pysurvival (v0.1.2)
packages.

Pseudocode explaining the steps of statistical analyses is shown in
Supplementary Fig. 7. A runnable Jupyter notebook with the specific code used for
experiments can be found at github.com/aalokpatwa/rasp-mibi/blob/main/
rasp_mibi_pipeline.ipynb.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
MIBI images and other raw data for TNBC patients can be found at https://mibi-share.
ionpath.com/. The link comes with an easy-to-use interface that allows for easy
examination of the data upon registration. MIBI images for healthy patients supplied by
the authors of Risom et al.34 are available through the following repository link: https://
doi.org/10.5281/zenodo.4920393; specifically, only patient samples denoted as “Normal”
were used in this study. The data produced by intermediary steps in the computational
pipeline can be found at github.com/aalokpatwa/rasp-mibi/ in the intermediate_data/
folder.

Code availability
The computational pipeline70 used to produce the findings in this study can be found at
github.com/aalokpatwa/rasp-mibi/blob/main/rasp_mibi_pipeline.ipynb. The pipeline is
included in a Jupyter notebook with the output produced, as well as in separate.py files
with instructions included. Pseudocode describing the developed computational pipeline,
including individual algorithms and techniques used, is shown in Supplementary Fig. 7.
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