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Abstract

Background: Sporadic Amyotrophic Lateral Sclerosis (sALS) is a devastating, complex disease of unknown etiology.
We studied this disease with microarray technology to capture as much biological complexity as possible. The
Affymetrix-focused BaFL pipeline takes into account problems with probes that arise from physical and biological
properties, so we adapted it to handle the long-oligonucleotide probes on our arrays (hence LO-BaFL). The revised
method was tested against a validated array experiment and then used in a meta-analysis of peripheral white
blood cells from healthy control samples in two experiments. We predicted differentially expressed (DE) genes in
our sALS data, combining the results obtained using the TM4 suite of tools with those from the LO-BaFL method.
Those predictions were tested using qRT-PCR assays.

Results: LO-BaFL filtering and DE testing accurately predicted previously validated DE genes in a published
experiment on coronary artery disease (CAD). Filtering healthy control data from the sALS and CAD studies with
LO-BaFL resulted in highly correlated expression levels across many genes. After bioinformatics analysis, twelve
genes from the sALS DE gene list were selected for independent testing using qRT-PCR assays. High-quality RNA
from six healthy Control and six sALS samples yielded the predicted differential expression for 7 genes: TARDBP,
SKIV2L2, C12orf35, DYNLT1, ACTG1, B2M, and ILKAP. Four of the seven have been previously described in sALS studies,
while ACTG1, B2M and ILKAP appear in the context of this disease for the first time. Supplementary material can be
accessed at: http://webpages.uncc.edu/~cbaciu/LO-BaFL/supplementary_data.html.

Conclusion: LO-BaFL predicts DE results that are broadly similar to those of other methods. The small healthy
control cohort in the sALS study is a reasonable foundation for predicting DE genes. Modifying the BaFL pipeline
allowed us to remove noise and systematic errors, improving the power of this study, which had a small sample
size. Each bioinformatics approach revealed DE genes not predicted by the other; subsequent PCR assays confirmed
seven of twelve candidates, a relatively high success rate.
Background
In sporadic Amyotrophic Lateral Sclerosis (sALS), mul-
tiple pathways are implicated to different degrees across
individuals, probably due to environmental and genetic
factors that are not currently understood [1,2]. We are
interested in identifying strong biomarkers (insensitive
to genetic background) from blood, which is routinely
obtained during physical exams. Microarrays are particu-
larly suitable when searching for common markers in
polygenic diseases like sALS, and have been used to ob-
tain both transcript and genotyping profiles. Because the
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platforms were the first fully parallel instruments for
assessing cell state, large data sets have been created and
widely shared [3-6]. Despite their ubiquity and frequent
success, the correct handling of microarray measure-
ments is still subject to debate, and conflicting interpre-
tations are common [3]. Many factors have been
identified as contributing to the inconsistent outcomes.
An individual’s divergence from the ‘reference standard’
used in platform design is one factor we cannot control
a priori [7], but biophysical properties of the sensors, or
probes, are also important factors [3-5] that do not
change with the sample, and cause considerable differ-
ences when comparing arrays from different suppliers.
Probe placement with respect to transcripts, and which
isoforms are detected, vary by supplier [6]. Noise has
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both biological and technical sources, from factors such
as availability of a homogeneous sample and the com-
pleteness of amplification and fragmentation steps [8].
Determining how these factors affect measurements is
amenable to modelling although to date no single ap-
proach has achieved dominance; however it is not dis-
puted that removal of flawed measurements improves
the detection of meaningful patterns in the data [1].
We had available microarray data previously produced

in a study by Mougeot et al.[9]. Briefly, this study used a
pooled reference design and compared expression levels
of genes in each of 22 samples to that pool, 11 from
patients with ALS and 11 from age- and gender-
matched healthy controls. The samples were purified
peripheral blood lymphocytes (PBLs). For some of the
samples RNA remained for follow-up testing, although
the amounts were very small. Because of the limited
number of samples we wanted an array analysis method
that removes as many sources of bias as possible. To this
end we characterized the long-oligonucleotide probes
used on the Agilent 4x44k human arrays for sequence
and structural properties that confound measurement
interpretation. We based the method on steps used in
the Affymetrix-specific BaFL pipeline [10]. Compared to
Affymetrix arrays, probes on Agilent arrays are longer
(60-mers) and only 1–2 probes are present per gene
compared to Affymetrix arrays 11–16 probes (25-mers)
per gene. Accommodating these differences required
modifying parameters in the BaFL algorithms used to
identify and map probes to the genome. For example in
SNP filtering the polymorphisms between probe and tar-
get affect binding, but the number of such mismatches
that would eliminate the signal depends on the length of
the duplex [9-11]. Testing for internal probe structures
that compete with duplex formation required both
length and hybridization condition adjustments [11-13].
Two new steps were added, one to identify homopoly-
meric G runs (> 3), which often lead to high signal
uncorrelated with concentration [14] and another to
check whether probes map to families of repeat ele-
ments. We also modified the criteria by which probes
‘correctly’ map to the reference genome: Affymetrix
probes often map to untranslated regions or introns,
while Agilent probes are intended to map to a single
exon (eliminating sensitivity to alternate splice forms);
we removed probes that violated the design constraint.
In addition to applying the BaFL method to our data

we performed a parallel analysis with the TM4 [15]
package, which uses statistical criteria to identify and re-
move poor measurements [16]. We used two of the four
modules: the MIDAS (Microarray Data Analysis System)
application which includes several normalization steps
and low-intensity filtering, and the Significance Analysis
of Microarrays (SAM) [17] package for predicting
differentially expressed (DE) genes. TM4 removes mea-
surements in an experiment-specific way based on their
behaviour, while LO-BaFL removes probes in an
experiment-neutral way based on their physical proper-
ties and measurements based on scanner detection lim-
its. When we performed the analyses we did not know
to what extent the DE gene lists produced by the two
methods would coincide.
For rare diseases, such as sALS, it is difficult to obtain

the large sample sizes needed to identify factors having
moderate effects: in our study we had only 22 samples,
11 from patients with confirmed sALS and 11 from age
and gender-matched healthy controls. We hoped to in-
crease these numbers by combining our study with stud-
ies from other researchers, both to increase our
statistical power and to broaden the effective population
for any markers. We were unable to identify another
sALS microarray study with publically available raw data.
However, we did identify an Agilent 4x44k microarray
expression data set from a Coronary Artery Disease
(CAD) [18] study whose healthy control samples came
from mixed white blood cells from a population with
similar demographics to ours [19]. In brief, this study
examined samples from 17 CAD patients and 14 healthy
age- and gender-matched Controls based on circulating
blood cells (fractionated peripheral blood mononuclear
cells) collected from participants, that included qRT-
PCR validation of predicted DE genes. We tested
whether LO-BaFL predicted the validated set of DE
genes from the CAD study to make sure the approach
could mimic successful results, and to compare the our
small set of healthy control data to an independently
measured set to ensure that we had a good baseline for
predicting DE genes in the sALS arrays.
The effectiveness of a data cleansing method can be

assessed in a number of ways, including improvements
in the accuracy of subsequent data mining efforts,
whether detecting differential expression or sample
classification [20]. The most credible confirmations are
sample-based, using an independent assay (usually qRT-
PCR), but concordance over multiple data sets or
reports on the level of specific genes are also accepted.
With small amounts of amplified sALS material
remaining from the microarray study we tested the top
DE predictions by qRT-PCR assays [21]. Microarray
and qRT-PCR results were declared concordant when
the direction and the degree of change in expression
compared to a control gene were accurately captured
[22]. The CAD study also used qRT-PCR to test predic-
tions, and we accepted the accuracy of the reported
results [19]. We then performed a literature search for
reports on expression of specific genes, or pathway and
interaction data known to be important in sALS
[2,23,24].
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Results and discussion
Probe filtering
For each LO-BaFL step the output is available along with
the final results of our analyses, in the Supplementary
Material section: http://webpages.uncc.edu/~cbaciu/LO-
BaFL/supplementary_data.html. Summarized results are
reported below, and implementation details are in the
Materials and Methods.
The cross-hybridization filter
Scanning for near-perfect and perfect matches between
the 41,000 Agilent probes and HRG36.1 (Human Refer-
ence Genome build 36.1), identified 370,139 hits, or an
average of ~9 matches per probe. The full list of matches
is available on the project Web site/Cleansing process/
tera_blast_results/tera_blast_raw.zip. In a gene expres-
sion array the impact of a perfect match to a secondary
target depends on whether it is an expressed sequence:
most cross-hybridization was to unexpressed regions.
Perfect matches of probes mapped to protein-coding
genes, with a few exceptions (described in (iii)).

