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ABSTRACT
Degenerin/Epithelial Sodium Channels (DEG/ENaCs) are a large family of animal-specific non-
voltage gated ion channels, with enriched expression in neuronal and epithelial tissues. While
neuronal DEG/ENaCs were originally characterized as sensory receptor channels, recent studies
indicate that several DEG/ENaC family members are also expressed throughout the central
nervous system. Human genome-wide association studies have linked DEG/ENaC-coding genes
with several neurologic and psychiatric disorders, including epilepsy and panic disorder. In
addition, studies in rodent models further indicate that DEG/ENaC activity in the brain contributes
to many behaviors, including those related to anxiety and long-term memory. Although the exact
neurophysiological functions of DEG/ENaCs remain mostly unknown, several key studies now
suggest that multiple family members might exert their neuronal function via the direct modula-
tion of synaptic processes. Here, we review and discuss recent findings on the synaptic functions
of DEG/ENaCs in both vertebrate and invertebrate species, and propose models for their possible
roles in synaptic physiology.
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Introduction

Members of the DEG/ENaC superfamily of non-
voltage-gated, animal-specific cation channels, are
expressed in diverse cell types, including neurons
[1]. Structure-function studies have revealed that
the mature channel is comprised of three indepen-
dent subunits, which can be either homomeric or
heteromeric. Each subunit consists of two trans-
membrane domains that are connected by a large,
extracellular loop that includes several structurally
conserved domains [2–5]. Several studies suggest
that the extracellular loops play important roles in
channel gating by a broad spectrum of extracellu-
lar stimuli, including protease activation, mechan-
ical forces, and extracellular chemical ligands [6–
8]. The first family members to be identified mole-
cularly were named Degenerin (Deg) because their
mutant alleles were associated with a neuronal
degeneration phenotype in the roundworm
Caenorhabditis elegans [9,10]. Later, mammalian
orthologs of DEG proteins were molecularly iden-
tified as the elusive amiloride-sensitive epithelial
sodium channels (ENaCs), which play an essential
role in regulating mammalian blood pressure via
salt reabsorption in kidneys [11–13]. Several

additional vertebrate family members, namely the
Acid Sensing Ion Channels (ASICs; also referred
to as Amiloride-sensitive Cation Channels
Neuronal; ACCNs), were shown to be activated
by low extracellular pH [14–17]. To date, genes
that encode putative members of the DEG/ENaC
superfamily have been identified in all animal
genomes that have been sequenced thus far. Yet,
for reasons that are not well understood, the num-
ber of independent DEG/ENaC-encoding genes
varies dramatically across animal phylogeny,
which suggests that the family has expanded and
contracted several independent times throughout
animal evolution [1,6,18,19].

While the physiological function of DEG/ENaC
channels in epithelial tissues is relatively well-
understood, the neurophysiological functions of
most family members remain unknown. In mam-
mals, neuronally-enriched DEG/ENaC genes pri-
marily belong to the ASIC family branch. To date,
five independent ASIC-coding genes have been
identified in mammalian genomes (ASIC1-5),
which are expressed in both central and peripheral
neurons, as well as glia [20–25]. In the peripheral
nervous system, some ASICs are localized to
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sensory terminals, where they may play a role in
modulating mechanosensation and nociception
[26–28]. In the central nervous system, ASICs
seem to act as pH sensors, responding to fluctua-
tions in extracellular pH that can be a product of
normal neuronal metabolism, acidification from
neuronal pathologies, or cell death associated
with ischemia and epilepsy [20,29]. In humans,
mutations in ASIC genes have been associated
with various neurologic and psychiatric disorders
[20], including epilepsy [30,31], multiple sclerosis
[32,33], and panic disorder [34]. Together, these
data suggest that DEG/ENaC channels play an
important role in modulating neural functions in
humans.

