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Unsupervised microstructure 
segmentation by mimicking 
metallurgists’ approach to pattern 
recognition
Hoheok Kim1, Junya Inoue1,2* & Tadashi Kasuya2

An efficient deep learning method is presented for distinguishing microstructures of a low carbon 
steel. There have been numerous endeavors to reproduce the human capability of perceptually 
classifying different textures using machine learning methods, but this is still very challenging 
owing to the need for a vast labeled image dataset. In this study, we introduce an unsupervised 
machine learning technique based on convolutional neural networks and a superpixel algorithm for 
the segmentation of a low-carbon steel microstructure without the need for labeled images. The 
effectiveness of the method is demonstrated with optical microscopy images of steel microstructures 
having different patterns taken at different resolutions. In addition, several evaluation criteria for 
unsupervised segmentation results are investigated along with the hyperparameter optimization.

A microstructure is a small-scale internal structure of a material, which strongly affects its mechanical, chemical, 
and electric properties. In particular, steel alloys are known to exhibit a wide range of mechanical properties due 
to the formation of a wide variety of microstructures such as ferrite, pearlite, bainite, and martensite depending 
on the cooling process. Figure 1 depicts typical examples of microstructures observed in steel alloys. A differ-
ence in microstructure results in different mechanical  properties1. Dual-phase steel, which consists of a ferrite 
matrix containing hard martensitic islands and is widely used in the automobile industry, is a good example of 
this phenomenon. A higher yield strength can be achieved not only by increasing the volume fraction of the hard 
martensitic  microstructure2 but also by modifying the microstructural  morphology3. Accordingly, characterizing 
the microstructures of steel is an important task for the development of advanced high-strength steels. However, 
this is very challenging because the microstructure usually consists of one or more phases that are not easily dis-
tinguishable. Conventionally, the phases of steel alloys have been classified by the manual analysis of light optical 
microscopy (LOM) or scanning electron microscopy (SEM)  images4. However, this approach has the drawback 
that it requires a labor-intensive pixelwise classification performed by experienced experts. Therefore, approaches 
based on machine learning algorithms have attracted great attention due to their efficiency. For example, Choi 
et al.5 introduced a classification algorithm based on support vector machines (SVM)6 for detecting defects on the 
surface of a steel product. Further applications of SVM were presented by Gola et al.7,8, where the microstructures 
of steel alloys were classified into constituent phases. Another frequently applied technique is the random forest, 
which is a classification algorithm composed of multiple decision  trees9. Various studies have found that steel 
microstructures can be accurately classified using random-forest-based  methods10–12.

Nowadays, one of the most emerging microstructure classification schemes is a deep learning based approach. 
Deep learning is also a class of machine learning algorithms that use multiple processing layers to learn rep-
resentations of the raw  input13. These multilayers are called neural networks and are being actively applied to 
microstructure classification tasks. de Albuquerque et al.14,15 first proposed the application of artificial neural 
networks to classify and quantify simple nodular microstructures from cast iron images. More recently, convolu-
tional neural networks (CNN) have been intensively used in the field of computer vision owing to their fast and 
efficient classification  performance16. Azimi et al. reported the successful implementation of  VGGNet17, which 
is a pretrained CNN proposed by Krizhevsky, for classifying microstructures from LOM and SEM images of a 
 steel18. Since then, a number of studies applying CNN have been conducted such as the application of  DenseNet19 

OPEN

1Institute for Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-0041, Japan. 2Graduate 
School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo,  Tokyo 113-8656, Japan. *email: inoue@
material.t.u-tokyo.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-74935-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17835  | https://doi.org/10.1038/s41598-020-74935-8

www.nature.com/scientificreports/

to detect defects in  steels20 and  ResNet1821 to classify microstructures of welded  steels22. It was verified that the 
performance of CNN-based methods is as good as that of humans.

Deep learning algorithms are trained with a vast number of labeled images so that they can learn how features 
are related to the target and this scenario is referred to as supervised learning. However, there are several difficul-
ties when applying supervised learning algorithms to microstructure classification. First, microstructures are 
not easily distinguishable even for experienced experts, so the preparation of a large labeled dataset is extremely 
labor-intensive and time-consuming. Second, the size of the input image is limited when using pretrained 
parameters. For example, the width and height of the input image should be fixed to 224 × 224 pixels when 
implementing well-known networks such as  VGGnet17,  DenseNet19, and  ResNet1821.