The duplex stability filter
Using the Kane criteria and OligoArrayAux values,
~8.63 % of the probes had cross-hybridizing partners to
expressed regions that would produce mixed measure-
ments (detectable signal coming from multiple targets);
such probes were flagged for removal [25,26]. The set of
allowed probes is available on the project Web site
under: ‘Cleansing Process/cross-hybridization_filter/total_
probes_no_crosshyb.csv’.
The exon-specific and target loss filters
There are 407 probes that no longer map to an exon
in HRG36.1, a list is given in ‘probes_info_no_pm_no_
crosshyb_not_mapped.csv’ in Supplementary Data/
Cleansing Process/loss_of_target_filter; these were flagged
for removal. While several of these probes do map prop-
erly to transcripts, they must cross exon junctions. They
are clearly described and could be returned to the data
pool if the isoform were known to be present.
The SNP filter
Of the remaining probes, ~2.53 % map to targets contain-
ing 4 or more SNPs, so they were removed from the list of
allowed probes. The file showing the probes with major/
minor alleles for each SNP position is in Supplementary
Material/Cleansing process/SNP filter/snp_info_probes_
gt_4snp.csv. Should samples be SNP qualified, probes can
be returned to the allowed list. We include another file,
‘agilent_probe_info_3SNPs.csv’ that describes probes with
one to three SNPs.
The OligoArrayAux filter
For 60-mers under the stated hybridization conditions,
setting monomer folding stability to ΔG = −5.2 kcal mol-1

separates probes that are less responsive to changes in tar-
get concentration from the majority of probes that are
similar in their response to increasing target concentra-
tion. Applying this filter resulted in removal of ~21.5 % of
the probes, listed in the Supplementary Material file under
‘DeltaG_filter’ tables.

The poly-G filter
There are 4,742 poly-G containing probes in the original
array design (see file ‘log_signal_4G_probes_total_no_
filters.csv’, under polyG_filter of Cleansing Process in
Supplementary Material). Of these ~2.3 % had unusually
high intensity (log10(I) > 4.5) vs. 1.5 % with this intensity
in the probes without this feature. At the other extreme,
16 % of poly(G) probes had log10(I) < 1.1 vs. 7.7 % of the
probes with no poly-G stretch. Since these probes have
unusual behaviour at both extremes, we examined the
final probe list for the frequency of this feature: only 19
poly-G containing probes were still present. Since 8 of
these probes show very high signal (log10(I) > 4.5) we
removed all of them.

The repeated element filter
A screen of the probes for LINE, SINE and Alu subse-
quences was performed against the TranspoGene data-
base [27]; unlike our results with the Affymetrix human
expression and SNP6.0 array probes, no matches were
identified (data not shown).
A summary of the entire workflow is shown in

Figure 1, and the summary of the pipeline effects (shown
as percentage of total filtered out per step) is shown in
Table 1.

Measurement filtering
Estimating the background and then filtering for mea-
surements that fall below it is experiment specific. To re-
tain a probe it must have a valid measurement in
every array in a sample class. In the sALS study ~27,000
probes were removed by this filter; see Supplementary
Material/Cleansing Process/Instrument_cutoff/all_samples_
gt_instrument_cut-off_log_intens.csv for the list. In our
sALS arrays, log10(I)mean and log10(I)median for this set of
probes yielded values of 3.51 and 3.49 respectively, while
for the CAD samples the values were 3.0 and 2.9 respect-
ively. This is ten-fold higher than the value we find for most
experiments using Affymetrix scanners (Thompson,
personal report) but the instruments are different. Because
we lost so many genes from this filter we estimated a sec-
ond cut-off value, using unexpressed genes having ΔG <
−10 kcal mol-1 which results in a background estimate
value that is about 10-fold lower (200–300 fluorescent
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Figure 1 The LO-BaFL method flowchart: the steps are given on the left; comments to the right indicate where intermediate datasets
were stored in the project database. Note that for each step the output has been made available as flat files.
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units). In comparison, the TM4 pipeline uses Lowess
smoothing to estimate background, shown in Figure 2 for
the ALS samples (lower panel), and Additional file 1:
Figure S1 for the CAD data (see ‘Supplementary Data/
CAD study’). The Lowess approximations fall between
200–300 fluorescent units, similar to the less stringent
LO-BaFL estimate above. We tested whether using the
less stringent cut-off would improve the concordance in
DE genes between LO-BaFL and TM4 predictions, since
more similar starting gene lists might result in more simi-
lar outcomes. Since no improvement occurred (data not
shown) we kept the stringent background estimate value
for subsequent analyses.
Sample Filtering
All of the samples in the sALS experiment passed outlier
detection tests, including those whose residual samples
had poor RNA Integrity Numbers (RIN), which we inter-
pret to mean that the target applied to the microarray
Table 1 The percentage of probes removed per filtering
step by LO-BaFL (on Agilent human expression 4 x 44 k
microarrays) in comparison with the percentage removed
by the BaFL method (on Affymetrix human expression
U133Av2 arrays)

Applied filter % Probes filtered
out (LO-BaFL)

% Probes filtered
out (BaFL) [7]

Cross-hybridization 8.63 % 60.30 %

Loss of target 0.99 % 2.19 %

SNP 2.53 % 1.78 %

ΔG 21.46 % 5.17 %
had acceptable quality, with degradation occurring dur-
ing storage. CAD samples were similarly tested: no out-
liers were detected.

Comparing distributions of samples and probes
In both the CAD and sALS studies, Fisher’s test indi-
cated unequal variances between the healthy control and
diseased groups of samples. Testing measurements for
the individual probes for the DE genes of interest, across
replicates, in the two sample classes, using the Shapiro-
Wilks test for normality [28-30], also indicated non-nor-
mality. Given the presence of unequal and non-normal
distributions (see Figure 3 and Additional file 1: Figures
S2, S3 in Supplementary Data/CAD Study) the non-
parametric Wilcoxon two-sample test for unpaired
groups [31,32] was applied.