In invertebrate species, DEG/ENaCs have been
studied most extensively in the worm C. elegans
and the fruit fly Drosophila melanogaster, which
encode 30 and 31 independent DEG/ENaC genes
respectively [18,35]. Studies of various family
members in these two species indicate that indivi-
dual DEG/ENaC genes are expressed in diverse
cell types, including neurons in both the central
and peripheral nervous systems, glia and muscle
[36–42]. Some invertebrate DEG/ENaCs that are
expressed in the peripheral nervous system have
been shown to be gated by mechanosensation or
chemical ligands [39,42–45], yet the gating
mechanisms and physiological functions for the
majority of DEG/ENaCs found in C. elegans and
Drosophila remain mostly unknown.

More recently, several studies suggested that
DEG/ENaCs also play an important modulatory
role at the synapse in both vertebrate and inverte-
brate species [41,46–53]. However, the exact cellu-
lar and physiological mechanisms that mediate the
effects of DEG/ENaCs on synaptic physiology
remain poorly understood. Here we review the
recent literature on synaptic functions of DEG/
ENaC genes, and propose mechanistic models
that may explain the observed phenotypes.

Roles of DEG/ENaCs in behavior

Studies of DEG/ENaC mutant alleles in genetically
tractable species such as the mouse, the fly, and the
worm revealed the importance of the neuronal
functions of DEG/ENaCs to various organismal
behavioral phenotypes. For example, studies of

ASIC1a knockout mice showed that these animals
exhibit reduced depression and anxiety related
behavior [54], reduced fear behavior [55,56], and
increased addiction related behavior [49].
Additionally, ASIC1a knockout mice display
impaired performance in several learning para-
digms, including hippocampal-dependent spatial
learning and cerebellar-dependent eyeblink condi-
tioning [57], amygdala-dependent impaired cue
and contextual fear conditioning paradigms
[51,58–61], and impaired extinction of condi-
tioned taste avoidance [53]. Similarly, mutations
in the C. elegans ASIC-1 gene cause abnormal
performance in an associative learning paradigm
[62]. Although the precise neurophysiological pro-
cesses affected by DEG/ENaC signaling remain
poorly understood, these data suggest a conserved
role for DEG/ENaC signaling in behaviors that are
associated with changes in neuronal plasticity,
which could be mediated at least in part by
DEG/ENaC function at the synapse.

Roles of DEG/ENaC channels in synaptic
physiology and neuronal plasticity

Several studies of the neuronal functions of DEG/
ENaCs have suggested that these channels might
play a role in mediating synaptic plasticity, which
was first highlighted by studies of the function of
ASIC1a in the mouse hippocampus. Specifically,
electrophysiological recordings in hippocampal
slices have shown that the loss of ASIC1a has no
effect on baseline synaptic transmission, or long-
term depression (LTD), but impairs long-term
potentiation (LTP) [48,57]. ASIC1a knockout
mice also display a decreased paired-pulse ratio
[63], and impaired EPSP facilitation in response
to high frequency stimulation in central synapses
[57]. Together, these data suggest that ASIC1a
plays a role in mediating hippocampal synaptic
plasticity. However, a follow-up study that used a
different transgenic strategy to knock out ASIC1a
in the nervous system, found no impact of the
mutation on hippocampal LTP [64]. Therefore,
whether DEG/ENaC-dependent signaling plays a
role in long-term neuronal plasticity in the mam-
malian hippocampus, or under which conditions,
remains uncertain. Nevertheless, more recently,
several studies have explored the neuronal
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functions of ASICs in additional brain regions.
These studies showed that ASIC1a knockout mice
also display impaired LTP in the amygdala [50,51]
and stronger short-term depression at the calyx of
Held synapse [65]. Although knocking out ASIC
genes in these specific brain regions leads to
decreased synaptic activity, studies in other brain
regions have found a contrary effect. For example,
studies of the mouse insular cortex have found
that genetic knockout or pharmacological inhibi-
tion of ASIC1a channels decreased the probability
of LTD, with no effect on LTP [53], and studies at
the rodent neuromuscular junction (NMJ) have
found that ASIC1a knockout enhances synaptic
facilitation [52]. Together, these studies suggest
that the effects of DEG/ENaCs on synaptic plasti-
city vary across neuronal types and brain regions,
and can serve to either enhance or dampen synap-
tic activity.