In contrast, human researchers perceptually distinguish different microstructures from various patterns 
under various illumination conditions without the need for labeled images. In view of the fact that metallurgists 
can identify different microstructures hidden in a single micrograph even at first glance, we design an unsu-
pervised segmentation method for low-carbon steels by mimicking the way in which metallurgists investigate 
each micrograph. The algorithm is strongly motivated by the one proposed by  Kanezaki23 and is based on CNN 
accompanied by a superpixel algorithm. Segmentation results demonstrate that the proposed method can be 
used to distinguish microstructures. In addition, the quality of the segmented images is assessed using evaluation 
criteria for unsupervised segmentation scenarios.

Methods
The approach to identifying hidden microstructures in a single image adopted by metallurgists generally con-
sists of three steps; at first, the whole image is roughly subdivided into many small regions of interest (ROIs) 
with identical contrast and texture characteristic length, then microstructural features representing each ROI 
are searched. Finally, ROIs are grouped into several classes that have some similarity with respect to the derived 
microstructural features. Accordingly, the unsupervised segmentation algorithm is designed as follows. After 
a single micrograph is input, it first undergoes superpixel segmentation to acquire small ROIs with identical 
contrast and texture characteristic length. Then, a CNN computation is carried out to derive a feature repre-
senting each ROI. The network parameters are trained so that the feature with the highest frequency in each 
ROI dominates the other features in the region. In addition, by applying the same CNN computation to all the 
superpixels, several features commonly appearing in several different ROIs are selected automatically. In other 
words, connected pixels with similar colors and other low-level properties, such as hue, luminance, and contrast, 
are grouped and assigned the same label by the superpixel computation and the spatially separated groups hav-
ing similar textures are assigned the same label by CNN computation. By combining them, a group of pixels 
having similar features can be categorized into the same cluster and a schematic of the network is given in Fig. 2.

The following subsections provide detailed explanations of the algorithms employed in each step of the 
unsupervised segmentation method. First, the fundamental knowledge of the CNNs is given in order of the 
computation procedure. Then, an explanation of the superpixel algorithm is presented with sample images. 
Finally, several evaluation criteria are addressed to assess the results of segmentation without labeled images.

CNN. The structure of the CNN used in this study consists of an input layer, hidden layers, and an output 
layer as illustrated in Fig. 3. The input layer accepts the external image data and the output layer gives the pre-
dicted answer computed by the network. The computation is mainly conducted in hidden layers consisting of 
one or more convolutional filters (or kernels) that are indispensable building blocks of the CNN. Filters are 
typically composed of a set of learnable parameters and perform 2D filtering on input images by conducting the 
linear operation

(1)hn = (Wm ⊗ xn)+ bm

Figure 1.  Typical examples of microstructures observed in steel alloys.



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17835  | https://doi.org/10.1038/s41598-020-74935-8

www.nature.com/scientificreports/

{xn}Nn=1 is a set of p-dimensional feature vectors of image pixels, where N denotes the total number of pixels 
in images. Wm , bm , and hn are respectively trainable weights of the filters, bias, and feature map obtained after 
convolutional operation ⊗. An activation function is followed by each convolutional layer in order to introduce 
nonlinearity into the neural network. One of the widely used functions is the rectified linear unit (ReLU) math-
ematically expressed as

(2)f (xn) =
{

xn for xn > 0,

0 for xn ≤ 0.

Figure 2.  Schematic illustration of the applied algorithm composed of CNN and a superpixel algorithm.

Figure 3.  Architecture of the algorithm with an image size of 360× 360× 3 and detailed information about the 
layers of the CNN network.
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Then, additional layers for batch normalization, which is a technique recently proposed by Ioffe and  Szegedy24, 
are connected to the activation function. The idea is to normalize the outputs of the activation function so that 
a subsequent convolutional layer can receive an image having zero mean and unit variance as

where −x , σ 2(x) , and ǫ are respectively the mean of x , the standard deviation of x , and a constant to provide 
numerical stability whose value is usually set as 1× 10−5 . It has been reported that rescaling the image before 
inputting allows a faster, efficient, and more stable  learning25. The following layer is a linear classifier layer 

{

yn
}N

n=1
 

that categorizes the obtained features of each pixel into q classes. The linear relationship is applied in this study:

where Wc and bc are the weights of the 1D convolution filters and bias, respectively. After normalizing yn so as to 
obtain y′n , the argmax classification is applied to choose the features with the maximum y′n . Finally, a 2D output 
image having segmentation classes cn is obtained.