Predicting differentially expressed sALS genes
For input data to the Wilcoxon test we used measure-
ments from either the 12 sALS samples with the highest
quality RNA (6 in each class) or from all 22 samples (11
in each class); the latter resulted in a shorter input list as
some genes were eliminated when their probe signal fell
below background in a few arrays. After processing mea-
surements with TM4 or LO-BaFL and applying the Wil-
coxon test we first used the Bonferroni multiple-test
correction, but were left with no significant DE genes in
any of the trials. However, applying a FDR with p < 0.05
resulted in a set of significant differentially expressed
genes from each method. In the output files the results
for TM4 are labelled ‘TM4/W12’ and ‘TM4/W22’, results
for LO-BaFL are labelled ‘LO/W12’ and ‘LO/W22’. To
verify that differences were not due to differing



Figure 2 (See legend on next page.)
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(See figure on previous page.)
Figure 2 A graphical representation of ΔGcut-off and of ΔG vs. Probe Signal. Top panel shows ΔGcut-off results: the probes having
ΔG < −5.2 kcal mol-1 fall to the left of the red line, these were filtered out (21.5 %). Bottom panel shows ΔG vs. Probe signal: the red line denotes
background cut-off value; the grey line is the Lowess smoothing line between ΔG and log10 intensities; grey dots represent the probes with very
stable structures that have been eliminated in the process; black dots represent the probes with signal higher than the background cut-off value
and ΔG < −5.2 kcal mol-1.
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implementations of the Wilcoxon test we also loaded
LO-BaFL filtered data into SAM and selected the Wil-
coxon test (results are labelled ‘SAM/W12’ and ‘SAM/
W22’). The main caveat in interpreting this comparison
is that there must be sufficient observations in the
expected classes for each method to be valid.
The LO/W22 sALS experiment returned 87 probes as

DE and the LO-W12 experiment returned a subset of 60
of those genes. For the CAD study, 386 genes were found
to be differentially expressed, and this set included those
confirmed by RT-PCR whose probes had not been
removed by LO-BaFL filtering. The list with all DE genes
for ALS is provided for each analysis in Supplementary
Material/Data post filtering/DE_genes_12(or all)_samples
tables. DE genes for CAD experiment are listed in Supple-
mentary Data/CAD Study/DE_genes_CAD/DE_genes_
CAD_data.csv.
Table 2 compares the six lists of 5 most significantly

DE genes across the 3 analysis methods and 2 sample
groupings. Clearly, the R and SAM implementations of
the Wilcoxon are very similar, with SAM being more
stringent since it eliminates one gene allowed by the
non-permutation based algorithm. The number of sam-
ples made a large difference: only 1 of 5 genes is in com-
mon when 12 of the 22 samples were processed with
LO-BaFL (that being JUNB) or with TM4 (the gene
Figure 3 Q-Q plot showing the distribution of the log10-expression va
theoretical normal distribution (x axis), for diseased (upper) and heal
being DYNLT1). Checking the list of LO-BaFL depre-
cated probes shows that four of the TM4 DE genes fell
below the background estimate value for LO-BaFL,
explaining their absence. The final TM4-predicted gene,
DYNLT1 did not appear on the LO-BaFL list because it
did not meet the p-value criterion.

DE validation by qRT-PCR
Levels of the four reference genes were stable and at the
relative expression levels with respect to each other
remained unchanged across all samples (data not
shown). The summarized results for the DE genes are
shown in Table 3. Highly elevated expression ratios are
observed for ACTG1, SKIV2L2, C12 orf35, B2M and
DYNLT1 and more modest values for ILKAP and
TARDBP. Our experimental results are in good agree-
ment with the recent report by Mougeot et al. [9] show-
ing by computational methods that SKIV2L2, C12orf35,
DYNLT1 are differentially expressed in PBL samples
from patients with ALS vs. normal healthy control sub-
jects. As in previous studies, TARDBP is among the
genes with differential expression for ALS [33,34], al-
though the contribution of the ILKAP gene led to a
smaller increase in TARDBP than was predicted by
TM4. Furthermore the present work reveals three novel
DE genes: ACTG1, B2M, and ILKAP.
lues of all probes in each sample (y-axis), compared to a
thy controls (lower).



Table 2 Comparison of genes determined to be DE in the ALS experiment by each method using either 12 or 22
samples

List of DE genes Gene/Accession Description p-value/SAM score

LO/W12 FTH1/NM_002032 Ferritin, heavy polypeptide 1 1.59E-3

JUNB/NM_002229 Jun B proto-oncogene 3.67 E-3

B2M/NM_004048 Beta-2-microglobulin 1.54 E-3

ACTG1/NM_001614 Poly(A) binding protein, cytoplasmic 1 3.7 E-3

SLC25A3/NM_005888 solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 3 4.46 E-3

LO/W22 EXOC3L2/NM_138568 Exocyst complex component 3 like 2 5.73 E-3

FAU/NM_001997 Finkel-Biskis-Reilly murine sarcoma virus 1.96 E-3

GLTSCR1/AF182077 Glioma tumor suppressor candidate region gene 1 2.56 E-3

JUNB/NM_002229 Jun B proto-oncogene 1.24 E-3

IRS2/NM_003749 Insulin receptor substrate 2 1.66 E-3

TM4/W12 CSE1L/NM_001316 CSE1 chromosome segregation 1-like (yeast) 3.95E-3

NUP88/NM_002532 Nucleoporin 88 kDa 3.95E-3

PARP1/

NM_001618 poly (ADP-ribose) polymerase 1 3.95E-3

DYNC1I2/NM_001378 Dynein, cytoplasmic 1, intermediate chain 2 6.17E-3

DYNLT1/NM_006519 Dynein, light chain, Tctex-type 1 6.48E-3

TM4/W22 IRS2/NM_003749 Insulin receptor substrate 2 1.22E-04

SKIV2L2/NM_015360 Superkiller viralicidic activity 2-like 2 (S. cerevisiae) 1.22E-04

DYNLT1/NM_006519 Dynein, light chain, Tctex-type 1 1.60E-04

C12orf35/NM_018169 Chromosome 12 open reading frame 35 2.07E-04

TARDBP/NM_007375 TAR DNA binding protein 2.68E-04

SAM/W12 FTH1/NM_002032 Ferritin, heavy polypeptide 1 1.628

JUNB/NM_002229 Jun B proto-oncogene 1.429

B2M/NM_004048 Beta-2-microglobulin 1.452

ACTG1/NM_001614 Poly(A) binding protein, cytoplasmic 1 1.234

SLC25A3/NM_005888 solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 3 1.057

SAM/W22 IRS2/NM_003749 Insulin receptor substrate 2 1.182

GLTSCR1/AF182077 Glioma tumor suppressor candidate region gene 1 1.165

FAU/NM_001997 Finkel-Biskis-Reilly murine sarcoma virus 1.165

EXOC3L2/NM_138568 Exocyst complex component 3-like 2 1.099

JUNB/NM_002229 Jun B proto-oncogene 1.034

Genes were selected based on FDR significance (p < 0.05). Methods include: LO-BaFL-Wilcoxon (LO/W12, LO/W22), TM4-SAM-Wilcoxon (TM4/W12, TM4/W22) and
LO-BaFL-SAM-Wilcoxon (SAM/W12, SAM/W22) as described in the text.

Table 3 The expression ratio of the genes tested in the
qRT-PCR assays, determined by the Pfaffl method

Gene Symbol Gene Accession Expression Ratio

ACTG1 NM_001614 48.5

SKIV2L2 NM_015360.4 37.3

C12orf35 NM_018169.3 22.4

B2M NM_004048 18.2

DYNLT1 NM_006519.1 17.4

ILKAP NM_030768.2 8.8

TARDBP NM_007375.3 5.6
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Each analysis method predicted DE of genes excluded
by the other, and in each case some of the predictions
were verified with the independent assay. LO-BaFL is
likely to exclude some genes that are DE because of its
high background estimation value and because it
removes probes that are only problematic in some popu-
lations, leading to false negatives. The example of
TARDBP and its cross-hybridizing gene, ILKAP, high-
lights why using only TM4 is likely to lead to errors as
well. In fact using both pipelines and then confirming
the predictions with qRT-PCR is the best approach to
achieve a complete and accurate assessment of potential
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biomarkers. Because LO-BAFL explicitly lists excluded
probes by relevant filter, it is possible to add back par-
ticular probes when additional information warrants, a
procedure not possible with TM4.