The effects of mutations in DEG/ENaCs on LTP
and LTD suggest that DEG/ENaCs might play a
direct role in synaptic physiology. Additional sup-
port for a synaptic role for DEG/ENaCs comes
from studies demonstrating that some ASIC chan-
nels are specifically localized to synaptic sites in
mammalian neurons [58], including presynaptic
terminals [52] and dendritic spines [57,66,67].
However, it should be noted that other studies
have reported a broader subcellular distribution
of ASICs in individual central neurons, in contrast
to synaptic enrichment [68]. Invertebrate DEG/
ENaCs have also been identified at synaptic sites
in C. elegans and Drosophila [47,62], although the
majority of localization data in these species has
only been assessed by using the overexpression of
tagged transgenes, and therefore, the subcellular
distribution of native DEG/ENaC channels has
yet to be determined in the majority of inverte-
brate species. In addition to the immunohisto-
chemistry data, immunoprecipitation studies in
heterologous expression systems have found that
specific ASIC subunits interact with both pre- and
postsynaptic proteins, including clathrin and
PSD95 [67,69]. Although these molecular interac-
tions are yet to be replicated with natively-
expressed proteins in vivo, these studies suggest
that at least some DEG/ENaCs are localized to
either the pre- or the postsynaptic neuronal sub-
cellular compartment.

The precise physiological functions of DEG/
ENaC channels at the synapse remain mostly
unknown. Electrophysiological studies in cultured
neurons have shown that homomeric ASIC1a and
heteromeric ASIC1a/ASIC2a channels can mediate
an influx of cations, primarily sodium ions, in
response to decreased extracellular pH
[50,57,58,70]. The sensitivity of these channels to
increases in the extracellular concentration of H+

suggests the provocative hypothesis that synaptic
ASICs might be playing the role of a synaptic pH
sensor, which directly responds to synaptic acid-
ification associated with neurotransmitter release.
This hypothesis is supported by electrophysiologi-
cal studies in mouse brain slices, which have
shown that synaptic transmission is sufficient to
acidify extracellular fluid [71,72], likely due to the
highly acidic lumen of synaptic vesicles [73].
However, as we discuss below, several recent stu-
dies in vertebrate and invertebrate models suggest
that the synaptic roles of DEG/ENaCs might be
more complex than as simple synaptic pH sensors.

DEG/ENaC modulation of presynaptic
physiology

In invertebrate and vertebrate model systems, DEG/
ENaC channels have been shown to play presynaptic
roles,modulating both evoked and spontaneous neu-
rotransmission. Direct evidence for a presynaptic
role for DEG/ENaCs was first described inC. elegans,
where ASIC1 is localized to dopaminergic presynap-
tic terminals, and asic-1 mutant worms have been
shown to exhibit decreased dopaminergic release
[62]. In Drosophila, several individual DEG/ENaC
subunits have been shown to play presynaptic roles
in modulating synaptic plasticity at the larval NMJ, a
well-studied excitatory glutamatergic synapse that
has many similarities to mammalian central gluta-
matergic synapses [74,75]. The Drosophila NMJ dis-
plays robust synaptic homeostatic plasticity, whereby
partial blockage of postsynaptic glutamate receptors
with either pharmacological or genetic manipula-
tions leads to a homeostatic increase in evoked neu-
rotransmitter release, which subsequently produces
“normal” postsynaptic currents in response to stimu-
lation [76]. Recently, a Drosophila genetic screen
identified three DEG/ENaC-encoding genes, ppk1,
ppk11 and ppk16, as presynaptic proteins that are
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required in motor neurons for this form of homeo-
static synaptic plasticity [46,47].

