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1  | INTRODUC TION

Evolutionary studies are recently abounding with analyses that use 
molecular phylogenies to investigate macroevolutionary problems 
related to lineage diversification rates. The number of methods pro-
posed to pursue this task has increased significantly, all relying on 
time-calibrated phylogenetic trees with extant species, adopting 
both likelihood and Bayesian frameworks to estimate the number, 
magnitude, and locations of diversification rate shifts (Alfaro et al., 
2009; Rabosky, 2014; Rabosky & Huang, 2016; Rabosky et al., 
2014). In parallel, over the last few years, the inference of molec-
ular phylogenies itself has been transformed at its very core by the 
development of the multispecies coalescent theory (Edwards, 2009; 

Xu & Yang, 2016), which explicitly separates the statistical process 
that models the species tree (speciation) from the process that mod-
els gene genealogies in such trees (multispecies coalescent). These 
two novel theoretical developments, however, are rarely consid-
ered jointly (Degnan & Rosenberg, 2009; Song, Liu, Edwards, & Wu, 
2012). This is problematic because the estimation of macroevolu-
tionary speciation rates should be carried out using the species tree 
instead of gene trees, which is the standard practice (Song et al., 
2012).

Theoretically, employing gene trees rather than the species tree 
to estimate macroevolutionary parameters may lead to significant 
bias; especially in shallow divergences, where incomplete lineage 
sorting (ILS) has a relatively larger impact on species divergence 
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Abstract
Interest in methods that estimate speciation and extinction rates from molecular 
phylogenies has increased over the last decade. The application of such methods 
requires reliable estimates of tree topology and node ages, which are frequently ob-
tained using standard phylogenetic inference combining concatenated loci and mo-
lecular dating. However, this practice disregards population-level processes that 
generate gene tree/species tree discordance. We evaluated the impact of employing 
concatenation and coalescent-based phylogeny inference in recovering the correct 
macroevolutionary regime using simulated data based on the well-established diver-
sification rate shift of delphinids in Cetacea. We found that under scenarios of strong 
incomplete lineage sorting, macroevolutionary analysis of phylogenies inferred by 
concatenating loci failed to recover the delphinid diversification shift, while the 
coalescent-based tree consistently retrieved the correct rate regime. We suggest 
that ignoring microevolutionary processes reduces the power of methods that esti-
mate macroevolutionary regimes from molecular data.
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times (Angelis & Dos Reis, 2015; Leaché, Harris, Rannala, & Yang, 
2014). This issue is not ameliorated using the tree built from concate-
nating genes into a supermatrix because even if the phylogeny is cor-
rectly determined, the biological meaning of branch lengths in such 
trees is elusive, as the age of nodes do not mirror speciation times 
(Angelis & Dos Reis, 2015; Edwards & Beerli, 2000). Population-level 
phenomena, such as ILS, gene duplication and loss, and hybridiza-
tion will increase the probability of gene tree/species tree mismatch 
(Degnan & Rosenberg, 2009; Liu, Yu, Pearl, & Edwards, 2009; 
Schrago, Menezes, Furtado, Bonvicino, & Seuanez, 2014; Song et al., 
2012; Tonini, Moore, Stern, Shcheglovitova, & Ortí, 2015).

Even though, the standard practice when studying lineage 
diversification rates is to rely on molecular phylogenies inferred 
from concatenated loci (Arbour & Santana, 2017; Shi & Rabosky, 
2015). Concatenation ignores differences in evolutionary histo-
ries between loci, which are useful to inform on ancestral pop-
ulation dynamics, allowing the decouple of the processes that 
generate the phylogeny and gene trees (Liu, Yu, Kubatko, Pearl, 
& Edwards, 2009). Moreover, phylogeny inference from concat-
enated genomic regions without accounting for conflicting his-
tories is a case of model misspecification, which has been shown 
to impact estimates of macroevolutionary parameters (Revell, 
Harmon, Glor, & Linder, 2005). Previous studies demonstrated 
that concatenating sequences may lead to biased estimates of the 
species phylogeny (Edwards et al., 2016; Liu, Xi, & Davis, 2015). 
Accounting for variation in gene genealogies in a population-
level framework while estimating phylogenies is computationally 
demanding, and heuristic approaches were devised. However, 
the performance of such approaches has been questioned 
(Gatesy & Springer, 2013), and further investigation is required. 
Notwithstanding, it is desirable that biologists should account for 
population genetics principles, modeled by the multispecies co-
alescent process, while estimating species trees, and associated 
macroevolutionary diversification parameters, from biological se-
quences. To date, the consequences of adopting gene trees rather 
than the species tree in macroevolutionary inference have not 
been thoroughly examined.

