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Simple Summary: The tumor microenvironment (TME) is a complicated network composed of
various cells, signaling molecules, and extra cellular matrix. TME plays a crucial role in triple
negative breast cancer (TNBC) immunomodulation and tumor progression, paradoxically, acting as
an immunosuppressive as well as immunoreactive factor. Research regarding tumor immune
microenvironment has contributed to a better understanding of TNBC subtype classification. Shall we
treat patients precisely according to specific subtype classification? Moving beyond traditional
chemotherapy, multiple clinical trials have recently implied the potential benefits of immunotherapy
combined with chemotherapy. In this review, we aimed to elucidate the paradoxical role of TME in
TNBC immunomodulation, summarize the subtype classification methods for TNBC, and explore
the synergistic mechanism of chemotherapy plus immunotherapy. Our study may provide a new
direction for the development of combined treatment strategies for TNBC.

Abstract: Triple negative breast cancer (TNBC) is a heterogeneous disease and is highly related
to immunomodulation. As we know, the most effective approach to treat TNBC so far is still
chemotherapy. Chemotherapy can induce immunogenic cell death, release of damage-associated
molecular patterns (DAMPs), and tumor microenvironment (TME) remodeling; therefore, it will
be interesting to investigate the relationship between chemotherapy-induced TME changes and
TNBC immunomodulation. In this review, we focus on the immunosuppressive and immunoreactive
role of TME in TNBC immunomodulation and the contribution of TME constituents to TNBC
subtype classification. Further, we also discuss the role of chemotherapy-induced TME remodeling
in modulating TNBC immune response and tumor progression with emphasis on DAMPs-associated
molecules including high mobility group box1 (HMGB1), exosomes, and sphingosine-1-phosphate
receptor 1 (S1PR1), which may provide us with new clues to explore effective combined treatment
options for TNBC.

Keywords: triple negative breast cancer; tumor microenvironment; immunomodulation

1. Introduction

Triple negative breast cancer (TNBC), characterized by the absence of estrogen recep-
tor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)
expression, comprises 10–20% of all breast cancers [1]. Owing to the lack of ER/PR/Her2
protein expression/amplification, TNBCs do not respond to existing endocrine and Her2-
targeted therapies and exhibit poor prognosis [2]. It has been proposed that TNBCs with a
higher involvement of immune cells termed as ‘hot tumors’ have better prognosis and a
greater response to immunotherapy while TNBCs with a lower involvement of immune
cells termed as ‘cold tumors’ are marked with poor prognosis and poor response to im-
munotherapy [3]. From this point of view, TNBC patients have been further segregated
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into different subgroups [4–8]. The tumor microenvironment (TME) is an ensemble of
endothelial cells, cells of the immune system, adipocytes, and fibroblasts, in addition to
the soluble factors released from all the cellular components (including cancer cells) [9,10].
TME can be classified from different perspectives such as host and non-host origin, cellu-
lar origin and constituents [9,11–13]. TME presents a complex network that plays a crucial
role in TNBC immunomodulation and tumor progression.

Cancer initiation and development is not just a biological process triggered by cancer
cells in isolation; in fact, it has to be evaluated along with the complicated TME with
an emphasis on the interaction between cancer cells and their surrounding extra-cellular
matrix. Indeed, considering alterations in microenvironment as active players during
cancer progression brings another dimension of complexity [14]. During TNBC progres-
sion, tumor immune microenvironment remodeling including the change of the ratio
of immune cells and release of multiple immune inhibitory and reactive cytokines is a
critical feature [15,16]. Based on the constituents of TME, TNBCs have been stratified
into ‘tumor immune microenvironment (TIME) subtypes’ aiding in predicting outcomes
and proposing potential treatments guided by the distinct phenotypes of TNBC [16,17].
Chemotherapy, the foremost treatment for TNBC, could induce immunogenic cell death
(ICD) and promote the release of damage-associated molecular patterns (DAMPs) [18]
including high mobility group box1 (HMGB1), exosomes and sphingosine-1-phosphate
receptor 1 (S1PR1) by damaged or activated cells via the activation of TLR4 signal path-
way [19] and stimulate the release of various immune molecules such as TGF-β, IK12p7,
and IFN-γ [20].

In this review, we focus on immune TME and summarize its immunosuppressive and
immunoreactive roles, discuss constituent immune cells involved in TNBC immunomod-
ulation, and the contribution of TIME in stratification of TNBC. Further, we discuss the
role of chemotherapy-induced TME changes in modulating TNBC immune response and
tumor progression, with a focus on HMGB1, exosomes, and sphingosine-1-phosphate
(S1P)/sphingosine kinase 1 (SPHK1)/S1PR1, an axis whose therapeutic modulation may
result in neoteric combination therapy for TNBC patients.

2. Two Roles of TME in TNBC Immunomodulation

According to the contribution to immune response, the tumor microenvironment
(TME) can be classified as immunosuppressive and immunoreactive. Tumor infiltrating
lymphocytes (TILs), the major cell types in the microenvironment, are heterogeneous and
mainly composed of lymphocytes in tumor nests and tumor stroma. TILs can be classified
into several different subtypes, mainly CD3+ T cells and CD20+ B cells in solid tumors,
though CD20+ B cell infiltration is relatively less. CD3+ T cells include CD8+ cytotoxic
T lymphocytes (CD8+ TILs), CD4+ helping T lymphocytes, and Foxp3+ regulatory T lym-
phocytes (Foxp3+ Tregs) [21,22]. Different subtypes of TILs take part in immunomodulation
with distinct mechanisms and play various roles in breast cancer immunomodulation [22].
Figure 1 pictorially represents immunosuppressive and immunoreactive TMEs (Figure 1).

