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Driving Lymphopoiesis and
Lymphoid Malignancies
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Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York,
NY, United States

Proper lymphopoiesis and immune responses depend on the spatiotemporal control of
multiple processes, including gene expression, DNA recombination and cell fate
decisions. High-order 3D chromatin organization is increasingly appreciated as an
important regulator of these processes and dysregulation of genomic architecture has
been linked to various immune disorders, including lymphoid malignancies. In this review,
we present the general principles of the 3D chromatin topology and its dynamic
reorganization during various steps of B and T lymphocyte development and activation.
We also discuss functional interconnections between architectural, epigenetic and
transcriptional changes and introduce major key players of genomic organization in B/T
lymphocytes. Finally, we present how alterations in architectural factors and/or 3D
genome organization are linked to dysregulation of the lymphopoietic transcriptional
program and ultimately to hematological malignancies.
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INTRODUCTION

Over the past decades, plethora of studies have documented the transcriptional network that
controls immune cell regulation and plasticity during lymphocyte development and differentiation
(1–3). The lineage commitment of early hematopoietic progenitors to a specific B or T lymphocyte
is a multi-step process controlled by critical cytokines and transcription factors (TF) (Figure 1),
which ultimately promote activation of B/T cell fate programs, while posing strict checkpoints to
prevent differentiation to competing lineages (4–6). Briefly, hematopoietic stem cells (HSC) within
the bone marrow differentiate and give rise to a common myeloid or lymphoid progenitor (CMP
and CLP, respectively). B cell development continues within the bone marrow and leads to
progressive differentiation to pro-B, pre-B, and naive B cells. Upon antigen encounter in the
periphery, naive B cells become germinal center (GC) B cells and can either differentiate into long-
lived antibody secreting plasma cells or memory B cells (7). On the other hand, T cell development
occurs in the thymus, where cells transition from several double negative (DN) stages into the
double positive (DP) state when both functional T cell receptors (TCR) CD4 and CD8 are co-
expressed. Eventually, only one type of receptor dominates giving rise to either CD4+ or CD8+ T cells.
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The thymic exodus of the naive CD4+ cells to the secondary
lymphoid organs leads to further differentiation into several T
helper (TH) cell subpopulations (3, 8).

Transcriptional regulation during lymphopoiesis relies on the
activity of cell state specific TFs which can function as pioneer
factors and enable chromatin landscape remodeling through the
recruitment of coactivators or corepressors (1, 9, 10). Along with
changes in DNA methylation and histone post-transcriptional
modifications (PTM) during B/T cell differentiation, recent
studies started appreciating the dynamic 3D chromatin
reorganization and its association with transcriptional
regulation and cell fate control in the immune system (11, 12).
3D chromatin folding and nuclear architecture play important
roles in various cellular functions including gene expression,
DNA replication, recombination and immune response
modulation (11, 13–18). The development of chromosome
conformation capture (3C) and high-resolution imaging and
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their derivatives (19–22) enabled the investigation of different
hierarchical layers of chromatin organization based on the
genome-wide identification of chromatin contacts. At the
highest level of chromatin folding, individual interphase
chromosomes occupy distinct regions in the nucleoplasm,
called Chromosome Territories (CTs) in a non-random
manner, as observed by microscopy-based methods (Figure 2)
(23). Each of the chromosome territories (CTs) is further
organized into megabase (Mb) level, through the segregation
into A and B compartments, which are associated with
euchromatin and heterochromatin, respectively (24, 25). Open,
gene-rich and transcriptionally active chromatin regions are
located within A compartments, which usually occupy the
nuclear interior. B compartments are gene-poor, inactive and
largely overlapping with lamina associated domains (LADs) (26),
known as heterochromatic domains, located in the nuclear
periphery and linked to gene repression (27, 28). Except from
FIGURE 1 | Major stages during B and T lymphocyte specification and differentiation and key transcription factors that control each transition. B and T cell
development and differentiation is a stepwise process that involves multiple specification steps, cell fate bifurcations and cell migration. Multiple TFs, including but not
limited to those acting at the chromatin level, have been extensively documented in HSC. Within the bone marrow, the transition of CLP towards pro-B cells is
mediated through EBF1 and E2A, while the further maturation of the pre-B cells is under the control of EBF1 and PAX5. Upon BCR activation, BCL6 and OCA-B are
controlling the differentiation of naive to GC cells, while the latest developmental stages are mediated through BACH2 for memory B cells and PRDM1 and XBP1 for
plasma cells. Similarly, T cell development is also regulated by a strong network of TF, cytokines and genome organizers that control chromatin dynamics and T cell
lineage specification. Upon thymocyte migration, the early steps of the thymocyte development are mediated through the genome organizers SATB1 and BCL11B
while TF such as PU.1, TCF1 and GATA3 mediate the generation of the DN1 cells. The transition from the DN2 to DN3 is mediated by the STAT5, GATA3 and
BCL11B, while RUNX, GATA3, HEB and E2A mediate the DN3 and DN4 transition. TCF-1 is also the major TF driving the DN4 to DP transition. The last steps of the
intrathymic development are mediated through the expression of ThPOK and GATA3 for the CD4+ cells and NOTCH and RUNX for the CD8+ cells. Upon TCR
activation, expression of the master regulator T-bet via STAT4 signaling leads to TH1 differentiation, while STAT6 and GATA3 regulate the TH2 differentiation.
Activation of STAT3 and RORg leads to TH17 cells, while IRF4 and PU-1 induce the differentiation towards TH9 cells. Activation of Bcl-6 induces the differentiation of
naive CD4+ T cells into TfH. Differentiation of the Tregs is controlled by the transcription factor Foxp3 and STAT5. Generation of Tcr/Ig receptor diversity through VDJ
recombination takes place at various stages during B/T lymphocyte development as depicted (red).
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the A/B compartments, recently the intermediate (I)
compartments were also introduced as highly dynamic
chromatin domains enriched in genes poised or repressed by
the Polycomb Repressive Complex (PRC) (29). At a sub-
megabase level of chromatin organization, we observe self-
interacting domains named topologically associating domains
(TADs) (30, 31), which appear to be highly conserved across cell
type and mammalian species. TADs (32) are demarcated by
boundaries enriched in CTCF/Cohesin that insulate them from
Frontiers in Immunology | www.frontiersin.org 3
neighboring domains and facilitate the creation of regulatory
loops (30, 31). Finally, at the finest scale of organization,
chromatin is organized into looped structures or chromatin
contacts that enable physical proximity among distal
regulatory elements (RE), such as enhancers and promoters.
These long-range interactions have been shown to play
important roles in key biological processes, including DNA
recombination and regulation of gene expression and cell fate
(33–36).
FIGURE 2 | Global genome organization in mammalian nuclei from the megabase scale to the E-P level. Mammalian nuclei are organized into chromosomes with
non-random distribution in the nucleoplasm. Each chromosome is further composed of chromosome territories (CT) further subdivided into A/B/I compartments.
Within these compartments, TADs allow for interactions between regulatory elements (RE) that modulate gene expression. The cis/trans interactions take place
between promoters (P-P), enhancers (E-E) or both (E-P).
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Over the last years, a large number of studies started mapping
the hierarchical levels of 3D chromatin architecture in various
stages of lymphopoiesis and immune response and reveal
important insights for its role in VDJ recombination, gene
expression and cell fate decisions. In this review, we will discuss
key principles of chromatin reorganization during various stages
of B and T lineage specification, lymphocyte differentiation as well
as the coordination with gene expression and cell fate decisions.
We will also speculate on specific mechanisms and factors that
drive architectural rewiring in lymphocytes. Finally, we will
address how the 3D chromatin dysregulation might contribute
to inefficient or altered immune responses, leading eventually to
leukemogenesis and lymphomagenesis.
CHAPTER I: CHROMATIN
REORGANIZATION DURING CLP
SPECIFICATION FROM HSPC