This prompted us to evaluate the impact of incomplete lineage 
sorting on the inference of macroevolutionary regimes. To do so, 
we employed the widely used Cetacea phylogeny of Steeman et al. 
(2009), which is regarded as an exemplary case of a tree topology 
containing an evolutionary radiation (family Delphinidae). We in-
vestigated the performance of phylogenies obtained by both con-
catenation and the multispecies coalescence in recovering such a 
macroevolutionary regime.

2  | MATERIAL S AND METHODS

2.1 | Simulating gene trees and alignments

To investigate the effects of incomplete lineage sorting on the infer-
ence of macroevolutionary parameters, we simulated gene trees, as 
well as their respective sequence alignments, using the time-dated 

phylogeny (used here as the species tree) of cetaceans provided by 
Steeman et al. (2009), hereafter S09, which encompasses 98% of the 
extant cetacean diversity. This phylogeny was employed because it 
has been repeatedly used as a study case in recent analyses, where 
a shift of macroevolutionary regime for higher diversification rates 
during the early diversification of dolphins was unambiguously re-
covered (Rabosky, 2014). Although the S09 time-dated tree was not 
originally inferred using coalescent-based methods; we used it as a 
template to investigate macroevolutionary estimation because the 
occurrence of a diversification rate shift in stem Delphinidae has not 
been questioned so far.

Gene trees were simulated under the multispecies coalescent 
model using four increasing ancestral effective population sizes: 
Ne = 104, 105, 106, and 107 Wright-Fisher individuals, which resulted 
in four independent datasets. For each population size dataset, we 
composed 100 replicates containing 15 bifurcating gene trees that 
were evolved employing HYBRID-LAMBDA software (Zhu, Degnan, 
Goldstein, & Eldon, 2015). Branch lengths in simulated gene trees, 
which were originally in coalescent units (2Ne generations), were 
transformed into mutation units using the genomic rate of 10-8 mu-
tations/site/generation and assuming generation time = 10 years, 
which is close to the mean generation time of delphinids, 9.6 years 
(Pacifici et al., 2013). Mutation rate per generation was based on the 
human estimates obtained from genome-wide studies (Kong et al., 
2012; Lipson et al., 2015). Gene trees in mutation units were then 
used to simulate gene alignments with the EVOLVER program of the 
PAML package (Yang, 2007) under the Jukes-Cantor substitution 
model. Alignment lengths of each gene (locus) were sampled from 
a uniform distribution from 160 to 2306 bp, which corresponds to 
the minimum and maximum lengths of genes used in Steeman et al. 
(2009). Therefore, for each Ne value, we obtained 1,500 indepen-
dent alignments. A summary of the entire simulation procedure is 
found in Figure 1.

2.2 | Phylogenies and divergence times

To mimic the procedure carried out by researchers when infer-
ring macroevolutionary regimes, for each population size dataset, 
phylogenies and divergence times were estimated from simulated 
alignments. When inferring phylogenies, we used two competing 
approaches commonly implemented in recent literature: concat-
enation and species tree inference based the multispecies coales-
cent (MSC) theory. For both approaches, maximum likelihood trees 
were estimated in PhyML 3 (Guindon et al., 2010) under the Jukes-
Cantor model. Because the coalescent program STEM requires 
ultrametric trees, and as sequence data were simulated under a 
single substitution rate, branch lengths in PhyML trees were re-
estimated with the program BASEML of the package PAML 4, en-
forcing the molecular clock (Yang, 1997, 2007). Divergence time 
estimation was conducted in treePL (Smith & O’Meara, 2012). 
The algorithm was run without cross-validation and setting the 
smooth parameter = 0.1. Five calibrations were used according 
to the fossils and ages employed in S09, plus a maximum limit of 
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40 Mya to the age of crown Cetacea based on Chen, Xu, Zhou, 
and Yang (2011) (Table 1). Species tree estimation under the MSC 
model was implemented in STEM (Kubatko, Carstens, & Knowles, 
2009) by fixing θ values from 0.0004 (Ne = 104) to 0.4 (Ne = 107), 
respectively. As means of evaluating the accuracy and precision 
of inferred trees, for each replicate, we calculated the topologi-
cal distance from the estimated trees to the S09 phylogeny using 

the Penny and Hendy (1985) metric implemented in the R package 
‘ape’ (Paradis, Claude, & Strimmer, 2004) (Figure 1).