Although currently available genetic tools in ver-
tebrate models do not allow precise anatomical loca-
lization of synaptically-enriched DEG/ENaC
channels to either pre- or postsynaptic sites, physio-
logical and behavioral data suggest that some synap-
tic DEG/ENaC channels are likely to exert their
function at the presynaptic site. For example,
ASIC1a knockout in mice has been shown to reduce
the paired-pulse ratio [63], a phenotype that typically
indicates a presynaptic mechanism [77]. Studies in
vertebrates have also revealed that, in addition to
their presynaptic impact on evoked release, DEG/
ENaCs also play a role in regulating the frequency
of spontaneous neurotransmission [52,63,78,79],
which further supports a presynaptic role in pro-
cesses that regulate the rate of synaptic vesicle release
[80]. Increased frequency of spontaneous release has
been observed in ASIC1a knockout mice at periph-
eral synapses [52] and central synapses in cultured
systems [63]. Similarly, pharmacological treatments
of hippocampal slices with an ASIC1a antagonist
lead to an increase in the frequency of spontaneous
neurotransmitter release [79]. Conversely, in brain
slice preparations of the amygdala, application of an
ASIC1a antagonist decreases the frequency of spon-
taneous release [78]. How the activity of DEG/ENaC
channels might actually regulate spontaneous neuro-
transmitter release is unclear. Spontaneous neuro-
transmission has long been appreciated for its role
in the development of synaptic connections, yet
more recently, has been shown to affect neurotrans-
mission in fully developed animals, including aspects
of synaptic plasticity [81]. Therefore, the impact of
DEG/ENaCs on spontaneous neurotransmission
may be expected to affect both developmental pro-
cesses as well as synaptic plasticity in adult animals.
Together, evidence from invertebrates and verte-
brates show that DEG/ENaCs have presynaptic
effects on both evoked and spontaneous synaptic
transmission.

DEG/ENaC modulation of postsynaptic
physiology

In addition to their function at the presynaptic site,
observations that mutations in DEG/ENaC channels
also affect processes associated with postsynaptic

plasticity, such as LTP and LTD, suggested at least
some family members act via postsynaptic processes
[48,50,51,53,57]. Particularly, studies have demon-
strated that mutations in several ASIC-encoding
genes affect the function of postsynaptic glutamate
receptors and spine density, further supporting a
postsynaptic role for DEG/ENaC channels in mod-
ulating synaptic plasticity. Specific examples include
the effect of ASIC1amutations on decreased NMDA
receptor function in the hippocampus [48], and their
association with lower overall dendritic spine density
[66]. Conversely, in the nucleus accumbens, ASIC1A
knockout mice display increased density of dendritic
stubby spines, altered glutamate receptor function in
the form of increased inward rectification of AMPA
currents following evoked release, and an increase in
the ratio of AMPA to NMDA receptor currents [49].
Consequently, some ASICs appear to modulate
synaptic plasticity via postsynaptic mechanisms,
contributing to either facilitation or dampening of
synaptic activity.

In addition to data from vertebrate models, phy-
siological and behavioral data from studies with
Drosophila suggest that DEG/ENaCs contribute to
postsynaptic functions in invertebrates as well.
Specifically, we recently showed that mutations in
the DEG/ENaC-encoding gene ppk29 lead to
decreased amplitude of spontaneous neurotrans-
mission at the larval neuromuscular junction
(NMJ), which could be rescued by the expression
of ppk29 specifically in the postsynaptic muscle
cells, but not in the presynaptic motor neurons
[41]. Conversely, mutations in ppk1 lead to
increased amplitude of spontaneous excitatory neu-
rotransmission at the larval NMJ [47]. Together,
these data suggest that in both Drosophila and
vertebrates, independent postsynaptic DEG/ENaC
subunits play opposing roles to either increase or
decrease activity at a single synapse.

The exact biophysical and physiological pro-
cesses associated with the postsynaptic action of
ppk29, and how it might affect postsynaptic excita-
tory glutamatergic current influx in response to
spontaneous neurotransmission, are still unknown.
However, molecular and genetic analyses suggest
that the effects of the ppk29 mutation might be
mediated, at least in part, via changes in the relative
transcriptional ratio between the major two post-
synaptic glutamate receptor subtypes [41]. These
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data are in agreement with previous findings about
the impact of mutations in mammalian ASICs on
AMPA and NMDA receptor ratios, as discussed
above, and thereby suggests a possible conserved
mechanism for the postsynaptic effects of mamma-
lian and insect DEG/ENaCs on synaptic activity
through altered glutamate receptor function.