The degree to which chromatin accessibility and topology are
remodeled during the step-wise differentiation from
hematopoietic stem and progenitor cells (HSPC) to CMP and
CLP (Figure 1) became recently appreciated thanks to the
development of single cell (or low yield) technologies, such as
scDNase-seq (37), multiple-enzyme Hi-C (3eHi-C) (38) or low
input tagmentation-based Hi-C (tagHi-C) (39–41). These studies
reported only limited changes at the early stages of
hematopoiesis, while broad chromatin reorganization occurred
at the CLP stage coinciding with a major change in cell
proliferation potential (41). High resolution genome-wide
contact heatmaps demonstrated that murine CLP adopt a Rabl
configuration, which is defined by centromeres and telomeres
localized at different poles of the nucleus (42). Trans-
centromeres or trans-telomeres interactions increase upon
differentiation to myeloid mature populations, although it
remains unclear whether this configuration persists in the
lymphoid lineage. Additionally, highly expressed genes form
highly interacting domains, coined as gene body associated
domains (GAD), an observation that has been independently
reported in multiple cell types using high resolution Hi-C or
Micro-C technologies (43–45), suggesting that high local
interactivity is linked to transcriptional activity.
CHAPTER II: 3D CHROMATIN
REORGANIZATION DURING
LYMPHOCYTE DEVELOPMENT

Large-Scale Subnuclear Changes
As shown by 3D chromosome painting experiments in
lymphocytes and other cell types, the radial position of CTs
associates with their gene density, with gene-poor CTs localized
toward the nuclear periphery, while gene-dense CTs occupy
more central positions (46–50). Moreover, the position of gene
loci relative to the inner or outer layer of their respective CT and/
Frontiers in Immunology | www.frontiersin.org 4
or relative to the nuclear periphery associate with their
transcriptional activity. For example, in human lymphocytes it
was shown that transcriptionally active telomeres are located in
the nuclear center, while heterochromatic centromeres are found
in the perinuclear domains (47). Intriguingly, many early studies
reported extensive repositioning of entire chromosomes or
specific gene loci during thymic development, providing strong
evidence for dynamic chromatin reorganization and its
association with transcriptional changes (51). Specifically, CT6
(containing Cd4 and Cd8 T cell lineage-specific loci) maintains
its subnuclear position during murine thymocyte development
between DN and DP cells, but relocates towards the center in
CD4+ cells and towards the periphery in CD8+ cells. Cd4 and
Cd8 loci loop out from the inner core of their territory (CT6) in
CD4+ and CD8+ cells, respectively, whereas the non-expressing
genes are embedded within interior CT domains (51). Additional
examples for gene repositioning out of the CT core during T cell
activation have been reported for the Ifng and the major
histocompatibility locus (MHC) (48, 52–54). Finally, studies in
T cells have also documented gene repositioning relative to
repressive or activating subnuclear domains along with
transcriptional changes. Specifically, repression of either Cd4 or
Cd8 gene in mature CD8+ and CD4+ cells, respectively, was
linked to their repositioning towards pericentromeric
heterochromatinic (PCH) regions (55, 56). Similarly, during B-
cell maturation, genes have also been observed to reshuffle
towards or away from heterochromatic foci enriched for the
repressive protein IKAROS, in order to be inactivated (e.g. l5) or
expressed (e.g. Cd2) in a stage-specific manner (57).

Large-Scale Compartmentalization
Changes
The development of 3C technologies enabled the tracking of
topological reorganization at various developmental stages and
at a genome-wide level (24, 30, 58, 59). During B cell
development, compartmentalization remains largely unchanged
with only few A and B compartment switches between murine
HSC and pro-B cells (0.7%) (60). Focusing more specifically into
the transition from pre-pro-B to pro-B, Lin et al. detected local
reorganizations, resulting in about 20% of A-to-B or B-to-A
compartment switches (Figure 3). These changes were
associated with increased or decreased nascent transcriptional
activity, respectively, as measured by global run-on sequencing
(GRO-seq) (61). Some of the largest domains that switched from
a repressive to permissive chromatin state included critical B-cell
regulatory genes such as Ebf1, Foxo1, Igk and Igl loci. Interestingly,
most of B-to-A switched loci that showed no transcriptional
upregulation were enriched instead for H3K27me3 deposition, a
chromatin mark linked to poising and gene repression, indicating
that the transition to a permissive compartment is not always
accompanied by transcriptional changes, but also by remodeling of
chromatin state.