Superpixel segmentation. When a human distinguishes microstructures of steels, similar microstruc-
tures are generally grouped based on the basis of colors. For example, if two regions have the same color, then 
they will be allocated the same class. In addition, spatial characteristics or morphologies are considered when 
dividing regions. Similarly, a superpixel algorithm distinguishes different regions called superpixels, which are 
regions of continuous pixels having similar characteristics such as pixel intensity, by considering the color simi-
larity and spatial proximity. Thus, it provides a convenient and compact representation of images when a human 
performs classification tasks. The simple linear iterative clustering (SLIC)  algorithm26 is introduced in this study 
among the various algorithms for clustering  superpixels27–29. There are two important hyperparameters when 
obtaining superpixels using this SLIC algorithm. The first is the number of superpixels, which defines the num-
ber of regions in the input image. The second is the compactness factor m , which balances the color proximity 
and spatial proximity. The lower the value of m , the more color proximity is emphasized. Its effect on the cluster-
ing is illustrated for a steel microstructure image in Fig. 4. Readers are recommended to refer to the  literature26,30 
for further information about the concept and implementation of the SLIC algorithm.

(3)x
′
n =

xn −
−
xn

√

σ 2(xn)+ ǫ
,

(4)yn = Wcx
′
n + bc ,

Figure 4.  Effects of the compactness m and the number of superpixels n on superpixel segmentation: (a) 
original image, (b–e) superpixel segmentation results with various m and n.
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Training of the CNN. Regarding the training of the CNN, the softmax function is used as a loss function, 
which measures the difference between the CNN output image and the refined image. The parameter tuning of 
the CNN is resolved using the stochastic gradient descent (SGD) optimization algorithm and backpropagation. 
Regarding SGD hyperparameters, it is empirically known that a learning rate of 0.1 and a momentum of 0.9 
generally gives good results. Finally, the training is set to be finished after the maximum number of iterations is 
reached or the number of segmented regions becomes less than the number of classes set by a user.

Evaluation criteria. When evaluating a segmentation result, two approaches are generally taken. First is a 
supervised evaluation method which compares a segmented image with a labeled image. Even though a quan-
titative comparison can be easily done, it requires a manually labeled reference which is intrinsically subjective 
and labor intensive.

Another common alternative is an unsupervised evaluation method where the quality of a result is assessed 
based solely on segmented results. It enables the objective evaluation without requiring a manually labeled refer-
ence image. In this study, the performance of unsupervised segmentation with an N ×M image size is evaluated 
using the F 31,32F ′ , and Q 32 metrics respectively given by Eqs. (5–7):

R , Ai , and e2i  are the number of segmented regions, the area of the i th region, and the average color error 
of the i th region, respectively. With these criteria, the segmentation result with the lowest value is preferred. 
The basic concept of the metrics is to assess the quality of segmented images by comparing average color error 
values ei of segmented regions of input and output images. In addition to the goodness of fit of the color, terms 
including R are introduced in order to penalize segmentations that form too many regions. Zhang et al.’s  article33 
is recommended for readers interested in a more detailed explanation about the evaluation of unsupervised 
image segmentation.

Implementation details. For the computational environment, a Tesla V100 NVIDIA GPU was used with 
the PyTorch framework and CUDA platform. The number of convolutional layer, filters in each convolution 
layer p and the linear classifiers q were set as 2, 100 and 50, respectively. For the SLIC superpixel algorithm, the 
compactness and the number of superpixels were defined as 20 and 50,000, respectively. The time taken for the 
unsupervised segmentation and the F value evaluation with a 1000 × 1000 pixel image was about 30 s and less 
than 1 s, respectively.