Models for the synaptic functions of DEG/ENaC
channels

Based on our general understanding of the physio-
logical functions of ENaCs in epithelial tissues
[1,19,82], it is likely that DEG/ENaCs act as cation
channels in the plasma membrane, where they med-
iate the influx of sodium ions, either as a constitu-
tively open channel, or via extracellular ligand-
dependent activation. Indeed, previous reports have
shown that ASICs can generate robust currents in
response to rapid increases in extracellular acidity
[50,57,58,70]. Consistent with this model, DEG/
ENaCs appear to have larger effects on neuronal
activity following bouts of high firing [48,50,51,57],
likely due to the extracellular release of free protons
associated with the release of many synaptic vesicles.
Thus, although DEG/ENaC channels are not vol-
tage-gated, the activity of some family members is
likely to be modulated by neuronal firing rates, and
therefore, points to a possible physiological explana-
tion for how they might be modulating neuronal
plasticity.

In the mammalian brain, extracellular proton-
dependent activation of ASIC channels has been
shown to play a role in increasing intracellular cal-
cium levels [66,67], which likely mediates some of
the impact of DEG/ENaCs on synaptic plasticity.
Although heterologously expressed ASICs can
directly mediate calcium influx [14,83], the perme-
ability of ASICs to calcium is low [84,85]. Therefore,
the actual mechanism by which DEG/ENaC channel
activity modulates calcium currents is not clear. One
possible model that may explain the relationship
between synaptic DEG/ENaC channels and intracel-
lular changes in neuronal calcium levels might be via
the indirect impact of DEG/ENaC-dependent
sodium influx, which subsequently leads to increased
calcium influx through voltage gated calcium chan-
nels [86]. In support of this model, inhibition of
voltage gated calcium channels prevents acid

induced increases in intracellular calcium [87].
Activation of signaling pathways that trigger calcium
release from intracellular stores may also contribute
to DEG/ENaC mediated increases in intracellular
calcium, although this has not been tested
experimentally.

Model for presynaptic DEG/ENaC functions

The primary model for presynaptic DEG/ENaC
function posits that during high frequency synaptic
vesicle release, acidification of the extracellular
space, and the subsequent induction of DEG/
ENaC-dependent influx of sodium ions, modulates
the opening of presynaptic voltage-gated calcium
channels (Figure 1(a)). Calcium influx through
these channels would then be expected to increase
calcium dependent synaptic vesicle release [88–90].
This model is consistent with several phenotypes
associated with DEG/ENaC knockout animals. For
example, studies of dopaminergic neurons in C.
elegans suggest that mutations in some DEG/
ENaC channels lead to decreased calcium influx,
which is associated with decreased synaptic vesicle
release [62]. Similarly, mutations in some synaptic
DEG/ENaC channels have been shown to be asso-
ciated with decreased glutamate release at the
Drosophila NMJ during synaptic homeostatic plas-
ticity [46,47], and decreased paired-pulse ratio and
frequency of spontaneous release at some mamma-
lian glutamatergic central synapses [63,78].

However, this model does not explain the
increased frequency of spontaneous release
observed in some brain regions of ASIC1a knock-
out mice [52,63,79]. Although no current physio-
logical and biophysical models may explain this
phenotype, it has been suggested that this pheno-
type may be mediated by non-traditional roles for
ASICs, such as direct protein-protein interactions
between ASICs and other synaptic components
[52,63], which are discussed below.

Model for postsynaptic DEG/ENaC functions

Empirical studies suggest that the impact of post-
synaptic DEG/ENaCs on synaptic physiology can
be broadly categorized into two independent path-
ways, which can lead to either facilitation or
depression of synaptic transmission. The primary
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and most simple model that has been proposed to
explain postsynaptic DEG/ENaC-mediated facili-
tation of synaptic activity suggests that cation
influx via DEG/ENaCs leads to either direct or
indirect activation of voltage-gated calcium chan-
nels, depolarization of the postsynaptic compart-
ment, and the subsequent release of the NMDA
receptor magnesium block, which increases
NMDA receptor activity [48,57] (Figure 1(b)). In
support of this model, ASICs in the rodent hippo-
campus have been shown to modulate LTP in part
by increasing NMDA receptor activity [48,57].
Additionally, ASICs have been shown to modulate
intracellular calcium levels, and to increase the
levels of phosphorylated calcium/calmodulin-
dependent protein kinase II (CaMKII), which has
been shown to mediate the effect of ASIC activa-
tion on increasing spine density [66]. Whether the
impact of ASICs on NMDA receptors and spine
density are dependent on each other is unknown.