Baseline validation by meta-analysis
The gene-to-gene correlation for healthy normal con-
trols across the sALS and CAD experiments was quite
high (r2 = 0.81), indicated visually by the flatness of the
Lowess smoothing line in red (Figure 4). In both experi-
ments the genes that are most highly expressed (e.g.
RPS2, RPLP1, RPS28, HLA-C) and those at the lower
end of detection (e.g. CD28, CDV3, CD79A, CCD12) are
the same and characteristic of white blood cells. We car-
ried out this analysis because determining differential
expression is entirely a function of the baseline data set.
In the sALS study both the diseased and reference popu-
lations were very small, and we knew that for some of
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the samples the quality of the remaining RNA was not
high. We wanted an independent assessment of the
healthy control samples: although the cell types in the
sALS and CAD studies are not identical, this was
the closest match we could identify. We are aware that
subpopulations of cells such as PBMCs and PBLs have
been shown to have distinct response signatures [35-37]
so we expected to see broadly the same response with
some differences and this was indeed the result. Given
the general concordance of the results, we have more
confidence in the results of the differential expression
analysis based on this small group of sALS-normal con-
trol arrays.

Identifying DE genes in the CAD study
For the CAD study, the list of most significant DE genes
determined by LO-BaFL was compared with results re-
ported in [19]. Two of the genes appear on both lists
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(CSPG2, ALOX5), four are close variants of the DE genes,
while the remainder of the genes reported as DE in the
paper were eliminated from our list based on the criteria
already discussed (See ‘Supplementary Material/CAD
study/comparison_with_DE_genes_CAD/comparison_LO-
BaFL_CAD_DE_genes.csv’). The file listing DE genes for
this experiment as determined by our method is found in
the file ‘LO-BaFL_DE_genes_CAD_data.csv’, located in the
directory mentioned above.

Conclusions
We showed that results obtained from a modified
probe-filtering method (LO-BaFL) gave comparable per-
formance to a statistical filtering method (TM4), using
data obtained from independent experiments that were
performed using similar cell types and the same platform
with similar healthy control groups, but differing disease
states. For the sALS experiment the top predicted DE
genes from each method, and two that cross-hybridized
with one of the candidates, were tested with qRT-PCR.
We confirmed the microarray DE predictions for 7 of
the genes: ACTG1, SKIV2L2, C12orf35, B2M, DYNLT1,
TARDBP, and ILKAP, all of which were elevated in sALS
versus healthy Controls. The four control (non-DE)
genes showed their predicted responses as well. These
results confirm DE genes obtained in other studies
[25,38,39], and adds to list of candidate biomarkers the
genes ACTG1, B2M, ILKAP.
Employing different methods to obtain DE genes on

same data set has the advantage of accounting for errors
inherent to each method. The LO-BaFL pipeline identi-
fies and eliminates cross-hybridizing probes that TM4
does not, as illustrated by TARDBP. On the Agilent
array this probe cross-hybridizes with IlKAP and two
other genes. TM4 assigns the signal to TARDBP, and
here identifies it as DE, but ILKAP is missing entirely
and we show here that it does contribute to the signal
and is also differentially expressed. LO-BaFL had elimi-
nated the probe because of cross-hybridization but by
combining the results of both methods we could test all
candidates with qRT-PCR. Thus we produced better DE
data for TARDBP and new data for ILKAP.
Comparing normal samples from the CAD experi-

ment [19] with those in the sALS experiment showed
highly correlated expression levels in LO-BaFL filtered
genes, increasing our confidence in the reliability of the
baseline. In addition, the DE genes confirmed by qRT-
PCR in the CAD study [19] coincided with DE genes
that appeared after LO_BaFL analysis, except where
probes had been eliminated by filtering. Since sALS is
sporadic, and very rare, methods that allow meaningful
data integration across multiple small experiments will
be important to improving the power of individual
studies [10,40].
Methods
Hardware and software
For data storage, data organization, and recording the
order and parameters used in the pipeline transforma-
tions, we have used DataFATE (Data - Feature Analysis
Transformation Extraction), a software system based on
a relational model that includes a toolset with data im-
port and organization tools for relational database man-
agement systems (RDBMS), tools for factor (quantitation
type, QT) definition, QT set construction, and storage of
data from processing steps. The RDBMS is currently
PostgreSQL 8.0.3. [41]. The project instance of Data-
FATE was installed into a 64 bit, 22-processor, 120 GB
of RAM computer running Ubuntu 9.04 version for Ker-
nel LINUX™ 2.6.28, as the operating system. Querying,
extraction and manipulation of data stored in DataFATE
was carried out with scripts written with Python 2.6
[42], SQL (via PGAdminIII) [43] and R [44]. Additional
software installed on this hardware and used for this
project includes the TM4 microarray software suite [15],
OligoArrayAux [6] for biophysical modelling. For the
results using the packages TM4 and Significance Ana-
lysis of Microarrays (SAM) [17], we set up a relational
database to maintain stable output of intermediate and
final results of both pipelines.

Data selection and acquisition
Microarray image files and corresponding spot intensity
values for the sALS study were provided by JLM and
BRB. The microarray experiment used Agilent 4x44K
human genome microarrays [45] in a pooled healthy
control reference design [38]. Sample and microarray
processing were performed at CogenicsTM [39], produ-
cing arrays contrasting each sample (healthy and dis-
eased) to the reference. The raw data sent back by
Cogenics includes extracted spot intensities and the
background-subtracted intensity ratios for each contrast.
A major shortcoming of many analysis methods is that

they are over-tuned to a particular experiment, so that
parameters that yield excellent results in one study give
poor results in another. If the LO-BaFL filters are ex-
periment neutral (except for the estimation of back-
ground) then LO-BaFL should predict the behaviour of
genes from similar samples but different experiments
relatively well. We identified one experiment that used
human peripheral white blood cells and the same type of
Agilent array. Some of the DE genes had been followed
up with qRT-PCR assays, so these became our bench-
mark for determining whether LO-BaFL could produce
a comparable DE gene list. Although the disease condi-
tions differed, the healthy Control samples were similar
and could provide a check on the quality of the sALS
Control samples. The experiment studied coronary ar-
tery disease (CAD) from healthy controls (n = 14) and
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patients with disease (n = 27) [19]. The data is accessible
at GEO, Accession No.GSE10195. To compare the be-
haviour of the two control groups we randomly selected
six Control samples (from the original 14) and the six
highest-quality Control samples from the sALS study.
An anomaly in the CAD study was a number of spots
with ‘negative’ intensities (often saturated spots that the
software does not know how to handle), which were
removed. Prior to probe filtering, all of the samples have
acceptable measurements for 24,336 genes. LO-BaFL
probe filtering and comparisons are described below.

Computational methods
The LO-BaFL method
The steps in the pipeline described below are summar-
ized in Figure 1.

A. In this section the probe-sequence based filters are
described.

(i) Re-map the Agilent probes to build 36.1 of the

human genome using the accelerated Tera-
BLAST algorithm, as implemented on a
TimeLogic-Decypher [46] server. The
corresponding matches were deposited into an
instance of the DataFATE database. Parameters
were: nucleic match = 1; nucleic mismatch =
−3; open penalty = −5; extend penalty = −2;
threshold significance = 10. The input and
output files can be found in Supplementary
Material section, at: http://webpages.uncc.edu/
~cbaciu/LO-BaFL/supplementary_data.html
under Input Files/agilent_fasta or Cleansing
Process/tera_blast_results.

(ii) Determine the cross-hybridization potential of
probes to other sites in the genome, using the
Kane criteria [47]. Briefly this is an empirical
rule stating that any target sequence with
similarity greater than 75 % across the length of
a probe can contribute a detectable amount of
signal to the total intensity. This rule includes
some constraints concerning the positions and
lengths of mismatch regions. For a probe to
cross-hybridize, we input the following
conditions: percent identity ≥ 85 %; presence of
50 matches out of 60 possible; minimum of 15
consecutive nucleotides in the Agilent probe
sequence. We stored the output, consisting of
all the Kane-criteria cross-hybridizing probes
into DataFATE

(iii) Identify probes that no longer anchor to the
reference genome. This information is acquired
when a TeraProbe query returns ‘no hit’, and this
is stored as an explicit type. We note that our
criteria include restricting location to one exon.
(iv) Identify SNPs and short indels known to occur
in the probe-binding region. Probes were
mapped to the human instance of dbSNP [48],
taking all possible alternate alleles into
consideration. The minimum number of SNPs
expected to significantly degrade the signal is a
parameter in the BaFL pipeline. Using the Kane
criteria, the presence of six SNPs will reduce the
signal to the point of background, but the
presence of any SNP will cause the signal to
reflect both sequence variation and transcript
concentration and the question of degree is not
simple since it depends on sequence context and
competition. For the case study we set the
‘deprecate’ flag to 4 SNPs or more, assuming
that this many competing alleles would make
the intensity information useless for expression
analysis. All of the information was retained,
however, so another researcher could modify the
number of acceptable SNPs and reintroduce
probes.