Results and discussions
Dataset. To obtain the input image data, we prepared low-carbon steel samples whose composition is pre-
sented in Table 1, which were polished and etched using 5% picral + 0.5% nital solution. Then, optical micro-
graphs were taken at different magnifications. It was confirmed that each image consists of various microstruc-
tures such as grain boundary ferrite, ferrite side plate, pearlite, bainite, and martensite. The obtained image 
dataset was used as input data for training the network without modifying the image size.

Segmentation. Figure 5a shows one of the low-magnification micrographs with 1920 × 1440 pixels used 
for the input data. There are different microstructures: ferrite side plate, pearlite, and bainite. Figure 5b shows 
the zoomed images of the ferrite and bainite. It is clear that their morphological characteristics differ from 
each other in that bainite generally has finer microstructure than ferrite and includes finer carbide precipitates. 
However, both microstructures appear in white with small isolated dots distributed inside them. As they have 
the same color, traditional approaches, which rely merely on the image contrast, have encountered difficulty 
in distinguishing these microstructures. The segmentation result obtained using the present method is given 
in Fig. 5c, in which ferrite side plate, pearlite, and bainite are colored green, red, and purple, respectively. It is 
demonstrated that ferrite, bainite, and pearlite are well segmented. This result suggests that microstructures with 
similar contrasts but different morphologies can be divided on the basis of their morphological features using 

(5)F =
1

1000(N ×M)

√
R

R
∑

i=1

e2i√
Ai

(6)F ′ =
1

1000(N ×M)

√

√

√

√

Max
∑

A=1

[R(A)]1+1/A ×
R
∑

i=1

e2i√
Ai

(7)Q =
1

1000(N ×M)

√
R

R
∑

i=1

[

e2i
1+ logAi

+
(

R(Ai)

Ai

)2
]

.

Table 1.  Chemical composition (wt. %) of the low-carbon steel used in this work.

C Si Mn P S Al N O

0.152 0.015 1.51 0.007 0.0016 0.026 18 (ppm) 28 (ppm)
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the present method. It also implies that the method can be effectively applied to distinguish the microstructures 
in an image taken at a lower magnification.

Next, unsupervised segmentation is tested for microstructures observed at a higher magnification of 1920 × 
1440 pixels. The input image shown in Fig. 6a consists of four different microstructures: grain boundary ferrite 
and needle-shaped ferrite side plate in white, pearlite in black, and martensite as the background. The result of 
unsupervised segmentation is shown in Fig. 6b, where ferrite, pearlite, and martensite are colored in orange, 
green, and blue, respectively. The result indicates that ferrite, pearlite, and martensite are well distinguished pix-
elwisely. However, some spots in the lower left part of Fig. 6b (marked with a red dotted circle) were recognized 
as a pearlite region because they are also displayed in black. Nevertheless, the overall segmentation was successful 
considering the complexity of the input microstructure.

Lastly, the segmentation was conducted for a micrograph with a much lower resolution. Figure 7a shows 
the input micrograph of a typical low-carbon microstructure with only 360 × 360 pixels. The microstructure 
is composed of grain boundary ferrite, ferrite side plate, and pearlite. Figure 7b shows the segmentation result 
with grain boundary ferrite in green, ferrite side plate in blue, and pearlite in light green. Unlike the previous 
cases, the segmented areas have rounded corners. This might be caused by the lack of information due to the low 
resolution. Other than that, the overall segmentation appeared to be successful even with the limited resolution.

In addition to the aforementioned segmentation results, other results for low-carbon steels with various 
microstructures are given in Fig. 8. They also indicate that the performance of the present method was success-
fully demonstrated.

Evaluation. Figure 9 shows an example of the comparison between manual and unsupervised segmentation 
results along with the fraction of their constituent areas. The image labeled by our experienced experts indicates 

Figure 5.  (a) Input microstructure image, (b) zoomed images showing bainite (upper row) and ferrite side 
plate (lower row) phases, and (c) segmentation result with colors indicating different classes.