2.1. Immunosuppressive TME in TNBC
2.1.1. PD-1/PD-L1 Axis

Programmed death-ligand 1 (PD-L1) and programmed cell death protein-1 (PD-1) are
important negative co-stimulating signaling molecules in immunoglobulin superfamily
(IgSF) and play an important role in host immunomodulation [23]. PD-L1 is expressed in
many solid tumors including breast cancer and is a negative prognosis indicator [24,25].
PD-1 is expressed in TILs [26]. Theoretically, PD-L1 expression on tumor cells combined
with PD-1 expression on TILs play a negative role in immunomodulation, which inhibits
the activation of TILs, causing the tumor cell to survive through immune escape.
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Figure 1. Immunosuppressive and immunoreactive TME. Immunosuppressive tumor microenvironment (TME) is mainly 
constituted of M2 macrophages, forkhead box P3+ (Foxp3+) regulatory T lymphocytes (Tregs), myeloid-derived suppressor 
cells (MDSCs), and PD-1/PD-L1 axis. Immunoreactive TME is mainly constituted of CD8+ T cells, natural killer (NK) cells, 
and M1 macrophages. PD-1/PD-L1 axis becomes immunoreactive in response to anti-PD1 or anti-PD-L1 monoclonal anti-
body (aPD-1/PD-L1 mAb) owing to the activation of CD8+ T cells. (Foxp3, forkhead box P3; Tregs, regulatory T lympho-
cytes; MDSC, myeloid-derived suppressor cell; NK, natural killer; PD-1, programmed cell death protein-1; PD-L1, pro-
grammed death-ligand 1; aPD-1 mAb, anti-PD-1 monoclonal antibody; ECM, extra cellular matrix; TME, tumor microen-
vironment). 

The TME involves immune suppressing factors to support the progression of tumors 
which have escaped host immune surveillance [27–31]. Various immune check-point in-
hibitors have been developed that have shown efficacy in TNBC patients [32,33]. Clinical 
studies have shown a paradoxical role of PD-L1 regarding its prognostic value in patients 
with TNBC owing to the heterogeneity of PD-L1 expression in different tumor sites, non-
standard detection methods, and distinct antibodies [31,34–41]. In the impassion 130 clin-
ical trial, compared to TNBC patients receiving nab-paclitaxel plus placebo, a better me-
dian overall survival (OS) was observed in patients receiving atezolizumab (PD-L1 inhib-
itor) combined with nab-paclitaxel and most benefit was observed in PD-L1 positive sub-
group [42]. However, in a phase 1b clinical trial (ClinicalTrials.gov Identifier: 
NCT01848834) which evaluated the safety and effectiveness of PD-1 inhibitor (pembroli-
zumab) in PD-L1 positive TNBC patients, the overall response rate was only 18.5% and 
the expression level of PD-L1 was not significantly related to the clinical response [43]. 
These disparate results might be related to multiple TME-related factors that can modu-
late the therapeutic effects of PD-1/PD-L1 inhibitors in TNBC. Preclinical studies have 
shown that PD-L1 expression is modulated by multiple signaling pathways including mi-
croRNA-200/ZEB1 axis, WNT, loss of PTEN, PI3K, and MUC1-C/MYC/NF-κB axis [31,44–
46]. Voorwerk and colleagues reported that doxorubicin and cisplatin treatment caused 
an upregulation of inflammation-related genes JAK-STAT and TNF-α signaling, immune-
related genes associated with PD-1/PD-L1, and T cell cytotoxicity pathways. Short-term 

Figure 1. Immunosuppressive and immunoreactive TME. Immunosuppressive tumor microenvironment (TME) is mainly
constituted of M2 macrophages, forkhead box P3+ (Foxp3+) regulatory T lymphocytes (Tregs), myeloid-derived suppressor
cells (MDSCs), and PD-1/PD-L1 axis. Immunoreactive TME is mainly constituted of CD8+ T cells, natural killer (NK)
cells, and M1 macrophages. PD-1/PD-L1 axis becomes immunoreactive in response to anti-PD1 or anti-PD-L1 monoclonal
antibody (aPD-1/PD-L1 mAb) owing to the activation of CD8+ T cells. (Foxp3, forkhead box P3; Tregs, regulatory
T lymphocytes; MDSC, myeloid-derived suppressor cell; NK, natural killer; PD-1, programmed cell death protein-1;
PD-L1, programmed death-ligand 1; aPD-1 mAb, anti-PD-1 monoclonal antibody; ECM, extra cellular matrix; TME,
tumor microenvironment).

The TME involves immune suppressing factors to support the progression of tumors
which have escaped host immune surveillance [27–31]. Various immune check-point
inhibitors have been developed that have shown efficacy in TNBC patients [32,33]. Clin-
ical studies have shown a paradoxical role of PD-L1 regarding its prognostic value in
patients with TNBC owing to the heterogeneity of PD-L1 expression in different tumor
sites, non-standard detection methods, and distinct antibodies [31,34–41]. In the impas-
sion 130 clinical trial, compared to TNBC patients receiving nab-paclitaxel plus placebo,
a better median overall survival (OS) was observed in patients receiving atezolizumab
(PD-L1 inhibitor) combined with nab-paclitaxel and most benefit was observed in PD-L1
positive subgroup [42]. However, in a phase 1b clinical trial (ClinicalTrials.gov Identi-
fier: NCT01848834) which evaluated the safety and effectiveness of PD-1 inhibitor (pem-
brolizumab) in PD-L1 positive TNBC patients, the overall response rate was only 18.5%
and the expression level of PD-L1 was not significantly related to the clinical response [43].
These disparate results might be related to multiple TME-related factors that can modulate
the therapeutic effects of PD-1/PD-L1 inhibitors in TNBC. Preclinical studies have shown
that PD-L1 expression is modulated by multiple signaling pathways including microRNA-
200/ZEB1 axis, WNT, loss of PTEN, PI3K, and MUC1-C/MYC/NF-κB axis [31,44–46].
Voorwerk and colleagues reported that doxorubicin and cisplatin treatment caused an
upregulation of inflammation-related genes JAK-STAT and TNF-α signaling, immune-
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related genes associated with PD-1/PD-L1, and T cell cytotoxicity pathways. Short-term
and low-dose doxorubicin and cisplatin may create an immunoreactive TME and increase
the response to PD-1 inhibitor in TNBC [47]. In conclusion, specifically designed clinical
trials are needed to interrogate the involvement of various TME-related factors in order to
enhance the efficacy of PD-1/PD-L1 inhibitors in TNBC.