(v) Employ the OligoArrayAux software [6] to
determine the free energy of internal probe
structures (monomers) versus heterodimers.
Parameters chosen were: temperature 55 to
62°C, concentrations of 1.0 M Na+ and
0.0 M Mg++. Output was used to define
probes that are less responsive to target (high
concentrations are required to compete with
monomer structure) under experimental
conditions. Heterodimers with low stability under
specific experimental conditions also do not yield
signal [49-51]. The predicted value of the most
stable form is stored in the database as an attribute
of the probe, allowing adjustment of the
cut-off value.

(vi) Identify G-runs. It has been shown for
Affymetrix arrays that four or more consecutive
guanines (G-runs) may lead to unusual probe
structures that cause very high signal [14]. We
identified the probes with this feature.

(vii) The presence of any member of the
transposable elements family, short (SINE), long
(LINE) or primate-specific (Alu) repeat
elements, can have a great effect on gene
expression. Using the TranspoGene database
[28] we examined the entire set of genes for
these elements; none were identified. Although
this seems redundant with the cross-
hybridization check, for Affymetrix SNP6.0
probes we found that the BLAST output against
the full genome was incomplete and a number
of matches were identified using the
TranspoGene database as target.

http://webpages.uncc.edu/~cbaciu/LO-BaFL/supplementary_data.html
http://webpages.uncc.edu/~cbaciu/LO-BaFL/supplementary_data.html
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Note that the order of operations is independent for
the above filters; some probes fall into multiple
categories so summing over the ‘bad’ probes
identified per step will give a larger number than the
total number of probes removed.
Rather than remove flawed measurements from
individual files, flawed probes and probes for which
there were not consistent above-background
measurement in all samples (discussed next) were
removed from the array layout file with Aroma,
ensuring consistent removal of the related
measurements across all files [52].

B. Background (Noise Estimation)
We were unable to find technical specifications for
the linear detection range of the Agilent scanner so
we had to estimate the value [52]. This is done by
first selecting probes with very stable monomer
structure, since they are less responsive to increasing
target concentration, and then filtering this group
for genes that are not expected to be expressed in
healthy control samples. The mean intensity of
measurements of these probes in each sample class
is used to estimate the background (given in
Supplementary Data/Cleansing process/
Determining_instrument_cutoff/
delta_g_mean_and_log_int_probes_no_crosshyb.csv).
Once this value has been determined, measurements
are filtered based on whether they exceed that value.
Candidate probes were determined based on queries
for uniqueness and free energy; genes not expected
to be expressed were identified by inspecting the
CAD results. Measurement values were then
retrieved, from each dataset independently, and the
mean, median and Lowess values were determined.

C. Sample Outlier Detection
The sALS experiment used a pooled reference
design, so we determined the reproducibility of the
reference signal across all of the samples. An outlier
was defined as any sample whose signal fell outside
two standard deviations of the class mean for either
the average signal per probe or the average number
of probes per array. We compared the signal
intensities for both the normal and diseased signal to
the mean and variance of each class. Two contrasts
were examined:
(i) Sample to class comparison: Using only accepted

probes with measurements above the threshold
in a sample class, determine the mean signal per
probe per array and across all arrays in the class.
Samples whose probe-signal mean falls more
than two standard deviations outside of the array
mean are rejected. Determine the number of
acceptable probes yielding good measurements
per array and across all arrays in the class, and
similarly reject any sample whose probe-number
mean falls more than two standard deviations
from the class mean.

(ii) Sample distribution comparison: Determine
whether the remaining values fall in a normal
distribution, and compare the within- category
and between-category distributions. If not normal
this would suggest that a log transformation
might be advisable (but our values for the sALS
experiment were already log10 transformed).
Statistical analyses
The sequences of steps performed as statistical analyses
are shown in Figure 5.

A.Measurement distribution and normality

We used QQ plots to examine the distribution of
probes over samples and sample classes. There are
two common ways to employ QQ plots on
microarrays. Yang and Speed [53] proposed testing
measurements from all probes on an array-by-array
basis, assuming that where there were large
differences the samples should not be compared. Wit
and McClure [54] point out that it is the distribution
of signal across samples for a single gene that should
be tested, assuming enough replicates exist and that
the behaviour of the complete set of measurements
is irrelevant to the specific target being tested,
assuming enough replicates exist. For the probes that
passed the LO-BaFL method, the measurements
were tested for distribution. We note that individual
normal and diseased samples were labelled with Cy3
and the pooled reference was labelled with Cy5,
which means the pooled reference group had twice
as many members, which was taken into account.
The Shapiro-Wilks test [28-30] implemented in R
was used to check for normal distribution within and
between sample classes. Since the results of both
experiments show a non-normal distribution (data
not shown), the Wilcoxon non-parametric test
[31,32] for unpaired groups was applied in the
following step.

B. Detection and Significance of Differential Expression

Microarrays confront the analyst with the problem of
testing multiple hypotheses within the same data matrix.
We addressed this issue using the Benjamini and Hoch-
berg FDR procedure [55], as implemented in R. The out-
put consists of a list of DE genes and associated p-values.
The R scripts for statistical analysis and the output file
with DE genes can be found in Supplementary Material/
Scripts/stats_R.txt. The inputs varied slightly between
the two processing packages, as described below.



Figure 5 The computational experiment workflow, showing decision points for the algorithmic steps making up the method used,
ending in the determination of differentially expressed genes (LO-BaFL vs. TM4 for processing and R-Wilcoxon vs. Sam-Wilcoxon for
test implementation).
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TM4 modifies the measurements to normalize and
standardize the signal in a sample class (total intensity
normalization, Lowess normalization, standard deviation
regularization, filtering for the lowest 5 % intensity signals,
and signal detection boundaries of 100 for Cy5 and Cy3
intensities); these values are used by the Significance Ana-
lysis of Microarray (SAM) package using the Wilcoxon
non-parametric test with permutation (set to 100) [31,32]
to identify the differentially expressed genes. The output is
a list of DE genes and associated p-values (results are la-
belled ‘TM4/W12’ and ‘TM4/W22’ respectively).
The LO-BaFL workflow simply used the log10 trans-

formed measurements of accepted probes since the
arrays were found to have similar background and total
intensity. These values were submitted to the Wilcoxon
non-parametric t-test implemented in R (which does not
use permutation) to determine DE genes for both the
high RIN and full set of samples (result sets are ‘LO/
W12’ and ‘LO/W22’ respectively).