Figure 6.  (a) Highly magnified input microstructure image and (b) segmented image represented by various 
colors indicating different classes.
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that the microstructure is composed of three different phases; 65% of martensite (M), 32% of ferrite (F), and 3% 
of pearlite (P). Likewise, the fraction of constituent regions of the segmented images obtained for three differ-
ent numbers of classes are given in Fig. 9b–d. In the unsupervised segmentation results, the each region is not 
classified into a certain category. However, It is easily noticeable that the result consists of three classes (Fig. 9b) 
is consistent with the reference image in terms of the segmentation boundary. In addition, the fractions of the 
phases are in good agreement with the manual analysis. It is confirmed that the accuracy of the proposed unsu-
pervised segmentation method is comparable to that of the previously reported supervised  method10.

Since there can be numerous possible segmentation results for one microstructure if a hyperparameter, such 
as number of classes, is varied as clearly demonstrated in Fig. 9. Therefore, we need a measure to clarify which of 
the parameters is the most appropriate among given results. Since this deep learning method produces a different 
result each time owing to the randomness occurring for various reasons such as the weight initialization, each 
of the unsupervised evaluation criterion is averaged over ten times repetition for the evaluation of the different 
segmentation results. Figure 10a gives the evaluation results for Fig. 6a with increasing number of classes using 
the three unsupervised segmentation evaluation criteria. F and F ′ are lowest when there are three classes. This 
means that the microstructure is better to be divided into three regions. As the number of classes increases, the 
values also increase, meaning that quality of the result deteriorates. On the other hand, Q shows its minimum 
when there are four classes. In addition, it was observed that the Q with two classes is much higher than F and 
F ′ . This is because Q was designed to give a high penalty for regions with a large area having a very little variation 
in  color33. Therefore, when there were only two regions which inevitably include various colors, Q was higher.

Even though these criteria provide an easy way to evaluate the segmentation result, it is still difficult to com-
pare criteria since their scales are different. In order to compare these criteria, their values were normalized to 
the range [0, 1] as shown in Fig. 10b. In addition, they were ranked according to their values as given in Table 2 
in order to compare them with each other more easily. Note that normalization does not affect the rankings esti-
mated by these evaluation criteria. A noticeable difference is that segmentation result with nine classes marked 
the third rank with Q criterion, which is not preferred with other criteria. As mentioned previously, Q disfavors 
large areas with various colors and prefers small areas with homogenous colors. Therefore, a larger number of 
classes is likely to be chosen with Q than with F and F ′ . Through these results, it was concluded that F is the most 
appropriate criterion for evaluating the unsupervised segmentation of a steel microstructure.

Hyperparameter optimization. As with the case of the number of classes, hyperparameters greatly affect 
the computation result. In this section, the effects of the compactness and the number of superpixels, which are 
essentially adjusted in superpixel segmentation processes, are investigated using the F criterion. The microstruc-
ture given in Fig. 6a is used as an input image and the number of classes are set as three. The segmentation is 
repeated 10 times for each pair of hyperparameters and the average F is taken. Figure 11 shows the dependence 
of F on the compactness and the number of superpixels. It is commonly observed that F decreases to a certain 
extent and then increases with increasing compactness. Since the compactness has a trade-off with the color 

Figure 7.  (a) Low resolution input microstructure image and (b) segmented image represented by various 
colors indicating different classes.
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similarity and spatial proximity, a very high or low compactness makes an algorithm yield superpixels based on 
limited information, resulting in failure to detect the region  boundary34. In terms of the number of superpixels, 
a similar tendency is shown that a very high or low number reduces the quality of segmentation; extreme values 
for the number of superpixels result in the incorrect segmentation of  pixels35–37. In conclusion, avoiding very 
high or too low values for the compactness and number of superpixels will provide a better segmentation result.

Conclusion
We demonstrated the segmentation of the microstructure of a low-carbon steel without labeled images using a 
deep learning method. Specifically, CNN and the SLIC superpixel algorithm were introduced for pixelwise seg-
mentation. Various microstructure images of steel composed of ferrite, pearlite, bainite, and martensite are used 
and regions of constituent phases were well distinguished. In addition, the quality of the segmentation results 
was assessed on the basis of various unsupervised segmentation evaluation criteria. We found that the F criterion 
shows better performance than the F ′ and Q criteria for the segmentation of the steel microstructure. Finally, the 
effect of hyperparameters on the segmentation was investigated and it was found that medium values are desir-
able for good performance. It is concluded that the deep-learning-based approach is efficient and fast method in 
distinguishing various microstructural features of low-carbon steels without the need to create labeled images.