2.1.2. Foxp3+ Tregs

In TME, different classes of TILs exist, which have shown great prognostic value in pa-
tients with TNBC. Regulatory T lymphocytes (Tregs) are a lineage of lymphocytes involved
in immunosuppression that are characterized by the expression of the forkhead box P3
(Foxp3) transcription factor [48,49]. Foxp3+ Tregs are the major constituent of the TILs in
claudin-low TNBC tumors and it has been speculated that the recruitment of Foxp3+ Tregs
to the TME inhibits an effective anti-tumor immune response of checkpoint inhibitors [50].
Jamiyan and colleagues detected the expression of stromal Foxp3+ Tregs in 107 TNBC sam-
ples using IHC and found that a low stromal Foxp3+ Tregs level was significantly associated
with favorable recurrence free survival (RFS) and OS [51]. In contrast, high Foxp3+ TILs
expression in 43 TNBC tissues by IHC and Foxp3+/CD25+ TILs were positively correlated
with better OS [52]. High densities of intra-tumoral Tregs and CD20+ B cells represented a
good prognostic panel in TNBCs [53]. However, mRNA expression of Foxp3 by qRT-PCR
in 826 breast tumor tissue samples including 84 TNBC samples, was not significantly
related to disease free survival (DFS), while none of the markers studied including CD3,
CD8, and Foxp3 were of prognostic value for OS [54]. This phenomenon is somewhat
explained by a study showing that activation of tumor antigen-specific Tregs in the bone
marrow caused the accumulation of Tregs in breast cancer tissue leading to both antitumor
immunity and local immune suppression in breast cancer [55]. The mechanisms underly-
ing pro-tumor role of Foxp3+ Tregs included (i) down-regulation of Notch pathway [56];
(ii) direct suppression via cell-cell contact and indirect suppression via secretion of anti-
inflammatory mediators such as interleukins (IL-4, IL-5 and IL-10) [57–59]; (iii) decreased
secretion of cytokine IFN-γ and IL-17 and activation of STAT1/STAT3 [59]. The prognostic
significance of Tregs in TNBCs, therefore, remains controversial and warrants more careful
investigations.

2.1.3. M2 Macrophages

M2 macrophages, the main tumor-associated macrophages, (TAMs), can promote
breast cancer initiation, angiogenesis, invasion, and metastasis by generating an immuno-
suppressive TME via releasing cytokines, chemokines, and growth factors [60]. TAMs ex-
pressing CD163+ (marker of M2 macrophages) positively correlate with tumor associated
fibroblasts and epithelial-mesenchymal transition, which in turn are associated with aggres-
sive behaviors and short DFS in 278 patients with histologically confirmed TNBC [61,62].
Another clinical study showed that high CD68+ (marker of M2 macrophage) TAMs ex-
pression associates with poor distant metastasis free survival (DMFS), DFS and OS in
287 patients with TNBC [63]. Mechanistically, in vivo and in vitro studies showed that
the presence of CD11b+F4/80+CD206+ TAMs significantly associate with proliferating
tumor cells in a TNBC mouse model. RNA sequencing analysis revealed that TAMs pro-
mote MAPK pathway activation in 4T1 cells [64]. Reactive oxygen species (ROS)-induced
macrophages produce an immunosuppressive subtype (M2) and increase the expression of
PD-L1 via activating NF-κB signaling, as well as release immunosuppressive chemokines
such as interleukin-10 (IL-10), IL-17, IL-4, IL-1β, insulin-like growth factor-binding protein
3 (IGFBP-3), and chemokine (C-X-C motif) ligand 1 (CXCL1) [65]. The JAK2/STAT3 signal-
ing pathway can up-regulate the expression of PD-L1 in CD169+ macrophages, but cannot
up-regulate the expression of PD-L1 in breast cancer cells, thus avoiding immune surveil-
lance [66]. Metastasis- and inflammation-associated microenvironmental factor S100A4
activates the basal-like subtype of breast cancer cells to trigger monocyte-to-macrophage
(M2) differentiation and polarization, and elevates secretion of pro-inflammatory cytokines
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such as IL-8, IL-6, CXCL10, CCL2 and CCL5 [67]. Further, macrophage colony-stimulating
factor (M-CSF), the main stimulator of macrophage migration, caused aggregation of M2
macrophages through an increased elongation of pseudopodia [68]. Inhibitors of differenti-
ation (ID) 4 significantly associates with M2 macrophage marker CD68 protein expression
in a series of TNBC tissues. ID4 activates an angiogenic procedure at the molecular level
in the macrophages through paracrine signaling including the decrease of constituents
of the anti-angiogenic miR-15b/107 group and an increase of angiogenesis-associated
mRNAs [69,70]. GM-CSF BRCA1-IRIS overexpressing TNBC cells secrete high quantities
of GM-CSF in an NF-κB and a HIF-1α-dependent manner to induce macrophages to IRIS
overexpressing cells and polarize them to pro-tumor TAMs (M2). GM-CSF triggers TGF-β1
expression on TAMs through activating STAT5, NF-κB and/or ERK signaling [71].

2.1.4. MDSCs

Myeloid-derived suppressor cells (MDSCs) are an important part of immunosuppres-
sive network [72]. CD33+ MDSCs are a risk factor for progressive disease (PD) plus stable
disease (SD) in breast cancer tissues prior to neoadjuvant chemotherapy [73]. Higher ex-
pression of MDSCs has been noted in TNBCs in comparison to non-TNBCs with their
recruitment to the primary cancer and metastasis occurring via ∆Np63-dependent acti-
vation of the chemokines CCL22 and CXCL2 [74]. Glycolysis restriction reduces MDSCs
through inhibiting cancer granulocyte G-CSF and GM-CSF expression [75] while hypoxia
enhances the expansion of MDSCs and upregulates the expression of PD-L1 in the hy-
poxic TME of 4T1 tumor-bearing mice [76]. Studies have shown that the monoclonal
antibody that neutralizes IL-8 (HuMax-IL8) and the traditional Chinese medicine Prim-
O-glucosylcimifugin (POG) can inhibit the recruitment, proliferation, metabolism and
immunosuppressive ability of MDSCs [77,78]. The 4T1 TNBC model effectively exhibits in-
duction of immunosuppressive MDSCs accumulation by releasing inflammatory cytokines
that produce permissive pro-metastatic TME [79]. Monocytic MDSCs (M-MDSC) and
granulocytic MDSCs (G-MDSC) are two types of MDSCs in circulating peripheral blood.
G-MDSC levels increase sharply and M-MDSCs decrease significantly after doxorubicin
and cyclophosphamide treatment [80]. Investigations have shown that CCL5 is a key
modulator of Rb1 activation and is associated with the immunosuppressive activity of
MDSCs, especially the G-MDSC subset [81,82].