Postsynaptic DEG/ENaCs have also been shown
to play a role in synaptic activity depression. For
example, ASIC1a knockout mice display a reduced
probability of LTD in the insular cortex [53].
Although the exact mechanism for ASIC1a-depe-
dent LTD is not known, it has been hypothesized
that direct or indirect DEG/ENaC-dependent
modulation of postsynaptic calcium influx leads
to the dephosphorylation of glycogen synthase
kinase-3β (GSK3β) via phosphatase 1/2A, which
drives the internalization of AMPA receptors, and
subsequently, depressed synaptic activity (Figure 1
(c)) [53]. In support of this model, recent studies
suggest that ASIC1a is required for the depho-
sphorylation of GSK3β in the mammalian brain,
and the expression of a constitutively active form
of GSK3β is sufficient to rescue some of the beha-
vioral and physiological phenotypes associated
with ASIC1a knockout [53].

DEG/ENaC channels may also directly regulate
postsynaptic excitability. For example, a recent
intriguing study showed that the postsynaptic
activity of ASIC1a is capable of mediating action
potentials at the calyx of Held synapse even when
postsynaptic glutamate receptors are blocked phar-
macologically [65]. However, the authors note that
ASIC1a does not appear to have a significant con-
tribution to action potentials under physiological
conditions, because neither pharmacological block

nor genetic knockout of ASIC1a impact action
potential generation in the presence of functional
glutamate receptors. Nevertheless, these findings
suggest that under certain conditions, postsynaptic
ASICs may impact synaptic physiology indepen-
dently of glutamate receptors. Additionally, this
study showed that postsynaptic ASIC1a channel
activity could modulate short term depression in
response to high frequency presynaptic stimula-
tion. Although the mechanism for this effect is
unknown, the proposed model suggests that post-
synaptic DEG/ENaC channels play a role in a
putative retrograde signaling pathway that could
modulate presynaptic release probability in
response to physiological changes in the postsy-
naptic cell [65].

The specific mechanistic differences that med-
iate DEG/ENaC-dependent LTP at some synapses
and LTD at others remain mostly unknown.
Several non-mutually exclusive explanations
include synaptic differences in DEG/ENaC subunit
composition, interactions with different classes of
voltage gated calcium channels, and differences in
intrinsic neuronal activity patterns, which may
modulate the time course of acidification of the
synaptic cleft. In addition, molecular differences
associated with downstream signaling pathways,
and the availability of postsynaptic second mes-
sengers such as GSK3β, might also contribute to
the observed impact of DEG/ENaC channels on
glutamatergic neurotransmission.

Here we have presented independent models for
synaptic DEG/ENaC function in pre- and postsy-
naptic compartments, contributing to facilitation
or dampening of synaptic activity. However, we
suspect these pathways most likely occur in paral-
lel, at least at some synapses. Indeed, at the
Drosophila NMJ, DEG/ENaCs are present at both
pre- and postsynaptic compartments, mediating
both increases and decreases in synaptic activity
[41,46,47]. Thus, we suspect that in vertebrate
synapses as well, DEG/ENaCs may simultaneously
modulate several aspects of synaptic physiology.

Possible contributions of glial DEG/ENaCs to
synaptic physiology

Over the past two decades, glial cells have been
shown to impact many aspects of neuronal
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function and synaptic activity [91,92]. Recently,
several studies have shown that some DEG/ENaC
genes are also expressed in glial cells, including
sheath and socket glial cells in C. elegans
[39,40,93], as well as astrocytes [23,94], microglia
[24], NG2 glial cells [95] and oligodendrocytes

[22] in rodents. Although the specific cellular and
physiological functions of DEG/ENaCs in glia
remain mostly unknown, studies suggest that
glial ASICs contribute to inward calcium currents
in response to decreases in extracellular pH, pos-
sibly by acting as receptors for the protons that are