Figure 8.  Examples of microstructure images (upper row) segmentation results (lower row).



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17835  | https://doi.org/10.1038/s41598-020-74935-8

www.nature.com/scientificreports/

Figure 9.  Comparison of (a) the labeled image consists of martensite (M), ferrite (F), and pearlite (P) phases 
created by manual classification and the segmented images with different hyperparameter settings for the 
number of classes; (b) 3 classes, (c) 10 classes, and (d) 20 classes.

Figure 10.  (a) Estimated F, F, and Q values for segmentation results with different numbers of classes and (b) 
their corresponding values normalized to the range [0, 1].
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Data availability
Source code of the algorithm described in this paper is available upon request.

Received: 8 July 2020; Accepted: 8 October 2020

References
 1. Bhadeshia, H. & Honeycombe, R. Steels: Microstructure and Properties. (Butterworth-Heinemann, 2017).
 2. Lai, Q. et al. Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: Experiments and 

micromechanical modeling. Int. J. Plast. 80, 187–203 (2016).
 3. Bag, A., Ray, K. K. & Dwarakadasa, E. S. Influence of martensite content and morphology on tensile and impact properties of 

high-martensite dual-phase steels. Metall. Mater. Trans. A 30, 1193–1202 (1999).
 4. Thewlis, G. Classification and quantification of microstructures in steels. Mater. Sci. Technol. 20, 143–160 (2004).
 5. Choi, K., Koo, K. & Lee, J. Development of defect classification algorithm for POSCO rolling strip surface inspection system. in 

SICE-ICASE International Joint Conference 2499–2502 (2006). https ://doi.org/10.1109/SICE.2006.31468 1.
 6. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
 7. Gola, J. et al. Advanced microstructure classification by data mining methods. Comput. Mater. Sci. 148, 324–335 (2018).
 8. Gola, J. et al. Objective microstructure classification by support vector machine (SVM) using a combination of morphological 

parameters and textural features for low carbon steels. Comput. Mater. Sci. 160, 186–196 (2019).
 9. Breimen, L. Random forests. Mach. Learn. 45, 5–32 (2001).
 10. Bulgarevich, D. S., Tsukamoto, S., Kasuya, T., Demura, M. & Watanabe, M. Pattern recognition with machine learning on optical 

microscopy images of typical metallurgical microstructures. Sci. Rep. 8 (2018).
 11. Bulgarevich, D. S., Tsukamoto, S., Kasuya, T., Demura, M. & Watanabe, M. Automatic steel labeling on certain microstructural 

constituents with image processing and machine learning tools. Sci. Technol. Adv. Mater. 20, 532–542 (2019).
 12. Gupta, S., Sarkar, J., Kundu, M., Bandyopadhyay, N. R. & Ganguly, S. Automatic recognition of SEM microstructure and phases 

of steel using LBP and random decision forest operator. Measurement 151, 107224 (2020).
 13. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
 14. de Albuquerque, V. H. C., Cortez, P. C., de Alexandria, A. R. & Tavares, J. M. R. S. A new solution for automatic microstructures 

analysis from images based on a backpropagation artificial neural network. Nondestruct. Test. Eval. 23, 273–283 (2008).

Table 2.  Numbers of classes and their values arranged in order of the rank determined from the evaluation 
criteria.

Rank 1st 2nd 3rd 4th 5th

F 3 (0) 4 (0.10) 2 (0.13) 6 (0.30) 5 (0.31)

F ′ 3 (0) 4 (0.08) 2 (0.11) 6 (0.24) 5 (0.25)

Q 4 (0) 3 (0.02) 9 (0.10) 8 (0.11) 6 (0.21)

Figure 11.  Contour map of F as a function of compactness values and numbers of superpixels.

https://doi.org/10.1109/SICE.2006.314681


11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17835  | https://doi.org/10.1038/s41598-020-74935-8

www.nature.com/scientificreports/

 15. de Albuquerque, V. H. C., de Alexandria, A. R., Cortez, P. C. & Tavares, J. M. R. S. Evaluation of multilayer perceptron and self-
organizing map neural network topologies applied on microstructure segmentation from metallographic images. NDT E Int. 42, 
644–651 (2009).