2.2. Immunoreactive TME in TNBC
2.2.1. NK Cells

Natural killer (NK) cells, a type of cytotoxic lymphocytes, are crucial constituents
of the innate immune system whose function in enhancing the anti-tumor immunity in
TNBC has been studied extensively. NK cells are abundant in early cancer tissue in human
solid tumors; however, they dwindle in metastatic human cancers [83]. These findings
show that NK cells play a key role in immune surveillance, but once tumorigenesis occurs,
TME is suppressive for NK cells. Evasion of active immune suppression in the TME is
an important consideration for enhancing the anti-tumor ability of tumor-infiltrating NK
cells. Zhang and colleagues detected the expression of NKp46, Foxp3, CD8, CD163 or
Gas6 in 278 TNBC tissues using IHC with an aim to develop a prognostic risk model
for TNBC. Multivariate analysis showed that TNM stage, Foxp3 positive lymphocytes
along with prognostic risk scores can be used as independent indicators of OS and DFS in
TNBC [84]. Tumor-derived IL-18 upregulates PD-1 expression on CD56dimCD16dim/− NK
cells and relates to the bad/ prognosis of TNBC [85]. McArdle and colleagues examined
the abundance of NK cells, MDSCs, monocyte subsets and Foxp3+ Tregs in the peripheral
blood of 85 breast cancer patients and they found that chemotherapy had no effect on
the percentage of these immune cells, but peripheral blood cells could distinguish TNBC
patients that are at high risk of relapse after chemotherapy [86]. Tissue-infiltrating NK
cells in solid tumors appear to have a less robust activity compared with circulating NK
cells [87–90]. NK cells isolated from either breast cancer patients or healthy donors show



Cancers 2021, 13, 3357 6 of 21

high cytotoxicity against patient-derived tumor cells in vitro and prevent tumor initiation
and growth in immunocompromised mice in vivo [91]. Expanded cord blood-NK cells
show cytotoxicity towards primary breast tumor cells derived from TNBC and estrogen
receptor-positive/progesterone receptor-positive breast cancer [92]. Baseline circulating
tumor cells (CTCs) status is positively associated with peripheral NK cells among those
receiving first-line treatment in 75 patients with TNBC. Baseline CTCs combined with pe-
ripheral NK enumeration (CTC-NK) can predict PFS of TNBC patients more precisely [93].
NK cells are the major effectors of antibody (Ab)-dependent cell-mediated cytotoxicity
(ADCC) and thus play an important role in Ab-based therapies. In vivo and in vitro studies
revealed that tissue factor (TF)-targeting antibody-like immunoconjugate (called L-ICON)-
CAR-NK cells have direct killing effects against TNBC cells and also mediate L-ICON
ADCC to acquire a stronger effect [94]. Avelumab, a human IgG anti-PD-L1 mAb, triggers
ADCC against a panel of TNBC cells and enhances NK-cell mediated cytotoxicity, which is
independent of the blockade of the PD-1/PD-L1 pathway but is involved with IL-2 and IL-
15 [95]. CD85j, an inhibitory receptor which can recognize both classical and non-classical
HLA-I molecules, is highly expressed in TNBC, and can impair the function of cetuximab
through NK-cell functional deficiency even when stimulatory cytokines IL-2 or IL-15 are
abundantly present [96]. More interestingly, NK cell infiltration and recruitment can be
mediated by a bispecific Ab (MesobsFab) whose anti-tumor activity depend on mesothelin
expression on the target cells and it can be a potential antibody-based immunotherapeutic
for TNBC patients [97]. NK cell function is regulated by molecules from promoting and
suppressing receptors interacting with ligands on target cells. Lectin-like Transcript-1
(OCIL, CLEC2D, LLT1) is a ligand that interacts with NK cell receptor NKRP1A and pre-
vents NK cell activation. Inhibiting LLT1 on TNBCs with antibodies hinders the interaction
with NKRP1A and increases lysis of TNBCs by primary NK cells [98].

2.2.2. CD8+ TILs

CD8+ TILs are the main kind of cytolytic lymphocytes in tumors. Kronqvist and
group detected the expression of stromal TILs and CD8+ TILs in 179 patients with TNBC
using IHC and observed that the prognostic value of CD8+ TILs and TILs varied when
detected in various cancer compartments [99]. Presence of CD8+ TILs in a large cohort
of 12,439 breast cancer patients correlated with a significant decrease in the relative haz-
ard of death in both the ER- positive and the ER- negative HER2-positive subtypes [100].
Ishida and colleagues assessed the CD8+ TILs and Foxp3+ Tregs status of the residual
tumors in 131 patients with TNBC who received neoadjuvant chemotherapy (NAC) at
three institutions and the rates of their changes before and after NAC were evaluated.
They found that TNBC patients with a high CD8+ TILs level or high CD8/Foxp3 ratio in
residual tumors exhibit significantly favorable recurrence-free survival (RFS) and breast
cancer-specific survival (BCSS) [101]. Another study also showed that CD8+ TILs were
related to favorable DMFS, DFS, and BCSS in the entire 207 breast cancer group and
in 56 TNBC group [102]. BRCA1-IRIS overexpressing (IRISOE) TNBC carcinomas had
more CD25+/Foxp3+ Tregs and few CD8+/PD-1+ cytotoxic T-cells, which showed that
the interaction between macrophages and IRISOE cells initiated an immunosuppressive
TME within TNBC tumors [71]. TOPOIIα and CD4+ TILs were significantly positively
associated with CD8+ TILs and they exhibited a significantly good 5-year DFS but only a
high infiltration of CD8+ TILs showed significantly better 5-year OS in 52 TNBC patients
that received taxane-anthracycline-based NAC [103,104]. Calcium/calmodulin-dependent
kinase (CaMKK2), expressed in tumor-related stromal cells, could promote tumor growth.
The inhibition of CaMKK2 within myeloid cells suppresses tumor growth by increasing
immune-stimulatory myeloid subsets and intra-tumoral accumulation of CD8+ T cells
in TNBC [105]. PARP inhibitor Olaparib induced CD8+ T cell activation and infiltration
via activation of the cGAS/STING pathway, which provided rationale for combining the
PARP inhibitors with immunotherapies for TNBC [106]. A recent study reported that CD8+