Wet-lab methods
Gene selection
In the absence of a calibration standard the actual ex-
pression levels of genes in the individual samples are not
readily available. Thus the wet-lab work had two goals:
determine the level of expression that a microarray value
yields in a qRT-PCR assay; determine whether either
analysis method was accurate in its predictions of the
difference in expression levels between genes in normal
and diseased samples. Table 3 shows the genes selected
and their status as reference gene or candidate DE gene.
Those marked as ‘reference’ are expected to be
expressed in PBLs at moderate levels (varying somewhat
between genes) and consistent levels across all samples.
Quantitative and qualitative assessment of RNA
From 2007 through March 2008, the blood samples used
for microarray and PCR analysis were collected at Caro-
linas Neuromuscular/ALS-MDA Center with approval
by the IRB at Carolinas Medical Center. Informed con-
sent was obtained from all participants in this study.
Detailed information about patient status and early
stages of sample processing are provided in [9]. The iso-
lated RNA from peripheral blood lymphocytes samples
of healthy controls and ALS patients, stored at -80 °C,
provided by the ALS Biomarker Laboratory, Carolinas
Neuromuscular/ALS-MDA Center, Department of Neur-
ology, Carolinas Medical Center (J-LM, BRB) was quali-
tatively checked using the Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA), and quantified
with the Nanodrop ND-1000 (ThermoFisher Scientific,
Waltham, MA). We carried forward only those samples
that satisfied the condition that RIN >5.0.



Baciu et al. BMC Bioinformatics 2012, 13:244 Page 13 of 15
http://www.biomedcentral.com/1471-2105/13/244
cDNA synthesis and QC
A properly designed qRT-PCR assay includes calibration
genes for the sample and assay [56]. For our references
we selected UBE2Z, PGK1, COX4I1, SRRM1. A refer-
ence is context specific: these were selected based on an
apparently consistent level of expression in the micro-
array data across sample classes and individuals, over a
moderate range of concentrations. For all genes the PCR
primers were designed to bridge the position of the array
probe where possible (the set cross-hybridizing with the
TARDBP probe had to be adjusted) and tested against
genomic DNA. The list of test qRT-PCR genes and the
assay primers is given in Table 4.
To test primers and conditions for the qRT-PCR

assays, we extracted RNA from an anonymous sample of
white blood cells, suspended in Triazol and kept at
-80 °C, using the AllPrep DNA/RNA Mini Kit from Qia-
gen (QIAGEN, Valencia, CA), following the manufac-
turer’s instructions. This RNA was qualified and
quantified as above. We then synthesized double-
stranded cDNA from the ALS samples that passed the
RNA quality/quantity test (6 normal controls and 6 dis-
eased) and from the control RNA, using the Full Spec-
trumTM Complete Transcriptome RNA Amplification Kit
from System Biosciences (System Biosciences, Mountain
View, CA), according to the manual. After quantification
of the yield, and standardization of the concentrations,
the cDNA products were qualified by determining
whether the four reference gene PCR primers yielded the
expected size product on 12 % Acrylamide (native) gels
[57]. Even where the starting concentration of RNA was
low, e.g., 20 ng, we obtained good yields of cDNA and
strong signal from the reference genes. The PCR reaction
conditions were as follows, per 50ul final volume: 5.0 μl/
reaction of 10X Buffer, 3.5 μl/reaction MgCl2, 50 mM
stock solution, for Mg++ 3.5 mM final concentration),
2.5 μl/reaction dNTP mixture (all reaction components
Table 4 Genes used in the qRT-PCR assays, and the sequence

Gene information Gene role

UBE2Z, NM_023079.3 Reference gene

PGK1, NM_000291.3 Reference gene

SRRM1, NM_005839.3 Reference gene

COX4I1, NM_001861.2 Reference gene

B2M, NM_004048 DE gene determined by LO-BaFL/SAM

ACTG1, NM_001614 DE gene determined by LO-BaFL/SAM

DYNLT1, NM_006519.1 DE gene determined by TM4 analysis

SKIV2L2, NM_015360.4 DE gene determined by TM4 analysis

C12orf35, NM_018169.3 DE gene determined by TM4 analysis

TARDBP, NM_007375.3 DE gene determined by TM4 analysis

ILKAP, NM_030768.2 Cross-hybridizing gene with TARDBP
from InvitrogenTM Life Technologies, Grand Island, NY,
10 mM stock, 2.5 mM final), 0.5 μl/reaction DNA Taq
Polymerase (New England BioLabsW Inc., Ipswich, MA)
5U/mL in stock; final concentration of 2U/mL), 2.5 μl/
reaction forward and reversed primers (Eurofins mwg|
operon, Huntsville, AL) solubilised with DNA Suspen-
sion Buffer for a concentration of 100 mM stock; final
concentration of 5 mM), 2.0 μl/reaction cDNA as tem-
plate (100 ng). The GeneAmpW PCR System 9700 from
Applied Biosystems (ABI, Life Technologies, Grand Is-
land NY) was set up to the following profile: the initial
DNA denaturation at 95 °C for 5 min; 30 cycles of de-
naturation at 94 °C for 30 s, primer annealing at 57 °C
for 30 s and extension at 72 °C for 30 s; a final elongation
at 72 °C for 4 min and a 4 °C hold.
Primer design and synthesis
The primers were designed using Primer3 software
(http://frodo.wi.mit.edu/primer3/) in combination with
NCBI Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/
primer-blast/) to check for specificity. Whenever possible,
the primers were designed to bridge the positions occu-
pied by the corresponding Agilent probes, in order to ac-
count for sensitivity to transcriptional isoforms. Primers
were purchased in dry form from Eurofins mwg|operon
and resuspended in DNA Suspension Buffer; concentra-
tions were verified with the Nanodrop1000 spectropho-
tometer, length and purity were gel-verified using 12 %
Acrylamide in 1X TBE buffer [57]. PCR performance was
checked with the cDNA made from the control RNA.
PCR conditions were optimized by changing the Mg++

concentration in a range of 2.5 – 4.0 μM, the annealing
temperature in the interval 55 °C - 60 °C and varying the
dNTP mixture concentration from 2.5 μM - 3.5 μM.
Where necessary new primers were designed and run
again through the QC protocol mentioned above.
of the PCR primers used in the assays

Forward primer (5` to 3`)Reverse primer (3` to 5`)

GCAGAGCATGTCTGGCATAG TTCTCCTTCTGCCAAAACAAA

TGCATCTCCACTTGGCATTA TGGGATCTTGAAGAATGTATGC

GGAAATCCTTGGGTTTGAAGA GGCCACAGTTCTCCCATAAA

GGCACTGAAGGAGAAGGAGA GGGCCGTACACATAGTGCTT

GATGAGTATGCCTGCCGTGTG CAATCCAAATGCGGCATCT

AGAGGCTGGCAAGAACCAGTTGTT CAATGACGTGTTGCTGGGGCCT

CCAGCCTATGGCCTTTCTCCTTTTGT CAACGCAGGCTGCAGGTGAC

TGCAGAAGGAATCACCAAAA ATGGGAGAACCAAATCCACA

CGGGGAAACAAGGTATTTGA TTCACATCACAGTGGGCATT

TTTGCTGCAGTTCTGTGTCC TCCATCTCAAAAGGTCAAAA

CACAGGAGTACACAAAACACAC TGCGGATAGGGCACTGAG

http://frodo.wi.mit.edu/primer3/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Real Time qRT-PCR
Before proceeding with qRT-PCR assays with sALS sam-
ples, we verified the quality of the reference standards for
each gene product and optimized the PCR reaction con-
ditions. By adjusting the primer annealing temperature,
the concentration of Mg++ and the dNTP mixture con-
centration, we obtained products that could be amplified
well using a common set of PCR reaction and cycling
conditions. These are: annealing temperature = 57 °C;
Mg++ concentration = 3.5 μM; dNTP mixture concentra-
tion = 2.5 μM; primer mixture concentration = 5.0 μM.
Assays were set up in parallel, taking PCR reagents