Large-scale chromatin reorganization also occurs during T
cell development as revealed by a recent study integrating
scDnase-Seq, 3e Hi-C and RNA-Seq datasets from distinct
stages of T cell development, starting from HSPCs and
May 2021 | Volume 12 | Article 669881

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Scourzic et al. 3D Chromatin Organization Driving Lymphopoiesis
including CLP, DN1, DN2, DN3, DN4 and DP cells (39). This
analysis detected changes in A/B compartmentalization with
more than 1,200 genomic bins exhibiting A/B compartment
switching. Intriguingly, the majority of A-to-B switches
occurred during the transition from HSPCs to DN2 cells and
B-to-A during the transition from DN3 until DP stage of thymic
development, suggesting a global chromatin closure during early
stages of T cell differentiation followed by opening upon T-cell
lineage commitment (Figure 3). Overall, the highest percentage
of global switching of A/B compartment during T cell
development was observed at the DN2-to-DN3 transition,
which is one of the most pivotal checkpoints for T lineage
commitment. During this stage, genes that promote
multipotency and differentiation of alternative lineages (such as
Hmga, Meis1, Lmo2) undergo A-to-B compartment switching,
while genes involved in T-cell maturation and selection (such as
Bcl11b, Ets1, Tcf7, Cd3d, and Lef1) relocate from B-to-A
compartment (39). Interestingly, integration of gene expression
datasets showed that transcriptional silencing sometimes occurs
Frontiers in Immunology | www.frontiersin.org 5
prior the A-to-B compartment switching. Similarly, B-to-A
compartment switches included promoters that were pre-
marked by H3K4me3 in HSPCs, indicating that local permissive
chromatin state can be independent from topological changes
(both in compartments and TADs, as discussed later).

TADs and Chromatin Loops
Major TAD reorganization in B cells occurs at the Ig loci during
V(D)J recombination (62, 63), which constitute the most
important step of early lymphocyte development that controls
the rearrangement and the expression of a diverse repertoire of B
and T receptors (B/TCR) (64, 65). This process involves the de
novo establishment of multiple long-range contacts along the Igh
or Igk loci, which leads to locus contraction (66, 67) (see Chapter
IV). Another example of crucial TAD reorganization has also
been reported to occur around the genes that encode the
recombination-activating genes (RAG) DNA cleaving enzymes
necessary for the V(D)J recombination (68). The B or T cell
specific expression of these genes depends on chromatin
FIGURE 3 | Dynamic 3D chromatin changes during lymphocyte development and differentiation. B lineage: Upon commitment to the B-cell lineage, minor changes
are documented for A/B compartments and TADs at the pro-B stage. Nonetheless, major changes in intra-TAD activity are associated with B-cell specific genes.
Upon activation, GC B-cells are uniquely characterized by an increase in the weak Intermediate (I) compartments, which are maintained during plasma cells
transition. TAD boundaries tend to be lost in GC B cells, leading to “gene cities” specific organization. While E-P loops tends to be increased in both GC and plasma
cells, the latter subpopulation is characterized by a shift from long to short-range interactions. T lineage: During T lymphocyte development, the earliest global
changes in A/B compartment, intra-TAD connectivity and loop formation take place at the T cell commitment step upon the transition of DN2 to DN3 cells but also in
the DN4 to SP transition. Conversely, TCR activation does not cause changes in A/B compartments but results in TAD partitioning due to de novo and stronger TAD
boundaries. A high proportion of both intra- and interchromosomal interactions are found for these 3 stages of T-cells development and differentiation for which the
high E-P loop formation ensures T helper lineage specific gene expression.
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interaction involving lineage-specific Rag cis-regulatory elements
(CRE) in B and T progenitors mediated by the E2A pioneer
factor (69). One T cell specific (R-Ten) and two B cell specific
(R1B and R2B) enhancers were identified that interact with Rag
promoters, leading to cell type-specific sub-TAD organization.
Either deletion of enhancers or mutations of the E2A binding
motif were sufficient to disrupt TAD organization, long-range
interactions and Rag1/2 expression. Interestingly, in macrophages
the Rag1/2 locus is silenced and insulated from the neighboring
active compartment through a strong TAD boundary, which is
absent in pro-B/pro-T cells.

In agreement with previous studies in other cellular contexts,
the number, position and average size of TADs along B cell
development remains largely invariant genome-wide (30, 61, 70).
Nonetheless, significant changes in intra-TAD cis interactions
were observed upon specific transitions stages. For example,
Polg2, which is highly expressed and interacting with multiple
enhancers in pre-pro-B, lost all chromatin contacts in pro-B.
Conversely, the Cd79b and Ebf1 loci were shown to establish
multiple de novo interactions in the pro-B stage (61, 70). At the
Igk locus, a distal enhancer E88 forms a highly connected
enhancer hub within the V region and its deletion results in
major alterations of long-range interactions between V and J
regions and reduced receptor variant diversity (71). Overall,
these results suggest that while TAD genomic position
maintenance is largely unaffected, intra-TAD interactions
changes are most likely still crucial for cell type-specific gene
expression, sustaining B cell identity and functionality.

Changes in intra-TAD organization have also been reported
during T cell development (39), with many loci important for T
cell lineage commitment gaining or losing interactions. A
significant increase in intra-TAD connectivity was observed
during DN2-to-DN3 and DN4-to-DP transitions, coinciding with
major changes in chromatin accessibility and compartmentalization,
as described above. Globally, increased or decreased intra-TAD
connectivity during each of the HSC to DP transition states
strongly correlated with gene upregulation or downregulation,
respectively. Importantly, architectural reorganization within TADs
usually preceded transcriptional activation of associated genes,
suggesting that pre-establishment of chromatin contacts generates
a permissive topology for gene activation (39, 72, 73).