TILs were crucial for infected cell vaccine (ICV) efficacy, which was composed of autolo-
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gous tumor cells infected with an oncolytic Maraba MG1 virus in vitro in the BALB/c-4T1
model. Increased migration and proliferation ability of human CD8+ TILs were observed
following exposure to ICV [107]. A series of studies illuminated the mechanisms of dif-
ferent infiltration levels of CD8+ TILs in immunomodulation and anti-tumor response
of TNBC. By spatially modulating the diffusion/chemotactic coefficients of T cells via
partial differential equations, Almohanad et al. found that a type of chemorepellent inside
cancer cell clusters but not dense collagen fibers, prevents the infiltration of CD8+ TILs
into cancers and cancer cell clusters, which may imply a poor prognosis in TNBC [108].
Intra tumoral CD8+ TILs enhance the efficacy of treatment through triple combined inhibi-
tion of PDGFRβ/ MEK1/2/JAK2 signal pathway in vivo in TNBC [109]. Gruosso et al.,
found that there were many different kinds of CD8+ TILs localization profiles with distinct
meta-signatures, which were prognostic indicators in a cohort of TNBC [17]. Dong et al.
investigated the genome-scale CD8+ TILs CRISPR screen in the context of immunother-
apy in vivo and in vitro and found that DHX37 interacts with PDCD11 and affects NF-κB
activity to modulate CD8+ TILs activation, cytokine production, and cytotoxicity [110].

2.2.3. M1 Macrophages

M1 phenotype macrophages, also called classical macrophages, are pro-inflammatory,
and can activate the immune response and oppose tumorigenesis [111]. In vitro and in vivo
studies have shown that M1 macrophage polarization decreases the expression of nuclear
REST corepressor 1 (CoREST), LSD1 and the zinc finger protein SNAIL, and LSD1 inhibitors
can target both CoREST and flavin adenine dinucleotide (FAD) binding domains of LSD1
to initiate macrophages toward M1 phenotype in TNBC successfully [112]. Another study
revealed that exposure to infected cell vaccine (ICV) could induce the polarization of
monocytes to M1 subtype [107].

Using the 4T1 TNBC murine model, Meyer and colleagues showed that in the early
stages of disease, higher M1-related cytokines are released and decreased M2 macrophages
infiltrate in the TME, while upon metastasis a dramatic enhancement in M2-related cy-
tokine expression levels are detected and more immunosuppressive cells such as M2
macrophages infiltrate in the TME [113]. High level of CCL5 is related to recruitment of M1
macrophages, CD8+ TILs, CD4 activated T lymphocytes, and NK activated cells in TNBC
using CIBERSORT analysis [114]. The clinical significance and involved mechanisms of
each constituent in TNBC microenvironment are included in Table 1.

Table 1. Clinical significance and involved mechanisms of immune cells and markers.

Items Clinical Significance Involved Mechanisms References

PD-1/PD-L1 Paradoxical role in prognosis
microRNA-200/ZEB1 axis, WNT signaling,
loss of PTEN, PI3K signaling, and
MUC1-C/MYC/NF-κB pathway

[31,34–41,44–46]

Foxp3+ Tregs Paradoxical role in prognosis
Notch pathway, IL-35/STAT1/STAT3,
secretion of anti-inflammatory mediators such
as interleukin

[50–54,56–59,115]

M2 macrophages Adverse prognostic indicator

MAPK pathway, NF-κB/PD-L1, release of
immunosuppressive chemokines, JAK2/STAT3
signaling pathway, S100A4 activation,
angiogenic program, HIF-1α, STAT5, NF-κB
and ERK signaling

[61–64,116]

MDSCs Risk factor for PD plus SD

∆Np63-dependent activation of the
chemokines CXCL2 and CCL22, Glycolysis,
hypoxia, secretion of inflammatory cytokines,
Rb1 activation

[73–76,81,82]

NK cells Positive prognostic indicator
ADCC, Lectin-like Transcript-1 activation,
bispecific antibody (MesobsFab) modulating
chemorepellent inside tumor cell clusters

[84,85,92,94–98,117]
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Table 1. Cont.

Items Clinical Significance Involved Mechanisms References

CD8+ TILs Favorable prognostic indicator
Inhibition of PDGFRβ/MEK1/2/JAK2 signal
pathway, distinct metasignatures of CD8+ TILs,
DHX37/PDCD11/NF-κB

[17,99–101,108–110]

M1 macrophages Favorable prognostic indicator M1 polarization by FAD, CoREST and
exposure to cell vaccine (ICV), release of CCL5 [112–114]

3. The Composition of TME Contributes to TNBC Subtype Classification

During TNBC progression, TME reconstruction including the ratio of immune cells
and release of various immune cytokines play crucial roles, and the research focusing on
stromal and immune composition of TME has contributed significantly to different subtype
classification of TNBC [17]. Lehmann and colleagues distinguished six TNBC subtypes
showing unique gene expression profiles and ontologies, comprised of two basal-like
(BL1 and BL2), a mesenchymal stem-like (MSL), a mesenchymal (M), an immunomod-
ulatory (IM), and a luminal androgen receptor (LAR) subtype. Interestingly, immune
genes in IM subtype overlap with gene signatures in medullary breast cancer which is
correlated with good prognosis despite its high-grade scores [118]. Park and colleagues
distinguished four stromal axes abundant for T cells, B cells, epithelial markers and desmo-
plasia and assigned a score along with each marker and associated it with different TNBC
subtypes. This classification method better depicted tumor heterogeneity and led to a
superior evaluation of benefit from therapeutics and prognosis [119].