from a master mix to amplify the gene product reference
at known concentrations against a mass-titration of a
sample’s cDNA product [21]. We used the following
reagents: 10.0 μl/well of iQTM SYBRW Green Supermix
from Bio-Rad (Bio-Rad Life Science, Hercules, CA) that
includes 2X reaction buffer with dNTPs, iTaq DNA
Polymerase, 6 mM MgCl2, SYBR Green I, fluorescein
and stabilizers according to the Bio-Rad specifications;
forward and reversed primer mixture (2.0 μl/well at
5 mM); 5.0 μl/well of template solution which variously
contained the standard gene, the unknowns or Accugene
water (Lonza AG, Allendale, NJ), and 3.0 μl/well Accu-
gene water in final reaction volumes of 20.0 μl/well. Ti-
tration series were set up as follows: six 10- fold serial
dilutions of the gene product reference and of the sam-
ples, in triplicates, with negative controls in all series to
identify any cross-contamination problems. The reac-
tions were set up in 96-well clear MultiplateW PCR
Plates covered with iCycler iQTM Optical Tape (Bio-Rad
Life Sciences, Hercules, CA). The instrument employed
for these reactions was MyiQ Single-Color Real-Time
PCR Detection System from Bio-Rad. We used a 2-step
protocol with the following profile: Cycle 1:(1X) Step 1:
95.0 °C for 03:00; Cycle 2:(40X) Step 1: 94.0 °C for 00:15;
Step 2: 57.0 °C for 00:30; data collection and real-time
analysis enabled; Step 3: 72.0 °C for 00:15; Cycle 3: (1X)
Step 1: 95.0 °C for 01:00; Cycle 4:(1X) Step 1: 55.0 °C for
01:00. Data were analysed according to the method of
Pfaffl [58].
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the author’s project Website: http://webpages.uncc.edu/~cbaciu/LO-
BaFL/supplementary_data.html.

Competing interests
The authors declare no conflict of interest.

Authors' contributions
JWW designed the experiments; CB performed the research; J-L.M and BRB
provided the PBLs samples, the raw ALS microarray data and contributed to
TM4 data analysis; KJT helped with data analysis and figures; CB and JWW
wrote the paper. All authors read and approved the final manuscript.
Acknowledgements
We would like to thank Dr. Jean-Luc Mougeot and Professor Benjamin Rix
Brooks for providing the samples and raw microarray data for this research
prepared with funding from the Carolinas ALS Research Fund and the
Carolinas ALS Endowment of the Carolinas Healthcare Foundation. Thanks
are owed to Dr. Andrew Carr for DataFATE support and help with querying.
Both Deepthi Chaturvedi and Andrea Price provided expert technical
assistance with lab work. Funding came from NIH 5R01g-3 (PIs Gibas and
Weller) for research support.

Author details
1Department of Bioinformatics and Genomics, University of North Carolina at
Charlotte, Charlotte, NC 28223, USA. 2ALS Biomarker Laboratory, Carolinas
Neuromuscular/ALS-MDA Center, Department of Neurology, Carolinas
Medical Center, Charlotte, NC 28207, USA. 3University of North Carolina
School of Medicine, Charlotte Campus, Charlotte, NC 28203, USA.

Received: 6 March 2012 Accepted: 5 September 2012
Published: 24 September 2012

References
1. Rothstein JD: Current Hypotheses for the Underlying Biology of

Amyotrophic Lateral Sclerosis. Ann Neurol 2009, 65(suppl):S3–S9.
2. Boillee S, Velde CV, Cleveland DW: ALS: a disease of motor neurons and

their noneuronal neighbors. Neuron 2006, 52:39–59.
3. Leparc G, Tuchler T, Striedner G, Bayer K, Sykacek P, Hofacker IL, Kreil DP:

Model-based probe set optimization for high-performance microarrays.
Nucleic Acids Res 2009, 37(3):e18.

4. Binder H, Kirsten T, Loeffler M, Stadler PF: Sensitivity of Microarray
Oligonucleotide Probes: Variability and Effect of Base Composition.
J Phys Chem B 2004, 108(46):18003–18014.

5. Mathews DH, Burkard ME, Freier SM, Wyatt JR, Turner DH: Predicting
oligonucleotide affinity to nucleic acid targets. RNA 1999, 5:1458–1469.

6. Rouillard JM, Zuker M, Gulari E: Oligoarray 2.0: design of ologonucleotide
probes for DNA microarrays using a thermodynamic approach. Nucleic
Acids Res 2003, 31:3057–3062.

7. The International HapMap Consortium: A second generation human
haplotype map of over 3.1 million SNPs. Nature 2007, 7164:851–861.

8. Emmert Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein
SR, Weiss RA, Liotta LA: Laser capture microdissection. Science 1996,
274(5289):998–1001.

9. Mougeot JLC, Li Z, Price AE, Wright FA, Brooks BR: Microarray analysis of
peripheral blood lymphocytes from ALS patients and the SAFE detection
of the KEGG ALS pathway. BMC Med Genomics 2011, 4:74.

10. Thompson K, Deshmukh H, Solva J, Weller JW: A white-box approach to
microarray probe response characterization: the BaFL pipeline. BMC
Bioinformatics 2009, 10:449.

11. Kumari S, Verma L, Weller JW: AffyMAPSDetector: a software tool to
characterize Affymetrix GeneChip expression arrays with respect to
SNPs. BMC Bioinformatics 2007, 8:276.

12. Rouchka EC, Phatak AW, Singh AV: Effect of single nucleotide
polymorphisms on Affymetrix(R) match-mismatch probe pairs.
Bioinformatics 2008, 2(9):405–411.

13. Wang M, Hu X, Li G, Leach LJ, Potokina E, Druka A, Waugh R, Kearsey MJ,
Luo Z: Robust detection and genotyping of single feature
polymorphisms from gene expression data. PLoS Comput Biol 2009,
5(3):e1000317.

14. Upton GJG, Langdon WB, Harrison AP: G spots cause incorrect expression
measurement in Affymetrix arrays. BMC Genomics 2008, 9:613.

15. Saeed A, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M,
Currier T, Thiagarajan M, et al: TM4: A Free, Open-Source System for
Microarray Data Analysis. Biotechniques 2003, 34(2):374–378.

16. Sioson AA, Mane SP, Li P, Sha W, Heath LS, Bohnert HJ, Grene R: The
statistics of identifying differentially expressed genes in Expresso and
TM4: a comparison. BMC Bioinformatics 2006, 7:215.

17. Storey JD, Tibshirani R: SAM thresholding and false discovery rates for
detecting differential gene expression in DNA microarrays. In The Analysis
of Gene Expression Data: Methods and Software. Edited by Parmigiani G,
Garrett ES, Irizarry RA, Zeger SL. New York: Springer; 2003.

18. Hansson GK: Inflammation, atherosclerosis, and coronary artery disease.
N Engl J Med 2005, 352:1685–1695.

http://www.biomedcentral.com/content/supplementary/1471-2105-13-244-S1.pdf


Baciu et al. BMC Bioinformatics 2012, 13:244 Page 15 of 15
http://www.biomedcentral.com/1471-2105/13/244
19. Wingrove JA, Daniels SE, Sehnert AJ, Tingley W, Elashoff MR, Rosenberg S,
Buellesfeld L, Grube E, Newby LK, Ginsburg GS, et al: Correlation of
Peripheral-Blood Gene Expression With the Extent of Coronary Artery
Stenosis. Circ Cardiovasc Genet 2008, 1:31–38.

20. Giorgi FM, Bolger AM, Lohse M, Usadel B: Algorithm-driven Artifacts in
median polish summarization of Microarray data. BMC Bioinformatics
2010, 11:553.

21. King N: Methods in Molecular Biology: RT-PCR Protocols. 2nd edition. New
York: Humana Press; 2010.

22. Mieczkowski J, Tyburczy ME, Dabrowski M, Pokarowski P: Probe set filtering
increases correlation between Affymetrix GeneChip and qRT-PCR
expression measurements. BMC Bioinformatics 2010, 11:104.

23. Daoud H, Valdmanis PN, Kabashi E, Dion P, Dupre N, Camu W, Meininger V,
Rouleau GA: Contribution of TARDBP mutations to sporadic amyotrophic
lateral sclerosis. J Med Genet 2008, 124:649–658.