 16. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 
(1998).

 17. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv14091556 
(2014).

 18. Azimi, S. M., Britz, D., Engstler, M., Fritz, M. & Mücklich, F. Advanced steel microstructural classification by deep learning meth-
ods. Sci. Rep. 8 (2018).

 19. Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. IEEE Conf. Comput. Vis. 
Pattern Recognit. CVPR 2261–2269 (2017). https ://doi.org/10.1109/CVPR.2017.243.

 20. Roberts, G. et al. Deep learning for semantic segmentation of defects in advanced STEM images of steels. Sci. Rep. 9 (2019).
 21. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 

770–778 (2016). https ://doi.org/10.1109/CVPR.2016.90.
 22. Jang, J. et al. Residual neural network-based fully convolutional network for microstructure segmentation. Sci. Technol. Weld. Join. 

25, 282–289 (2020).
 23. Kanezaki, A. Unsupervised image segmentation by backpropagation. IEEE Int. Conf. Acoust. Speech Signal Process. ICASSP 1543–

1547 (2018) https ://doi.org/10.1109/ICASS P.2018.84625 33.
 24. Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint 

arXiv150203167 (2015).
 25. Santurkar, S., Tsipras, D., Ilyas, A. & Madry, A. How does batch normalization help optimization? Adv. Neural Inf. Process. Syst. 

2483–2493 (2018).
 26. Achanta, R. et al. Slic superpixels. in EPFL Technical Report No. 149300 (2010).
 27. Ren, X. & Malik, J. Learning a classification model for segmentation. Proc. Ninth IEEE Int. Conf. Comput. Vis. 1, 10–17 (2003).
 28. Liu, M.-Y., Tuzel, O., Ramalingam, S. & Chellappa, R. Entropy rate superpixel segmentation. in CVPR 2011 IEEE 2097–2104 (2011).
 29. Van den Bergh, M., Boix, X., Roig, G., de Capitani, B. & Van Gool, L. Seeds: Superpixels extracted via energy-driven sampling. 

Eur. Conf. Comput. Vis. 13–26 (2012).
 30. Achanta, R. et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 

2274–2282 (2012).
 31. Liu, J. & Yang, Y. Multiresolution color image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 16, 689–700 (1994).
 32. Borsotti, M., Campadelli, P. & Schettini, R. Quantitative evaluation of color image segmentation results. Pattern Recognit. Lett. 19, 

741–747 (1998).
 33. Zhang, H., Fritts, J. E. & Goldman, S. A. Image segmentation evaluation: A survey of unsupervised methods. Comput. Vis. Image 

Underst. 110, 260–280 (2008).
 34. Lv, X., Ming, D., Chen, Y. & Wang, M. Very high resolution remote sensing image classification with SEEDS-CNN and scale effect 

analysis for superpixel CNN classification. Int. J. Remote Sens. 40, 506–531 (2019).
 35. Xu, Y. et al. Efficient optic cup detection from intra-image learning with retinal structure priors. Int. Conf. Med. Image Comput. 

Comput.-Assist. Interv. 7510, 58–65 (2012).
 36. Zhao, Y. et al. Intensity and compactness enabled saliency estimation for leakage detection in diabetic and malarial retinopathy. 

IEEE Trans. Med. Imaging 36, 51–63 (2017).
 37. Jiang, J. et al. SuperPCA: A superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery. IEEE 

Trans. Geosci. Remote Sens. 56, 4581–4593 (2018).

Acknowledgements
This work was supported by the Council for Science, Technology and Innovation, Cross-ministerial Strategic 
Innovation Promotion Program (SIP), “Structural Materials for Innovation” (funding agency: JST).

Author contributions
H.K. and J.I. wrote the main manuscript text and T.K. prepared micrographs used in the present study. All authors 
reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.I.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICASSP.2018.8462533
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Unsupervised microstructure segmentation by mimicking metallurgists’ approach to pattern recognition
	Methods
	CNN. 
	Superpixel segmentation. 
	Training of the CNN. 
	Evaluation criteria. 
	Implementation details. 

	Results and discussions
	Dataset. 
	Segmentation. 
	Evaluation. 
	Hyperparameter optimization. 

	Conclusion
	References
	Acknowledgements