In addition, three subtypes of TNBC have been identified: an apocrine cluster (C1),
which is more related to luminal, PIK3CA-mutated hallmarks and shows intermediate
biological aggressiveness; and two basal-like clusters (C2 and C3), which show a major
biological discrepancy related to immune response and are sensitive to drugs combating
immunosuppression or stimulate adaptive immune response respectively [120]. Shao and
colleagues analyzed genomic, clinical, and transcriptomic data of 465 primary TNBC pa-
tients, and also identified four subtypes of TNBC, including basal-like immune-suppressed
(BLIS), immunomodulatory (IM), luminal androgen receptor (LAR) and mesenchymal-
like (MES). They also showed that IM subtype is related to immune response and there
are elevated immune cell signaling, TILs, high mRNA expression quantities of immune
checkpoint blocking genes such as PD-L1, PD-1, CTLA4, and IDO1 [121]. Using the data
of 465 Taiwanese with breast cancer, five TNBC subtypes were classified, namely, basal-
like (BL), mesenchymal stem like (MSL), immunomodulatory (IM), mesenchymal (M),
and luminal androgen receptor (LAR), and they observed the interaction between IM
subtype and MSL subtype, which also implied the involvement of TME in TNBC sub-
type classification [122]. Distinguishing a four-gene decision tree signature (TP53BP2,
EXO1, RSU1 and FOXM1) using transcriptomic and genomic data analysis established
six subtypes of TNBC, named MC1 to MC6, comprised by five of varying sizes (MC1-
MC5) and one large subtype MC6. Further study showed high level of CD8+ and CD4+

immune signatures and decreased expression of MAPK pathway related genes in MC6
subtype [123]. Another group identified three TNBC subtypes including Immunity High
(Immunity H), Immunity Medium (Immunity M), and Immunity Low (Immunity L) based
on the immunogenomic profiling of 29 immune signatures. In Immunity H subtype,
greater anti-tumor immune response and immune cell infiltration, as well as favorable
prognosis were detected compared to the other subtypes, which showed the close relation-
ship between tumor immune microenvironment and TNBC classification [124]. TNBC tu-
mors were classified into four subgroups (luminal-androgen receptor expressing, basal,
claudin-high and claudin-low), in addition to two subgroups associated with immune
activity using gene expression and clinical data and the latter two immune subgroups
were defined as correlated to immune activity closely. Meanwhile, claudin-high subgroup
had low response to neoadjuvant chemotherapy, and luminal immune-positive subgroup
had favorable survival prognoses [125]. A recent study identified four TNBC epitopes,
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named as Epi-CL-A, Epi-CL-B, Epi-CLC, and Epi-CL-D using genome-wide DNA methy-
lation properties and clinical and demographic variables, as well as gene mutation and
gene expression data. Intriguingly, subtype Epi-CL-D showed a positive regulation of T
lymphocyte-mediated cytotoxicity and associated molecules such as IL15RA and CCL18,
which partially explained the favorable outcome and a positive immune response in this
subtype [126]. Furthermore, a research group classified TNBC tumors into immune subtype
A and B by the density of monocytes, γδ T cells, stromal CD4+ T cells, M1 macrophages
and M2 macrophages using CIBERSORT or IHC method and they proved that enriched
immune-related pathways and higher levels of immune checkpoint cytokines such as
PD-1, PD-L1 and CTLA-4 could be detected in phenotype A [127]. Romero-Cordoba et al.
also identified three immuno-clusters in TNBC tumors using clustering analysis based on
immune-related gene expression signatures and found that platelet to lymphocyte ratio
(PLR) was associated with tumor immune infiltration [128].

We have included all the classification methods and the clinical significance (Table 2).
Classification of TNBC has been developed extensively implying that a precision-treatment
era has come in TNBC. Chemotherapy still remains the key treatment for TNBC but other
targeted therapies including immunotherapy can be combined for better tailored treatments
and are the focus of ongoing research efforts.

Table 2. TNBC subtype classification.

Subtype of TNBC Subtype
Number Basis of Classification Clinical Significance References

BL1, BL2, IM, M,
MSL, LAR 6 Gene expression profiles IM subtype was associated with

favorable prognosis. [118]

4 stroma axes (T,B,E,D) 4 Transcriptome of stroma Better evaluated patient benefit from
therapeutics. [119]

C1, C2, C3 3 Gene expression profiling
C2 and C3 subtypes were sensitive
to drugs combating
immunosuppression.

[120]

LAR, IM, BLIS, MES 4 Clinical, genomic,
and transcriptomic data

Elevated immune cells and signaling
in IM subtype. [121]

BL, IM, M, MSL, LAR 5 Gene expression profiles
Interaction between IM and MSL
subtype suggested involvement of
TME.

[122]

MC1, MC2, MC3, MC4,
MC5, MC6 6 Transcriptomic and

genomic data
High level of CD8+ and CD4+

immune signatures in MC6 subtype. [123]

Immunity_H,
Immunity_M,
Immunity_L

3 Immunogenomic profiling
Immunity_H subtype was correlated
with immune cell expression and
good prognosis

[124]

LAR, basal,
claudin-low,
claudin-high and two
immune subtypes

6 Clinical and gene
expression data

Claudin-h and immune-positive
subtype was associated with low
pCR and favorable prognosis
separately.

[125]

Epi-CL-A, Epi-CL-B,
Epi-CLC, Epi-CL-D 4 Genome-wide DNA

methylation profiles

Positive regulation of T lymphocyte
cytotoxicity and associated genes in
Epi-CL-D subtype.

[126]

Immune phenotype
A and B 2 Density of five prognosis-related

immune cells
Enriched immune-related pathways
and molecules in phenotype A. [127]

ImA, ImB and ImC 3 Immune-related gene
expression signatures

Platelet to lymphocyte ratio (PLR)
was associated with tumor immune
infiltration in TNBC.

[128]

4. Chemotherapy-Induced TME Remodeling Modulates TNBC Immune Response

It has been reported that cytotoxic drugs such as anthracycline and platinum agents,
could induce immunogenic cell death (ICD), and stimulate anti-tumor immune response
of T lymphocytes [18,129]. Damage-associated molecular patterns (DAMPs) are cytokines
that are released by damaged or activated cells; have great immune stimulating response,
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and cause ICD [18]. ICD involves the cell surface exposure of calreticulin (CRT), release of
DAMPs-related high mobility group box1 (HMGB1) and autophagy-dependent ATP re-
lease, which together, leads to the antigen uptake and presentation of DC cell, and then
activates the CD8+ TILs to play the anti-tumor role [130,131]. Carboplatin or paclitaxel
combined with radiation generates both chemotherapeutic enhancement of ICD and a
dose-dependent induction of ICD in TSA mammary carcinoma cells [132]. Doxorubicin
and paclitaxel treatment results in the recruitment of innate immune cells and CSF1R-
dependent macrophages infiltration in PyMT-MMTV mammary carcinoma through an
increase of CCL2, CXCL2, CSF-1, interleukin-34 and vascular permeability [133,134]. Doc-
etaxel polarizes MDSCs toward M1-like phenotype and upregulates macrophages markers
(CD86, MHC class II, and CD11c) in vivo and in vitro partly through an inhibition of
STAT-3 in 4T1-Neu mammary cancer implants [135]. All these studies emphasize that
chemotherapy can induce TME remodeling through distinct signaling pathways. In this
part, we have focused on three crucial factors related to chemotherapy-induced TME re-
modeling, which are HMGB1, exosomes and S1PR1. The clinical significance of HMGB1,
exosomes and S1P/SPHK1/S1PR1 as well as their involvement in TNBC immunomodula-
tion and tumor progression is shown in Figure 2.
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Figure 2. Chemotherapy-induced immunogenic cell death and immunomodulation in TNBC. Chemotherapy induces
immunogenic cell death (ICD), and then promotes the release of damage-associated molecular patterns (DAMPs) including
high mobility group box1 (HMGB1), exosomes and sphingosine-1-phosphate receptor 1 (S1PR1) by damaged or activated
cells. Chemotherapy combined with targeted therapy could enhance anti-tumor immunity through promoting function of
immunoreactive lymphocytes and blocking or reversing function of immunosuppressive cells. (ICD, immunogenic cell
death; DAMPs, damage-associated molecular patterns; HMGB1, high mobility group box1; S1P, sphingosine-1-phosphate;
SPHK1, sphingosine kinase 1; S1PR1, sphingosine-1-phosphate receptor 1; TNBC, triple negative breast cancer; TME,
tumor microenvironment).