During thymocyte development, transcriptional regulation of
CD4/CD8 coreceptors is concomitantly linked with cell-fate
choice toward either the helper or cytotoxic lineage (10, 74–
76). Both murine Cd4 and Cd8 loci undergo 3D reorganization
that involves stage-specific chromatin contacts between Cd4 and
Cd8 promoters with various proximal and distal RE (77). In DN
thymocytes, Cd4 activation is prevented by a chromatin loop
between an upstream E4p enhancer and a silencer located 3kb
downstream of the TSS (78), mediated by RUNX1 and P-TEFb
(79). However, in DP and CD4+ cells, this chromatin interaction
is dissolved and new ones are established between the Cd4
promoter and the E4p enhancer (in DP stage) and/or another
proximal enhancer E4m located ~2 kb downstream of the TSS
(in CD4+ cells) leading to the initial activation and further
upregulation of Cd4 during these transitions (80, 81).
Frontiers in Immunology | www.frontiersin.org 6
These new activating chromatin contacts are mediated by
RUNX1 and other transcription factors, such as E2A and TCF-1.
Dynamic chromatin interactions have been also reported around
the Cd8 locus, which is composed by the Cd8a and Cd8b
genes, showing the same transcriptional orientation but separated
by 36 kb. In murine CD8+ cells, the expression of Cd8 locus is
regulated by six different enhancers through stage-specific
enhancer-promoter (E-P) interactions and mediated either by
IKAROS and BAF complex in DP cells or ThPOK in CD8+ cells
(82). These chromatin contacts are significantly lower in B cells,
where Cd8 locus is inactive (83). Further functional validation
(e.g. deletion/mutation of enhancers) will help to elucidate the
role of each regulatory contact in the control of transcription and
thus cell fate.

As well as the intrachromosomal E-P interactions reported in
Cd4 and Cd8 genes, long intrachromosomal interactions have
also been documented between these two loci in murine DP and
CD8+ cells, but not in DN and CD4+ cells. The stage-specific,
interchromosomal association between these genes was also
confirmed by 3D DNA FISH in humans where Cd4 and Cd8
genes are located on chromosomes 12 and 2 respectively (55).
The conservation of the Cd4-Cd8 interaction in murine and
human T cells highlights the significance of the 3D chromatin
organization in coordinating transcriptional regulation of genes,
which not only defines the stochastic CD4/CD8 lineage
commitment but also directly control the immune responses.

Although the majority of 3D genomic studies in T cell
development were conducted in murine models, a study in
human primary resting CD4+ cells started unraveling the
principles of 3D chromatin organization around active
enhancers and promoters by applying ChIA-PET technology
with antibody against the active histone mark H3K4me2 (84).
This study identified a total of 6520 E-P connections, the
majority of which were short-range (56%) and independent of
CTCF binding (81%), indicating the implication of other possible
genome organizers, such as TFs (SATB1, ETS, RUNX and
GATA) or transcriptional coregulators (see Chapter IV).
Interestingly, extensive long-distance E-P interactions, were
also reported for Vav1 and Runx1 genes, both regulators of
thymocyte development and TCR signaling cascade. In the same
study, the global mapping of the long-range interactions in
chromosome 19 (known to contain a rich network of multiple
enhancer and promoters) showed five distinct chromatin
domains enriched with “local” interactions from 20 kb to
hundreds of kb, while these domains were interconnected by
super long-distance interactions, indicating multiple and
complex layers of 3D chromatin organization in human CD4+

cells (84).
In conclusion, major architectural reorganization occurs

during various steps of B and T cell development, involving A/
B compartment switches, changes in intra-TAD interactions and
dynamic establishment or loss of chromatin contacts in cis and in
trans. Although many of these topological changes associate with
transcriptional activation or silencing, functional perturbations
will be critical for dissecting the temporal interconnections and
cause-and-effect relationships between the two processes.
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Notably, the various transitions during the step-wise B or T cell
development are characterized by different degrees of global
chromatin reorganization, with the most striking changes
coinciding with key checkpoint transitions, such as DN2-DN3
(39, 85). Whether this major topological rewiring is critical for
irreversible “locking” of cell identity or solely a consequence of
other major molecular and cellular changes, such as global
chromatin opening and increased proliferation capacity,
remains to be shown.
CHAPTER III: CHROMATIN
REORGANIZATION UPON
B/TCR ACTIVATION

One of the most interesting key features of lymphopoiesis
emerges from the multitude of transitions between resting and
proliferative phases during which lymphocytes modulate their
global transcription levels, metabolic activities and cytokine
production (86–90). These changes are also accompanied by
dramatic remodeling of chromatin accessibility and 3D
architecture along with a change of nuclear volume. Before
antigen encounter, both naive B and T cells constitute quiescent
populations endowed with a very dense and compacted chromatin
accompanied by long-range, intrachromosomal interactions (84,
91). Of note, in T cells this highly compacted chromatin state,
which is mediated by the condensin II complex, is also critical to
prevent premature or aberrant signal activation by blocking Stat5
access to its genomic targets (92). TCR activation leads to a rapid
and dramatic enlargement of the nuclei from 4-5mm diameter in
the murine naive CD4+ to 10-12 mm diameter in TH1 and TH2
cells, as shown by confocal and transmission electron microscopy
experiments in vitro (92–94). A similar massive nuclear expansion
accompanied by Myc- and ATP-dependent chromatin
decondensation is observed upon BCR activation of naive B cells
by IL4 and LPS, as observed by super resolution microscopy (95).
Additionally, 14C incorporation and micrococcal nuclease
(MNase) experiments demonstrated a concomitant global
increase of histone acetylation, chromatin accessibility and
transcriptional activity (88, 95) as well as a significant and
gradual DNA hypomethylation when profiling activated B cells
for whole genome bisulfite sequencing (WGBS) (96).

B Cells
GC B cells: Hi-C analysis on human B cells, revealed a multilayer
3D chromatin reorganization upon the transition from naive to
GC B cells including: an increased promoter connectivity and
enhancer interactivity, 5’ to 3’ GC gene looping and merging of
gene neighborhoods marked by active histone modifications
(97). Genomic regions with increased interactivity were
associated with dense binding of SPIB, PU.1 and EP300, the
role of which in 3D chromatin organization remains to be
elucidated. Loss of TAD boundaries were more frequent than
gains and led to the transformation of “Gene neighborhoods”
(30, 98) into larger and de novo “Gene cities” (97).
Frontiers in Immunology | www.frontiersin.org 7
One of the most striking examples of chromatin remodeling
and 3D rewiring during the GC transition occurs around the Bcl6
locus, which encodes for a master regulator of GC reaction. A
114 kb long, distal Bcl6 enhancer cluster, which functions as a
Locus Control Region (LCR), undergoes dramatic epigenetic
alternations, including chromatin opening, binding of critical
TFs and cofactors [such as OCT2 and OCA-B (99)], gain of
H3K27ac and increase in transcriptional activity. In parallel, the
LCR establishes a large number of de novo and strong
interactions with Bcl6 promoter and other nearby genes
forming a highly interacting hub. More specifically, OCA-B
was shown to directly recruits Mediators, bridging the BCL6
LCR to the BCL6 promoter in cis (99). Although the exact
organizational principles and regulatory properties of this hub
remain to be fully elucidated, deletion of the Bcl6 LCR in mice
resulted in the abrogation of the GC formation beyond the
regulation of Bcl6 per se (97).