24. Valdmanis PN, Daoud H, Dion PA, Rouleau GA: Recent Advances in the
Genetics of Amyotrophic Lateral Sclerosis. Curr Neurol Neurosci Rep 2009,
9(3):198–205.

25. Flikka K, Yadetie F, Laegreid A, Jonassen I: XHM: a system for detection of
potential cross hybridizations in DNA microarrays. BMC Bioinformatics
2004, 5:1117.

26. Wren JD, Kulkarni A, Joslin J, Butow RA, Garner HR: Cross-hybridization on
PCR-spotted microarrays. IEEE Eng Med Biol Mag 2002, 21(2):71–75.

27. Levy A, Sela N, Ast G: TranspoGene and microTranspoGene: transposed
elements influence on the transcriptome of seven vertebrates and
invertebrates. Nucleic Acids Res 2008, 36(Database issue):D47–D52.

28. Royston P: An extension of Shapiro and Wilk's W test for normality to
large samples. Appl Statist 1982, 31:115–124.

29. Royston P: Algorithm AS 181: The W test for Normality. Appl Statist 1982,
31:176–180.

30. Royston P: Remark AS R94: A remark on Algorithm AS 181: The W test
for normality. Appl Statist 1995, 44:547–551.

31. Bauer DF: Constructing confidence sets using rank statistics. J Am Stat
Assoc 1972, 67:687–690.

32. Myles H, Wolfe DA: Nonparametric Statistical Methods. In Nonparametric
Statistical Methods. New York: John Wiley & Sons; 1999:27–33. (one-sample),
68–75 (two-sample).

33. Liu-Yesucevitz L, Bilgutay A, Zhang YJ, Vanderweyde T, Citro A, Mehta T,
Zaarur N, McKee A, Bowser R, Sherman M, et al: Tar DNA binding protein-
43 (TDP-43) associates with stress granules: analysis of cultured cells and
pathological brain tissue. PLoS One 2010, 5(10):e13250.

34. De Marco G, Lupino E, Calvo A, Moglia C, Buccinnà B, Grifoni S, Ramondetti
C, Lomartire A, Rinaudo MT, Piccinini M, et al: Cytoplasmic accumulation of
TDP-43 in circulating lymphomonocytes of ALS patients with and
without TARDBP mutations. Acta Neuropathol 2011, 121(5):611–622.

35. McKinney EF, Lyons PA, Carr EJ, Hollis JL, Jayne DR, Willcocks LC, Koukoulaki
M, Brazma A, Jovanovic V, Kemeny DM, et al: A CD8+ T cell transcription
signature predicts prognosis in autoimmune disease. Nat Med 2010,
16(5):586–591.

36. Lyons PA, McKinney EF, Rayner TF, Hatton A, Woffendin HB, Koukoulaki M,
Freeman TC, Jayne DR, Chaudhry AN, Smith KG: Novel expression
signatures identified by transcriptional analysis of separated leucocyte
subsets in systemic lupus erythematosus and vasculitis. Ann Rheum Dis
2010, 69(6):1208–1213.

37. Lyons PA, Koukoulaki M, Hatton A, Doggett K, Woffendin HB, Chaudhry AN,
Smith KG: Microarray analysis of human leucocyte subsets: the
advantages of positive selection and rapid purification. BMC Genomics
2007, 8:64.

38. Kerr KF, Serikawa KA, Wei C, Peters MA, Bumgarner RE: What Is the Best
Reference RNA? And Other Questions Regarding the Design and
Analysis of Two-color Microarray Experiments. OMICS 2007, 11(2):152–165.

39. Cogenics a Division of Clinical Data Inc. http://www.clda.com.
40. Thompson K: An Adenocarcinoma Case Study of the BaFL Protocol: Biological

Probe Filtering for Robust Microarray Analysis. Fairfax: George Mason
University; 2009.

41. Stonebraker LAR M, Hirohama M: The Design of POSTGRES. In IEEE
Educational Activities Department. NJ USA: Piscataway; 1990:125–142.

42. Rossum G: Python. http://www.python.org.
43. R Development Core Team: A Language and Environment for Statistical

Computing. Vienna, Austria: R Foundation for Statistical Computing; 2009.
ISBN 3-900051-07-0.
44. PGAdmin III. http://www.pgadmin.org.
45. Agilent. http://www.home.agilent.com.
46. TimeLogic-Decypher system. http://www.timelogic.com.
47. Kane MD, Jatkoe TA, Stumpf CR, Lu J, Thomas JD, Madore SJ: Assessment

of sensitivity and specificity of oligonucletide(50mer) microarrays. Nucleic
Acids Res 2000, 28(22):4542–4557.

48. dbSNP. http://www.ncbi.nlm.nih.gov/projects/SNP.
49. Bevilacqua PC, SantaLucia JJ: The biophysics of RNA. ACS Chem Biol 2007,

2(7):440–444.
50. SantaLucia JJ, Allawi HT, Seneviratne PA: Improved nearest-neighbor

parameters for predicting DNA duplex stability. Biochemistry 1996,
35(11):3555–3562.

51. SantaLucia JJ, Hicks D: The thermodynamics of DNA structural motifs.
Annu Rev Biophys Biomol Struct 2004, 33:415–440.

52. Shi L, Tong W, Su Z, Han T, Han J, Puri RK, Fang H, Frueh FW, Goodsaid FM,
Guo L, et al: Microarray scanner calibration curves: characteristics and
implications. BMC Bioinformatics 2005, 6(Suppl 2):S11.

53. Yang YH, Speed TP: Design and analysis of comparative microarray
experiments. In Statistical Analysis of Gene Expression Microarray Data.
Edited by Speed TP. Boca Raton, Florida: CRC Press; 2003:35–92.

54. Wit E, McClure J: Microarray Myths: Data. In Statistics for microarray: design,
analysis, and inference. Chichester, England: John Wiley & Sons Ltd;
2004:125–134.

55. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J of the Royal Statistical
Society. Series B(Methodological 1995, 57(1):289–300.

56. Dheda K, Hugget JF, Bustin SA, Johnson MA, Rook G, Zumla A: Validation
of housekeeping genes for normalizing RNA expression in real-time PCR.
Biotechniques 2004, 37(1):112–114. 116,118-119.

57. Sambrook R: Molecular Cloning: a laboratory manual. 3rd edition. New York:
Cold Spring Harbor; 2001.

58. Pfaffl MW: A new mathematical model for relative quantification in real-
time RT- PCR. Nucleic Acid Res 2001, 29(9):e45–e60.

doi:10.1186/1471-2105-13-244
Cite this article as: Baciu et al.: The LO-BaFL method and ALS microarray
expression analysis. BMC Bioinformatics 2012 13:244.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.clda.com
http://www.python.org
http://www.pgadmin.org
http://www.home.agilent.com
http://www.timelogic.com

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Probe filtering
	The &b_k;cross-&e_k;&b_k;hybridization&e_k; filter
	The duplex stability filter
	The &b_k;exon-&e_k;&b_k;specific&e_k; and target loss filters
	The SNP filter
	The OligoArrayAux filter
	The &b_k;poly-&e_k;&b_k;G&e_k; filter
	The repeated element filter

	Measurement filtering
	Sample Filtering
	Comparing distributions of samples and probes
	Predicting differentially expressed sALS genes
	DE validation by qRT-PCR
	Baseline validation by meta-analysis
	Identifying DE genes in the CAD study

	Conclusions
	Methods
	Hardware and software
	Data selection and acquisition
	Computational methods
	The &b_k;LO-&e_k;&b_k;BaFL&e_k; method

	Statistical analyses
	Wet-lab methods
	Gene selection

	Quantitative and qualitative assessment of RNA
	cDNA synthesis and QC

	Primer design and synthesis
	Real Time qRT-PCR

	Additional file
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 793.440]
>> setpagedevice