2.3 | Estimation of macroevolutionary regimes

The dynamics of species diversification was inferred for all dated 
phylogenies obtained from concatenation and the MSC method 

F IGURE  1 Summary of the simulation steps used to generate data for evaluating the impact of population processes on the estimation of 
diversification rates and shifts. Steeman et al. (2009) time-tree, which contains a diversification shift near the diversification of delphinids, 
was used as a template to generate gene genealogies under four different population size scenarios. A total of 100 replicates, with 15 gene 
genealogies each, was produced (1). Alignments were simulated after transforming branch lengths of gene trees from coalescent units to 
mutation units and by sampling an alignment length from an empirically-driven uniform distribution (2). Phylogenies and divergence times 
were then estimated using simulated alignments by employing both concatenation and a MSC approach (3). The inferred dated phylogenies 
were finally used to estimate the shift of macroevolutionary regime (4)
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using the widely employed software in the literature, namely BAMM 
(Rabosky, 2014) and MEDUSA (Alfaro et al., 2009; Pennell et al., 
2014). BAMM accounts for the variation in diversification rates 
through time and among lineages using transdimensional (reversible-
jump) Markov chain Monte Carlo (rjMCMC) (Rabosky, 2014). In 
BAMM, Markov chains were sampled every 1,000th generation 
until 7,500 trees were collected after a burn-in of 25%. Prior dis-
tributions were set according to the setBAMMPriors function from 
the BAMMtools R package (Rabosky et al., 2014). MEDUSA assumes 
constant diversification rates through time to detect rate variations 

in lineages based on a maximum likelihood approach. We used the 
birth-death (BD) model to run MEDUSA analyses.

When evaluating the performance of trees estimated using ei-
ther concatenation or the MSC-based method in recovering the same 
macroevolutionary regime inferred for the S09 tree (Steeman et al., 
2009), we measured (a) the number of shifts inferred on the tree 
(BAMM and MEDUSA); (b) the marginal posterior probability for 0, 
1 and 2-diversification rate shifts regimes in BAMM; and (c) the age 
of the inferred diversification shift (BAMM and MEDUSA). Item (iii) 
was evaluated because, in addition to correctly inferring the number 
of diversification shifts, we expect the age in which the change of 
macroevolutionary regime took place to be correctly recovered.

3  | RESULTS AND DISCUSSION

We found that under smaller effective population sizes (104 and 
105), most macroevolutionary analyses of BAMM and MEDUSA cor-
rectly recovered one diversification rate shift, independent of the 
tree estimation method. As population sizes increased, however, 

TABLE  1 Fossil calibrations used in divergence time estimation

Divergence Age (Ma)

B. mysticeti and D. delphis 33.3–40 Ma

B. physalus and M. novaeanglia >7.3 Ma

L. vexillifer and D. delphis >23.5 Ma

I. geoffrensis and P. blainvillei >12 Ma

D. leucas and P. phocoena >10 Ma

F IGURE  2  Impact of the concatenation and MSC methods in the inference of macroevolutionary rates. (a) The number of shifts 
inferred; (b) the posterior probability for 0-, 1- and 2-shift configurations in simulated datasets estimated in BAMM; and (c) ages of the 
inferred diversification rate shifts. In all panels, results obtained using the original Steeman et al. (2009) tree is also displayed for the sake of 
comparison
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only analyses conducted using the MSC-based trees recovered a 
rate shift in BAMM and MEDUSA. For instance, when Ne = 107, phy-
logenies estimated by concatenation were unable to inform on the 
presence of a shift of macroevolutionary regime (0%) (Figure 2a). In 
BAMM, we draw the marginal posterior densities for macroevolu-
tionary regimes with a varying number of shifts. The posterior prob-
ability of no diversification shift was low under smaller Ne (104 and 
105), which correctly captured the empirical scenario of a 1-shift 
(Figure 2b). Under large Ne, however, only datasets in which the 
MSC-based trees were used rendered a low probability of a 0-shift. 
Trees from concatenated alignments consistently yielded >70% 
probability for the incorrect 0-shift configuration. Posterior densi-
ties for the regime with one diversification rate shift indicated that 
concatenation failed to recover the cetacean macroevolutionary re-
gime under Ne = 106 and 107, whereas posteriors for the 1-shift con-
figuration from the MSC-based trees rendered a higher probability 
even under large effective population sizes (Figure 2b).

Under Ne = 104 and 105, the age of the Cetacea diversification 
rate shift was correctly inferred independent of the tree building 
approach (Figure 2c). When MSC trees were employed, however, 
a greater variance of the age was retrieved. Theory predicts that 
the mean coalescent time, that is, genetic divergence between two 
lineages, will increase with increasing population size because the 
number of substitutions accumulated in the ancestral species equals 
the scaled population parameter θ = 4Neμ. MSC methods thus dif-
ferentiate between the mean coalescent time (genetic divergence) 
and the speciation time per se (reproductive isolation) of lineages. 
Therefore, as expected, when Ne = 106, the ages the delphinid mac-
roevolutionary regime shift inferred from trees estimated using con-
catenation were older when compared to MSC-based trees. When 
Ne = 107, the comparison could not be performed, as only analyses 
using the MSC-based trees recovered a shift. Differences between 
the ages of shifts inferred by BAMM and MEDUSA might be ex-
plained by the fact that MEDUSA assigns the location of diversifi-
cation rate shifts to nodes rather than along branches (Alfaro et al., 
2009; Rabosky, 2014).