A recent study demonstrated that in B cells, the naive to GC
transition is also characterized by compartmentalization changes
and the emergence of a new type of weak, Intermediate (I)
compartments, which allow for inter-compartment interactions.
I compartments in GC B cells arise from A or B compartments
and are enriched for the H3K27me3 mark, containing genes
repressed by the PRC (29).

Plasma cells: The GC transition to plasmablasts (and further
to long-lived plasma cells) is characterized by a major chromatin
reorganization harboring a typical cartwheel-like structure as
defined by Cajal and Marschalko (100). The silencing of Pax5
expression at this stage was proposed to be responsible for
overwriting the typical B cell transcriptional program and 3D
chromatin organization (60), although only minimal
compartment changes were identified. Indeed, plasma cells
have been shown to retain a high fraction of I compartments
(29), irreversibly locking the 3D chromatin organization.

A number of recent studies have started to shed light into the
extent and principles of 3D chromatin reorganization upon naive
B cell activation in vitro, using various stimuli and timepoints
after activation. Activation of murine naive B cells with IL-4 and
LPS for 24h led to very few changes in compartments and
boundaries, but showed a significant shift from long-range to
short-range interactions as demonstrated by in situ Hi-C and
ChIA-PET experiments (91). There was also a substantial
increase in the number and strength of CTCF-mediated E-P
loops and increased binding of cohesin at loop anchors (95).
Similarly, a recent study using a genome-wide tethered
chromosomal conformation capture analysis (TCC) on murine
LPS-activated plasmablasts (101), identified a higher number of
short intrachromosomal interactions (<10 Mb) in comparison to
naive B cells. Moreover, this study also described a number of
interchromosomal interactions that were preferentially enriched
for genes associated with the plasma cell fate such as Prdm1
and Xbp1.

More recently, a study tracked the dynamic transcriptional
and architectural changes from the very early time points after
LPS activation of murine naive B cells until their differentiation
into antibody-secreting plasma cells (102). The authors reported
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that early transcriptional changes (3hr post-activation) precede
genomic reorganization, suggesting either the pre-existence of a
permissive configuration with an instructive role of transcription
in 3D chromatin reorganization or a partial uncoupling of the
two processes. In situ Hi-C analysis uncovered two major waves
of 3D chromatin changes: before the first cell division (at late G1
phase) and upon plasmablast differentiation. As previously
reported, no major chromatin changes were uncovered at the
compartment nor at the TAD levels. Most changes involved
stage-specific loss or gain of long-range E-P interactions (<1 Mb)
around gene loci relevant for each transition, including Bcl6, Ell2
and Pax5. Intriguingly, conformational changes that occurred in
the first wave were largely preserved during clonal expansion
despite multiple rounds of mitosis, during which chromatin
architecture (including compartments, TADs and loops) is lost
(103, 104). This suggests that the B cell transcriptional program
and topology are faithfully reestablished during each division,
although the underlying mechanisms remains unclear. The
second wave of genome reorganization occurs during a
prolonged G1 phase linked to plasma cell differentiation,
highlighting the importance of this time window both for
architectural changes and cell fate decisions, as reported in
other systems (104–106).

Memory B cells: The dynamic changes in chromatin state and
conformation landscape that occurs upon B cell activation and
GC transition are largely reversible as cells progress to the
memory stage. The epigenetic landscape, transcriptome,
chromatin accessibility and 3D organization of quiescent
human naive and memory B cell populations are indeed
indistinguishable upon unsupervised clustering, nonetheless
clearly separated from GC and plasma mature B cells
populations (29). Most of I compartments defined in GC B
cells, switch back upon memory B cell transition to a
compartment organization similar to naive B cells, erasing this
layer of 3D organization imprint and allowing memory B-cells
priming for GC re-entry. In contrast to all of these multi-omics
characterizations, DNA methylation and H3K27me3 profiles
clearly separate memory from naive B cells, indicating that the
epigenetic state of memory B cells is only partially reversed to a
naive-like configuration. Together, these epigenetic and
topological features might be critical for the ability of memory
B cells to rapidly re-enter GC reaction and differentiate into
plasma cells upon secondary infection (107, 108).