4.1. Chemotherapy-Induced HMGB1 Release Participates in TNBC Immunomodulation
4.1.1. Chemotherapy-Induced HMGB1 Enhances Anti-Tumor Immune Response

High mobility group box1 (HMGB1) is a highly conserved DNA-binding nuclear
protein, involved in many kinds of diseases, including cancer, arthritis, and sepsis [136].
Extracellular HMGB1 in response to inflammation activates the host immune system.
HMGB1 can combine with TLR-2, TLR-4, and TLR-9, and recruit the inflammatory cells to
microenvironment. This activates the DCs, enhances the antigen presentation ability and
anti-tumor immune response [137].
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4.1.2. HMGB1 Is Related to High Recurrence Risk and Progressive Disease after
Neoadjuvant Chemotherapy

A study indicated that the nuclear expression of HMGB1 in breast cancer cells neg-
atively correlates with Tregs and TAMs [138], and could predict the recurrence risk of
residual tumor [139]. HMGB1 expression in cytoplasm is higher in HER2-positive and
TNBCs tumors than in hormone receptor (HR)-positive tumors. High cytoplasmic HMGB1
significantly correlates with advanced histologic grade, abundant TILs, and high expression
of CD8+ TILs but shows no prognostic significance in TNBC [140]. Intracellular HMGB1
expression has been detected in fibroblasts conditioned medium (CM) treated breast cancer
cells and in doxorubicin-treated cells. Extracellular HMGB1 is upregulated in CM after
doxorubicin-induced MDA-MB-231 cell death, which show the potential of fibroblasts in
stroma to contribute to chemo-resistance partly by fibroblast-induced HMGB1 produc-
tion [141]. It has been shown that low cytoplasmic HMGB1-positive breast tumor cells
and high ASMA-positive fibroblasts predict adverse prognosis in TNBC [142]. Tanabe and
colleagues reported that positive HMGB1 expressions are higher in the clinical progres-
sive disease (cPD) than in control group during neoadjuvant chemotherapy in TNBC pa-
tients [143]. Some of HMGB1 single nucleotide polymorphisms (SNPs) have been related to
tumor progression in T2 tumor, pathologic grade 3 disease, and distant metastasis in TNBC
and HER2-enriched tumors compared with luminal tumors [144]. By targeting HMGB1-
RAGE signaling pathway, miR-205 impairs the viability and epithelial-to-mesenchymal
transition in TNBC cells [145]. HMGB1 released by breast cancer cells is N-glycosylated
at Asn37, which promotes the transition from monocytes to MDSC-like cells and con-
tributes to M-MDSC differentiation from bone marrow through the p38/NFκB/Erk1/2
signaling pathway [146].

4.2. Chemotherapy-Induced Exosomes Secretion Interconnects TME and TNBC Immune Response
4.2.1. Chemotherapy-Induced Exosomes Are Released to TME

Exosomes are tiny membrane vesicles (30–100 nm in diameter) synthesized in late
endosomes and secreted into the extracellular milieu by various cells. They contain func-
tional molecules (lipids, proteins, DNA, and RNA) that can be transferred to recipient
cells, playing a key role in intercellular communication [147]. Apoptosis exosome vesicles
(AEVs) are special exosomes overexpressing S1PR1 and S1PR3 released by the tumor
cells in response to certain chemicals. These AEVs induce the expression of inflammatory
chemokines and cytokines which participate in the pathological and physiological process
of DAMPs [147].

4.2.2. Exosomes Are Related to TNBC Tumor Progression and Provide Therapy Options

Some investigations have explored connections between exosomes and TNBCs [148].
Hypoxia induces the production of exosomes and microvesicles (MVs) in breast cancer
cells through HIF-dependent RAB22A expression, which can stimulate ECM invasion,
focal adhesion formation, lung colonization and is associated with decreased OS and MFS
in the mouse models [149]. Stevic and colleagues determined miRNA expression profiles
of exosomes originated from the plasma of TNBC and HER2-positive breast cancer patients
before neoadjuvant therapy. They found that exosomal miRNAs (miR-155 and miR-301)
correlate with the risk factors and clinicopathological factors significantly and can predict
pCR rate [150]. Extracellular vesicles (EVs) from HCC1806 but not from MDA-MB-231 cells
exhibit enhanced drug resistance and alter the levels of genes involved in cell apoptosis
and proliferation pathways in MCF10A cells [151]. Ni and colleagues quantified the levels
of miRNAs expression in exosomes from plasma of 8 ductal carcinoma in situ (DCIS)
patients, 32 breast cancer (BC) patients and 8 healthy women; they found that different
levels of exosomal miRNAs had distinct prognostic value in different subtypes of BC
and the expression of miR-16 was lower in TNBC than HR-positive counterparts [152].
Exosomes from TNBC tissues regulate cell apoptosis and TME changes. MiR-770 played
its multi-functional role in TNBC by down-regulating gene STMN1 as follows: (i) was
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associated with favorable prognosis of TNBC, (ii) increased the sensitivity of TNBC cells to
doxorubicin through induction of apoptosis, (iii) regulated TAMs-induced chemotherapy
resistance, and (iv) inhibited invasion and migration ability of TNBC cells via EMT path-
way [153]. Intriguingly, chemotherapy-induced senescent cells secreted more extracellular
vesicles than non-senescent cells in TNBC [154]. Exosomes could facilitate co-delivery of
cholesterol-modified miR-159 and therapeutic quantities of doxorubicin to TNBC cells both
in vitro and in vivo [155]. A formulation of erastin (a low molecular weight chemother-
apy drug that induces ferroptosis)-loaded exosome was labeled with special chemicals
to target TNBC cells, which enhanced the uptake efficiency of drugs into MDA-MB-231
cells and had a better preventing effect on the migration and proliferation, revealing that
the exosome-based therapy might serve as a novel and powerful delivery method for
anti-cancer therapy [156].