Ultimately, the inference of macroevolutionary regimes from 
molecular phylogenies evidently depends on the correct estima-
tion of both topology and time-transformed branch lengths. In our 
study, as the effective population size increased, topological dis-
tances between the phylogenies inferred assuming the MSC trees 
and S09 tree were smaller than those calculated using concatenation 
(Figure 3). This corroborates the findings that the MSC-based meth-
ods are more accurate in recovering the true phylogeny under strong 
ILS caused by large effective population sizes (Edwards, Liu, & Pearl, 
2007; Kubatko & Degnan, 2007; Kubatko et al., 2009).

Studies have highlighted the difficulty of estimating macro-
evolutionary parameters from molecular phylogenies (Quental & 
Marshall, 2010). Moreover, recent works suggested that the meth-
odological approaches implemented in both BAMM and MEDUSA 
may be flawed (May & Moore, 2016; Moore, Höhna, May, Rannala, 
& Huelsenbeck, 2016). Although methodological improvements 
were already implemented (Rabosky, Mitchell, & Chang, 2017), it is 

conceivable that dated molecular phylogenies alone are insufficient 
to estimate the shifts of macroevolutionary regimes reliably. In this 
sense, our study is an additional alert that the methodological frame-
work used to infer the molecular phylogeny itself should account 
for population-level processes, such as incomplete lineage sorting. 
Future investigation of the impact of molecular phylogenies on es-
timating lineage diversification rates should be ideally conducted 
under the multispecies coalescent model.

Using the cetacean diversification as a template, our simula-
tions showed that when the effective population size reached 106, 
phylogenies inferred from concatenation started to differ from the 
template cetacean tree, whereas coalescent-based approaches 
performed better in recovering the template topology. Thus, it is 
not surprising that under this Ne value, the inference of the diver-
sification rate regime from coalescent-based trees outperformed 
concatenation in most simulations. Evidently, we should evaluate 
the biological relevance of such findings by contrasting our re-
sults with empirically estimated effective population sizes. Oliver 
(2013) compiled a list of effective population size estimates to 
show that microevolutionary processes may affect deep-time phy-
logenetic relationships. Effective population sizes as large as 106 
have been frequently recovered for invertebrates (Papadopoulos, 
Peijnenburg, & Luttikhuizen, 2005), plants (McDaniel et al., 2010), 
and even vertebrates (Carneiro, Ferrand, & Nachman, 2009). 
Although rarer, Ne values greater than 107 were indeed reported 
for mollusks (7.2 × 107) (Etter et al., 2011), insects (~2.0 × 107) 
(Schoville, Stuckey, & Roderick, 2011) and birds (1.6 × 107

) (Maley 
& Winker, 2010). Our results demonstrated that diversification 

F IGURE  3 Association between topological distances of 
the inferred tree using concatenation or MSC and the effective 
population size. Violin plots depict the distribution of the 
topological distances of the phylogenies estimated from each 
tree-building method across the 100 replicates. Circles indicate 
the mean topological distance for replicates in each population size 
scenario
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rate inference in such lineages must rely on coalescent-based tree 
inference. In such cases, the use of trees inferred from concat-
enated genes will increase Type II error because the probability 
of identifying a diversification rate shift decreases significantly. In 
the case of cetaceans, Ne’s varied from values near 104 (e.g., 1,218 
for bottlenose dolphins, (Viaud-Martinez, Brownell, Komnenou, & 
Bohonak, 2008) to 214,629 for harbor porpoises (Viaud-Martínez 
et al., 2007). Therefore, the range of Ne values used in our sim-
ulations included the values measured for cetaceans. Our simu-
lations showed that, within this range, phylogenies inferred from 
both concatenation and coalescent-based approaches retain the 
information required to correctly estimate macroevolutionary re-
gime shifts.

We suggest that further developments in macroevolutionary rate 
estimation should not overlook the effects of microevolutionary pro-
cesses on phylogenies. Although our simulations tried to capture the 
intricacies of empirical data manipulation, they were still based on 
simplistic assumptions, such as a constant effective population size 
along the phylogeny. Moreover, it would be meaningful to quantify 
the effects of tree topology shapes that comprise differing mixtures 
of deep and shallow divergences. If MSC is disregarded, topologies 
containing both intra- and inter-species diversity are difficult to 
model, as they contain both the coalescent and speciation processes.
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