T Cells
Multiple studies using 3D DNA-FISH and 3C assays described
various degrees of topological reorganization during T cell
activation and differentiation towards T helper lineages (TH1
or TH2). For example, specific genes encoding important
effectors and cytokines of the opposite lineage (e.g. c-Maf and
Il-4 in TH1 cells and Ifng in TH2 cells) have been reported to
relocate towards heterochromatic compartments (109, 110). This
subnuclear repositioning is linked to gene silencing, supporting
TH polarization and sub-lineage specification. Architectural
changes linked to upregulation of gene expression upon TCR
activation were also described early on. 3C experiments showed
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that binding of transcription factors STAT3 and NFATc2 factors
mediate E-P looping around the Il-21 locus (111), promoting the
transcriptional activation of this significant pleiotropic cytokine
that acts as a regulator of inflammation and immune responses.
Additionally, an extremely long-range intrachromosomal
interaction (~98.5 Mb) that brings the promoter of IfngR1
gene proximal to Ifng (master regulator of the TH1
differentiation) promoter and its downstream RE was observed
in murine CD4+ and TH1 cells. This interaction occurred in a
monoallelic fashion in agreement with the monoallelic
expression of these genes, while it was absent in TH2 cells,
where none of these genes are expressed (112). Finally, an
example of interchromosomal association has been
documented in murine CD4+ cells between the Th2 locus that
contains interleukin 4 (Il4), interleukin 5 (Il5) and interleukin 13
(Il13) genes located in a single gene cluster on chromosome 11
and the TH1 cytokine interferon gamma (INF-g) located on
chromosome 10. This physical interaction between these loci
presents a “poised” chromatin conformation and precedes the T
cell effector fate decisions. Upon TCR activation, select cytokine
genes dissociate from this hub in order to be expressed, enabling
polarization either towards the TH1 or the TH2 fate (72). In the
past years, several studies started revisiting the 3D chromatin
reorganization upon T cell activation using technologies that
allow quantitation on a genome-wide scale. A recent study in
human CD4+ reported that upon 24h of TCR activation, about
30% of long-range chromatin interactions undergo significant
changes, while compartments or TADs remain unaffected (113).
In agreement, another study combining ATAC-seq, in situ Hi-C
and RNA-seq in human CD4+ and CD8+ cells before and after in
vitro TCR stimulation for 72h, reported only minimal changes in
compartmentalization. Specifically, less than 4% of the genome
switched from A-to-B compartment along with their respective
transcriptional changes (114). However, the same study reported
significant differences at the sub-megabase level with the
emergence of new and stronger boundaries that partitioned
TADs into smaller and more numerous subdomains when
compared to naive T cells. Moreover, TCR activation led to
formation of de novo short-range chromatin loops, resulting in
increased intra-TAD connectivity in more than 60% of TADs in
both CD4+ and CD8+ cells. The establishment of new chromatin
contacts coincides with increased chromatin accessibility around
regions that contain binding motifs for transcription factors
related to T cell development and differentiation (114, 115).
On the other hand, the observed strengthening of TAD borders
was found to be coupled with reduced chromatin accessibility,
higher nucleosome occupancy and low levels of gene expression.
Importantly, this topological reorganization and transcriptional
reprogramming upon TCR activation was largely restricted to
genes relevant for immunity. The dynamic changes in the
chromatin interactions upon TCR activation were also recently
reported by several other groups, based on promoter capture Hi-
C (PCHi-C) and Trac-looping experiments, demonstrating that
these promoter interactomes were lineage-specific and associated
with target gene expression (116–118). All studies indicated
rewiring on E-P chromatin interactions, global changes in
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chromatin accessibility and histone modifications (H3K27ac,
H3K4me1, H3K4me3), when compared to naive T cells.

So far, only few studies on chromatin organization in T helper
cells have been reported. In 2017, two different reports
described the genome organization in murine TH2 and human
TH17 cells (38, 119). 3eHi-C experiments in murine TH2 cells
identified a total number of 1,363 TADs and CTCF binding sites
were found not only at the TAD borders but also interspersed on
enhancers within TADs. Knock-down of CTCF expression led to
significant downregulation and cell-to-cell variation of immune
related genes, while deletion of specific intra-TADs CTCF
binding sites led to compromised E-P interactions (38). These
experiments support an important role of CTCF in stabilizing E-
P contacts and controlling cell-to-cell fluctuations of gene
expression. The same study reported that within TADs, long
range E-P interactions mostly involved genes critical for immune
function and T cell activation, suggesting that transcription of
lineage-specific genes depends on physical communication with
distal enhancers, while housekeeping genes mostly rely on
proximal regulatory elements (38).

Comparison between four different subsets of T cells (bulk
CD4+, naive CD4+, TH17 and Tregs using either PCHi-C or
H3K27ac HiChIP) revealed cell type-specific loops upon
differentiation that might contribute to the unique identities
and functions of T cell subsets (119). Differentiation of naive
CD4+ cells into TH17 cells or regulatory T cells (Tregs) creates
subtype-specific E-P interactions between regions with similar
DNA accessibility as shown by H3K27ac HiChIP on primary
human T cells. Genes within cell-type-specific E-P loops encode
for canonical T cell subtype TF and effector molecules, further
supporting the potential regulatory impact and biological
significance of these interactions. Moreover, the anchors of
cell-type specific H3K27ac HiChIP loops enriched for binding
of TF known to drive T cell subtype differentiation, suggesting a
role of these TFs on the loop formation (119).

In conclusion, all abovementioned studies started unraveling
the principles of 3D reorganization during both T and B cell
lineage commitment and differentiation. In both lineages, major
structural changes in A/B compartments are observed, while
TAD size and numbers are largely conserved throughout the
process with the exception of B/TCR activation, which leads to
extensive TAD boundary alterations. Loss of boundaries causes
TAD fusion in GC cells whereas the acquisition of de novo and
stronger boundaries led to TAD partitioning in activated T cells.
Moreover, B and T cell activation is accompanied by an increase
of intra-TAD connectivity especially around genes relevant for
lymphoid identity and function. During B/T lymphocyte
development and differentiation, studies reported increased
long and short cis chromosomal interactions, while during T
cell development and TH polarization inter-chromosomal
interactions have also been observed and linked to transcriptional
changes around critical T cell regulatory genes. These trans
interactions, but also a large percentage of cis E-P loops in T cell
lineage are independent of CTCF binding, highlighting the need for
investigating other nuclear proteins and mechanisms for their roles
in shaping 3D genome folding in lymphocytes.
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CHAPTER IV: PRESUMED MECHANISMS
AND PLAYERS OF 3D CHROMATIN
REORGANIZATION DURING B/T
LYMPHOPOIESIS

In the previous chapters, we discussed the global and local 3D
chromatin conformation changes that occurs during lymphocyte
specification as well as activation and differentiation. What are
the forces and critical players that drive this topological rewiring?

There are several well-described mechanisms and
architectural factors that actively drive different layers of 3D
genomic organization, as extensively reviewed in multiple recent
papers (120–124). In mammalian cells, CTCF/Cohesin-mediated
loop extrusion (121, 125) is shown to be responsible for the
formation of most chromatin loops and TADs/subTADs, since
degradation of any of these architectural components causes
drastic changes in chromatin topology and variable -rather
moderate- effects on gene expression (126–130). On the other
hand, increased “self-attraction”/affinity among chromatin loci
with similar transcriptional and chromatin states, such as
homotypic histone modifications and TF/cofactors is
important for compartmental segregation and the emergence
of droplet-like, phase-separated, membraneless organelles, such
as nucleoli or nuclear speckles (131–134).