Figure 1. Models for the putative pre- and postsynaptic functions of DEG/ENaC channels. (a) Model for presynaptic DEG/ENaC
function. The lumen of synaptic vesicles is acidic. Therefore, high frequency release of synaptic vesicles leads to an increase in proton
concentration in the synaptic cleft. The lower pH leads to opening of presynaptic DEG/ENaCs, followed by a presynaptic sodium
influx. Subsequently, local depolarization drives the opening of presynaptic voltage-gated calcium channels, and calcium-dependent
synaptic vesicle release. (b) Model for postsynaptic DEG/ENaC mediated facilitation of synaptic activity. Upon the presynaptic release
of vesicles, the synaptic cleft acidifies, which leads to an influx of cations directly through DEG/ENaC channels or indirectly via
voltage-gated calcium channels, and the removal of the extracellular magnesium block from NMDA receptors. Subsequently, the
DEG/ENaC-dependent calcium influx also induces the phosphorylation of CaMKII, which increases spine density. (c) Model for
postsynaptic DEG/ENaC mediated depression of synaptic activity. As in (b), DEG/ENaC-mediated depolarization due to the acidifica-
tion of the synaptic cleft leads to a calcium influx, which modulates the dephosphorylation and activation of GSK3β, which promotes
internalization of postsynaptic AMPA receptors, and subsequently leads to long-term synaptic depression.
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co-released with neurotransmitters [22,24,94,95].
In addition, DEG/ENaCs could regulate glial cal-
cium levels, which have been shown to modulate
various aspects of neuronal synaptic function, pos-
sibly through the release of gliotransmitters, such
as glutamate and ATP [96]. Nonetheless, it should
be noted that the majority of studies implicating
glial DEG/ENaCs in the regulation of synaptic
activity in knockout mouse models are con-
founded by the gene being missing from both
neurons and glia. Therefore, the specific division
of labor in terms of the specific contributions of
neuronal versus glial DEG/ENaCs to synaptic pro-
cesses is not yet clear.

Channel activity-independent models for the role
of DEG/ENaC proteins in synaptic structure and
function

In addition to their possible roles as synaptic ion
channels, we would like to consider other possible
non-canonical, channel-independent synaptic
functions for DEG/ENaC-like proteins. Similar
non-canonical neuronal functions have been pre-
viously assigned to other classes of ion channels
[97–99]. Specifically, as we discuss below, some of
the structural features of members of the DEG/
ENaC family suggest that these proteins might also
contribute to processes associated with synaptic
structural integrity and stability.

One of the defining features of all members of
the DEG/ENaC protein family is the large extra-
cellular loop [2–5]. Specific structural features of
the extracellular loop of several DEG/ENaCs have
been hypothesized to resemble peptide neurotox-
ins that modulate neuronal physiology by directly
modifying the functions of voltage-gated sodium
and potassium channels [100,101]. In support of
this hypothesis, it has been shown that the extra-
cellular loop of ASIC1a can inhibit calcium depen-
dent potassium channels in the BK family, as well
as voltage-gated Kv1.3 potassium channels
[100,102]. In addition, the inhibitory association
between ASIC1a and BK channels has been shown
to depend on extracellular pH levels, whereby low
pH levels that are sufficient to activate ASICs, are
also sufficient to release the inhibition of BK chan-
nel activity [100]. In cultured cortical cells, triple
knockout of ASIC1a, ASIC2 and ASIC3 was shown

to increase action potential firing rate and increase
the time of the after hyperpolarization in a manner
that was blocked by a BK channel inhibitor [102].
Subsequently, it has been hypothesized that some
presynaptic effects of ASICs on the frequency of
spontaneous neurotransmitter release could be due
to interactions between ASICs and other presy-
naptic ion channels, or direct interactions with
the synaptic release machinery [52,63]. However,
to date these hypotheses remain theoretical.

In addition to the studies that have implicated
protein-protein interactions between DEG/ENaC
channels and other neuronal ion channels
[100,102], studies in other tissues such as the kid-
ney suggest that ENaC channels physically interact
with sodium chloride cotransporters, leading to
specific modulations of the activities of both pro-
teins [103]. Together, these studies suggest that
physical interactions between DEG/ENaCs and
other membrane bound proteins are probably
more common than currently appreciated, and
likely represent an important facet of DEG/
ENaC-dependent physiological processes in gen-
eral, and modulation of synaptic activity in
particular.