4.3. S1P/SPHK1/S1PR1 Link TME Changes to TNBC Immunomodulation
4.3.1. S1P/SPHK1/S1PR1 Is Associated with TME Changes

Sphingosine-1-phosphate (S1P), a novel lipid signaling mediator with both intracellu-
lar and extracellular functions, is generated by sphingosine kinase 1 (SPHK1), an enzyme
catalyzing phosphorylation of sphingosine. S1P/SPHK1 interacts with constituents in
TME and modulate the progression and metastasis of breast cancer. Binding of S1P to
sphingosine-1-phosphate receptor (S1PRs) on cell surface activates cytokines in the cyto-
plasm and gene activation in the nucleus in an autocrine and paracrine manner [157,158].
S1P, S1PRs, and SPHK1 expression are related to metastatic progression in breast cancers
in vivo [159]. An investigation in melanoma suggested that S1PR1 causes immune func-
tional change of T lymphocytes via PPARγ signal pathway [160]. A recent investigation in
breast cancer showed that S1PR1 causes the change of TAMs phenotype, promotes neo-
lymph vascularization, and the change of TME via activating inflammatory factors such
as Nlrp3 and IL-1β [161]. Another team also showed that S1PR1 phosphorylates the com-
plex of vasculogenic mimicry (VM), and the inhibition of S1PR1 decreases endothelium-
dependent vessel (EDV), but causes the production of VM, invasion, and metastasis in vitro
and in vivo [162]. Kim and colleagues showed that IL-22 induces S1PR1 and IL22R1 ex-
pression in myeloid cells and macrophages, and induce MCP1 expression in myeloid stem
cells (MSCs), and then facilitate macrophage infiltration, implying a potential effect of
IL-22 on promoting bone metastasis of breast cancers via IL22R1/S1PR1 pathway [158].
S1P1 is expressed in tumor antigen-specific bone marrow (BM) Tregs selectively in breast
cancer, and can be induced by BM-resident antigen-presenting cells in conjunction with
T cell receptor stimulation [163].

4.3.2. S1P/SPHK1/S1PR1 Is Associated with TNBC Tumor Progression

A preclinical study detected the function of S1PR1-antibody on the growth of breast
cancer cell lines MDA-MB-231 and SK-BR-3. They found that S1PR1-antibody not only
increases the cytotoxicity of carboplatin on MDA-MB-231 cells but also enhances the anti-
proliferative outcome of S1P on SK-BR-3 cells [164]. It has been reported that apoptotic
tumor cells release S1P, and then stimulate the generation of lipocalin 2 (LCN2) in TAMs
and is associated with breast cancer metastasis [165]. As the key kinase of S1P combination,
SPHK1 has been found to be overexpressed in TNBC compared with other breast cancer
subtypes, and promotes tumor metastasis. By targeting SPHK1 or its downstream signal-
ing pathway (NF-κB pathway) with available inhibitors, TNBC metastasis is effectively
inhibited [166]. Maiti and colleagues found that SPHKs/S1P axis is a crucial constituent
of survival and growth of LM2-4 cells compared to parental MDA-MB-231 cells, and nu-
clear SPHK2 (in MDA-MB-231 cells) is also indispensable for LM2-4 cells survival and
growth [167]. Obesity and high-fat diet are the main cause for increased expression of
the S1P and SPHK1, and targeting the SPHK1/S1P/S1PR1 decreases key proinflamma-
tory cytokines, macrophage infiltration, and tumor progression [168]. However, Lei and
colleagues found that S1PRs expression inhibits tumor progression in breast cancer pa-
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tients [169]. The clinical significance of DAMPs-associated molecules (HMGB1, exosomes,
and S1P/SPHK1/S1PR1) and the mechanisms involved in TNBC immunomodulation and
tumor progression are included in Table 3.

Table 3. Clinical significance and involved mechanisms of DAMPs-associated molecules.

Items Clinical Significance Involved Mechanisms References

HMGB1
Predict recurrence risk of
residual tumor after
neoadjuvant chemotherapy

TLR4 signal pathway, immune
molecules such as TGF-β, IK12p7,
and IFN-γ, p38/NFκB/Erk1/2
pathway, RAGE/IRF3/NF-κB

[19,20,139,140,142,144–146,170]

Exosome
pCR prediction and distinct
prognosis value in different
subtype of breast cancer

HMGB1/TLR4/NF-κB signaling [150,152,171,172]

S1P/SPHK1/S1PR1 Paradoxical role in tumor
progression of TNBC

PPARγ signal pathway,
STAT3/IL-6, IL-22, TCR activation [158,160,163,169,173–175]

5. Conclusions

The role of the tumor microenvironment (TME) in triple negative breast cancer (TNBC)
immunomodulation is vitally important. The deeper understanding of immunosuppres-
sive and immunoreactive TME has contributed to specific subtype classification of TNBC.
In future, we may be able to treat TNBC patients with more precision according to their
subtype. Agents that remodel TME, promote function of immunoreactive lymphocytes,
block function of immunosuppressive cells, and prevent inhibitory signaling pathways
can all be considered. Furthermore, therapies targeting HMGB1, exosomal microRNAs,
and S1P/SPHK1/S1PR1, can also be considered in combination with chemotherapy. In con-
clusion, immunosuppressive and immunoreactive role of TME, the contribution of TME in
TNBC subtype classification, chemotherapy-induced TME changes and its role in TNBC
immunomodulation are crucial for TNBC management. TME has provided a new direction
to explore novel and effective combination regimens for precision treatment of TNBC.
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