A large number of cell-type specific TFs (135, 136) and
transcriptional-cofactors (e.g. BRD4, PRC2, Pol II) (134, 137–
139) have been reported to form large nuclear condensates,
which may mediate activating or repressive chromatin contacts
and hubs in a loop-extrusion independent manner. Moreover,
TFs have been reported to mediate long-range chromatin
contacts through direct homodimerization (e.g. YY1) or
protein-protein interactions with other bona fide architectural
factors, such as cohesin or PRC2 components (120, 140–143).
Importantly, the expression and/or genomic distribution of
many of these critical factors (TFs and histone modifications)
change during B and T cell development and activation,
therefore they might contribute to the observed 3D
chromatin reorganization.

Below, we will discuss key findings that support the roles of
CTCF/cohesin and select TFs in stage-specific 3D architecture
during lymphopoiesis. Given that these mechanisms have been
recently reviewed elsewhere (VDJ and TF reviews) (144–146), we
will focus on two less appreciated proteins and structures
(histone linker and nuclear lamina) that play important roles
in the regulation of 3D nuclear organization of B and T cells.

CTCF/Cohesin-Mediated Loop Extrusion
The loop-extrusion mechanism describes the progression of
chromatin through the cohesin ring and the stabilization of
loops when the ring encounters convergent CTCF sites. In the
context of lymphocyte biology, CTCF/cohesin complex was
reported to mediate long-range chromatin interactions that
control stage-specific transcription of various cytokine and
other critical genes (Ifng, Il21, MHC-II etc.) during B/T
lymphocyte development and differentiation (111, 147–152).
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One of the most striking and well-studied examples of chromatin
looping through CTCF/cohesin extrusion is the V(D)J
recombination in developing B cells (66, 153–156). This ensures
recombination of any of the 113 VH segments with any of the 13
DH and 4 JH segments and thus, generation of an extremely diverse
repertoire of antigen receptors. This process, which has been
extensively reviewed recently (157, 158), occurs through a number
of highly regulated steps and loops, which are dependent on cohesin
factors and multiple CTCF binding sites (159, 160) resulting in a
remarkable contraction of the entire (~2.75 Mb) Igh locus (161).
Similar CTCF and cohesin-dependent loop extrusion mechanisms
mediate V(D)J recombination at the Tcr loci in T cells. The creation
of a developmentally regulated chromatin hub supports Va–Ja
synapsis and eventually leads to a successful V(D)J recombination
(156, 162, 163). Deletion of a specific CTCF binding site (named
EACBE), causes merging of the subTAD domains, reduction of
long-range chromosomal interactions between the Va and
Ja segments and leads to impaired Tcra rearrangement (164).

Genetic knock-out or protein degradation experiments in cell
lines and mouse models further support the critical roles of
CTCF and Cohesin in lymphocyte development. Specifically, it
was recently shown that CTCF is required for proper control of
the transcriptional program and high proliferation rate of GC B
cells and its depletion results in premature differentiation into
plasma cells (165). On the other hand, genetic ablation of Ctcf in
mouse thymocytes leads to cell cycle arrest, while deletion of
CTCF binding sites results in increased cell-to-cell variation of
gene expression, indicating a fundamental significance of these
long-range E-P interactions in stabilizing gene expression in
mammalian T cells (38, 166). CTCF/cohesin complex binding
is also highly enriched at enhancers and in particular “super-
enhancers” in murine thymocytes, mediating long-range
communication with target genes (167). In the same study, it
was also reported that cohesin facilitates enhancer clustering in
thymocytes, while its conditional deletion results in weakened
enhancer-enhancer interactions and downregulation of the
associated genes.

Interestingly, transcription and 3D chromatin organization
can also be maintained in a cohesin-independent manner.
Indeed, using PCHi-C in a CTCF or Cohesin auxin-inducible
degron (AID) system to assess the rewiring of promoter-
anchored loops, Thiecke et al. showed that while a majority of
promoter contacts are lost, a significant number of them are
actually constrained and maintained by TAD boundaries or even
gained. Cohesin-independent interactions were mainly centered
on active promoters or active promoters and enhancers but
remained affected by transcription modulation (168). These
results mirror the minimal impact of cohesin depletion on
enhancer activity and transcriptional control in steady state
conditions (126–129). Nonetheless, cohesins were shown to be
crucial for macrophage-induced inflammatory response of HSPC
(169) arguing for a role of these genome organizer in cell fate
transition. While genetic and epigenetic mechanisms enabling
cohesin-independent looping are not completely understood, the
role of several chromatin co-factors involved in phase
condensates such as mediators and Brd4 has been recently
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addressed. Using a SMASh tag degron system, El Khattabi
et al. were able to discriminate essential from non-essential
mediators in T and B lymphocytes based on their capacity to
affecting Pol ll recruitment to the chromatin (170). In situ Hi-C
and ChIA-PET profiling MED14-depleted B-cells demonstrated
that Mediator complex is largely dispensable for E-P looping.
Similarly, E-P loops are not drastically affected by the inhibition/
degradation of the chromatin insulator Brd4 nor by phase
condensate dissolution in a B-ALL cell line (73), conversely to
widespread transcription and chromatin decompaction.

Lineage-Specific Transcription Factors
Lymphopoiesis is controlled by a number of lineage-specific TFs,
which orchestrate stage-specific transcriptional and chromatin
alterations, including changes in chromatin accessibility, DNA
methylation, histone modifications, and ultimately 3D
chromatin organization. Critical lineage regulators, such as
Ebf1 in B cells (171, 172) and Tcf1 in T cells (173), have been
reported to act as pioneer factors capable of binding previously
inaccessible genomic regions and inducing local chromatin
opening. According to these studies, recruitment of epigenetic
modulators and cofactors will then lead to additional epigenetic
remodeling including erasure of repressive marks (e.g.
H3K27me3 and DNA methylation) and deposition of active
histone modification, which coincides with activation of
lineage-specific genes. In parallel with the TF-mediated
changes in chromatin accessibility, state and activity, a lot of
recent studies support functional links between TF binding and
3D chromatin reorganization during cell fate transitions, such as
reprogramming (45, 174), differentiation (175, 176), or
tumorigenesis (177) and started shedding light into the
temporal dynamics and underlying mechanisms. Protein
oligomerization and interactions with loop extruders or
nuclear landmarks (nuclear lamina) are some of the proposed
mechanisms by which TFs might mediate chromatin looping,
such as E-P interactions, as shown for example for YY1, KLF4
(45, 141, 178, 179). Alternatively, TFs might promote long-range
contacts by biomolecular condensation through low-affinity
multivalent interactions non-coding RNAs and other protein
factors (e.g. BRD4, p300 and Mediator complex) via their
intrinsically disordered regions (IDRs) (120, 180). Finally, TF
binding might indirectly contribute to 3D reorganization by
inducing changes in chromatin states and thus altering
compartmental segregation.