Another non-mutually exclusive hypothesis for
the possible synaptic functions of DEG/ENaCs
relates to the recent discovery that the intracellular
domains of DEG/ENaCs may play enzymatic roles
to modulate intracellular signaling cascades.
Specifically, it was recently shown that indepen-
dent of its ion channel function, extracellular acid-
ification drives the intracellular C terminus of
ASIC1a to bind to and phosphorylate the serine/
threonine kinase receptor interaction protein 1
(RIP1), a key mediator of necroptosis [104].
Additionally, bioinformatic analysis of 28 DEG/
ENaC protein sequences, including invertebrate
and mammalian sequences, identified similarities
between the intracellular N terminus and part of a
protease domain [105], suggesting a possible enzy-
matic function for DEG/ENaCs. Studies of other
ion channel families have similarly reported inter-
actions with key enzymes in canonical metabotro-
pic signaling pathways. For example, potassium,
calcium and transient receptor potential (TRP)
channels have been shown to bind to and modu-
late protein kinases, including CamKII and serine/
threonine kinases [97,98]. Although not yet
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supported by empirical data, these possible inter-
actions between synaptic ion channels, including
DEG/ENaCs, and phosphorylation-dependent sig-
naling cascades, could mediate synaptic plasticity
via a myriad of downstream pathways, including
short term effects on ion channel function and
long-term effects on gene expression [106–108].

Another unexplored aspect of DEG/ENaC chan-
nels relates to reports that some family members are
localized to intracellular membranes, suggesting that
instead of responding to extracellular ligands, these
channels play a role in intracellular signaling path-
ways. For example, in addition to its cell membrane
localization, ASIC1a has also been observed in mito-
chondrial membranes of mouse cortical neurons,
where it was shown to physically interact with the
inner mitochondrial membrane protein adenine
nucleotide translocase (ANT) [109]. While ANTs
primary function is in ADP/ATP exchange, ANT
is also a key mediator of the mitochondria-driven
apoptosis pathway in response to oxidative stress
[110]. Based on the observed physical interaction
between ASIC1a and ANT, ASIC1a is also likely to
modulate mitochondrial ADP/ATP exchange in
non-oxidative stress conditions. Therefore, because
both the pre- and postsynaptic compartments are
packed with mitochondria, which are required for
proper neuronal development and function via their
regulation of ATP supply and calcium homeostasis
[111,112], we hypothesize that some DEG/ENaC
channels might also affect synaptic physiology via
their role in mitochondria.

Conclusions

In recent years, DEG/ENaCs have emerged as
important modulators of neuronal and behavioral
plasticity in health and disease. Therefore, under-
standing their specific action at the synapse is
important because they could serve as central targets
for drugs that affect neuronal plasticity as a possible
solution for diverse cognitive and psychiatric disor-
ders, and for deciphering the basic biological prin-
ciples that govern synaptic and behavioral plasticity.
Although the actual physiological functions of
synaptic DEG/ENaCs is still mostly unknown, here
we propose several non-mutually exclusive models
that might explain such functions, and provide an
overview of the empirical data that support at least

some of these models. We anticipate that future
studies will indicate that individual DEG/ENaC-
encoding genes contribute to synaptic physiology
and plasticity across neuronal cell types and species
via diverse mechanisms and cellular compartments.
These studies could be enhanced by a better under-
standing of the subcellular localization of neuronal
DEG/ENaC proteins, especially in the pre- and post-
synaptic domains. Because generating antibodies
that target membrane bound proteins is notoriously
difficult, we expect that the use of CRISPR/Cas9-
depedent genome editing approaches in genetically
tractable organisms such as the fly, the worm, and
the mouse would accelerate this current gap by
tagging endogenous DEG/ENaC-encoding genes.
Additionally, the use of genome editing for the
generation of carefully designed mutant alleles
could lead to novel mechanistic insights into the
synaptic functions of DEG/ENaCs by directly test-
ing predictions derived from the models we propose
here.
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