A large number of key lineage TF and protein cofactors in B/T
lymphocyte development have been proposed to mediate
chromatin reorganization and DNA looping as recently
reviewed (77, 145, 181–183), although functional validations
and mechanistic insights of their proposed architectural
function are often missing. Below, we discuss some of the best-
studied examples:

Special AT-rich binding protein 1 (SATB1) is a T cell
enriched transcription/epigenetic factor critical for thymocyte
development and differentiation. Multiple studies support the
role of SATB1 also as 3D genome organizer by mediating specific
chromatin loops, contributing to a complex protein scaffold that
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forms an “aromatic” or “cage like” structure, known as
“loopscape”. The loopscape circumscribes heterochromatin
away from euchromatin by tethering distant genomic loci into
its network, facilitating their coordinated transcriptional
regulation (184–187). The most well documented loopscape
example has been reported for the MHC locus, where SATB1
interacts with promyelocytic leukemia (PML) protein in order to
organize the locus into distinct higher-order chromatin-loop
domain structures. Silencing of either SATB1 or PML leads to
dynamic reorganization of chromatin loops affecting the
expression of the MHC class I genes (54). SATB1 was also
shown to play a critical role in the control of Tcra locus
rearrangements through RAG regulation (188). In DP thymocytes,
the highly expressed SATB1 binds to the anti-silencer element (Ase)
and to the distant Rag1 and Rag2 promoters, mediating the
formation of a chromatin hub. The latter facilitates RNA
polymerase II recruitment and leads to activation of Rag genes.
Genetic depletion of Satb1 leads to a reduction of RNA Pol II
recruitment and transcriptional activation, eventually causing a
defective V(D)J recombination during thymocyte development.
Additionally, in TH2 differentiated cells, SATB1 has been shown
to function as anchor for the formation of dense small loops around
the Th2 gene locus leading to the activation of all cytokine genes (Il4,
Il5 and Il13) that are harbored in the locus (185).

BCL11B is a zinc finger TF that function as a key
developmental regulator of cellular differentiation in the T-cell
lineage (39, 189–191). BCL11B is considered as a T cell-specific
genome organizer that maintains the T cell nucleome and
mediates the formation of DNA loops during thymic T cell
development. BCL11B is highly expressed upon DN2 to DN3
transition leading to de novo genomic E-P interactions. Deletion
of Bcl11b in CD4+ cells led to a decrease in E-P interactions
suggesting that even in late T-cell developmental stages the
topologically interacting DNA loops are BCL11B-mediated
(39). Although most of the studies have shown the role of
BCL11B during T cell development, few groups have also
documented its role in later stages of T cell differentiation.
BCL11B binds to RE of critical genes such as Il-4 (silencer),
Runx3 (enhancer) and Gata3 (promoter) during TH2 cells
differentiation. This binding facilitates and stabilizes the TH2
lineage fidelity indicating structural roles of this factor in the
regulatory loops/network upon T cell activation (192).

Yin Yang 1 (YY1) is known as a transcriptional activator or
repressor and contributes to chromosome organization through
mediating interactions between active E-P loops in several cell types
(141, 193). Genetic ablation of its binding sites or depletion of YY1
protein leads to disrupted loops and gene expression. YY1 has a
pivotal role during B cell development and lymphoma (194), with
the most well characterized chromatin loop example reported for
the Igh locus (195). 3D DNA FISH and 3C experiments showed
that YY1 controls the Ig class switch recombination, via bridging
the Igh intron with the 3′ regulatory region (3′RR) located at the
end of the Igh locus. Additionally, YY1-mediated loops have also
been reported for Th2 locus during TH2 differentiation, where YY1
knock down TH2 cells presented decreased intrachromosomal
interactions as shown by 3C experiments (196).
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Paired Box 5 (PAX5) is a TF that has a dual role in activating
the B cell program while preventing expression of non-B cell
genes (197). The role of Pax5 in maintaining global 3D genome
organization in B cells was recently investigated by a study that
combined Hi-C and Pax5 ChIP-seq profile of WT and Pax5-/-

Pro-B (60). While no major changes in compartmentalization
nor TAD numbers were uncovered in Pax5-/- pro-B cells, Pax5
loss associated with local chromatin reorganization
(strengthening or weakening of loops) at specific loci,
including the Igh locus, where Pax5 binds at distal VH regions.
This is in agreement with a previous study, which documented
that Pax5 deletion in pro-B leads to preferential usage of the 4 VH

segments, loss of long-range interactions within the Ig locus
TADs and overall abrogation of Igh locus organization (198).
Intriguingly, re-expression of Pax5 in Pax5-/- pro-B showed a
partial rescue of the observed topological changes, indicating that
this TF is necessary but not sufficient to establish and maintain
the genome organization in developing B cells. In further support
to this notion, Pax5 ectopic expression in T-cells, was insufficient
to induce Igh locus contraction. Intriguingly, restoration of
chromatin interactions in Pax5-rescued pro-B was not
impaired upon treatment with the RNA Pol ll inhibitor a-
amanitin, suggesting that the role of Pax5 in 3D organization
is largely independent of its function as transcriptional
regulator (198).

Linker Histones
Dynamic changes in chromatin state may also induce 3D
architectural changes either through the differential affinity
between homotypic or heterotypic histone modifications or
through protein-protein interactions among the recruited
epigenetic readers (121, 123, 129, 199, 200). Although,
literature has mainly focused on core histones and their
modifications, two recent studies started shedding light into
the role of H1 linker histones in local and global chromatin
architecture, in the context of B and T cell biology (201, 202).
Using a triple conditional knock out (cTKO) for Histone 1
isoforms c/d/e, Willcockson et al. specifically depleted H1 in
murine T-cells and uncovered a de-repression of T-cell
activation genes along with chromatin decompaction,
reminiscent of T-cell activation. Hi-C analysis of CD8+ cells
indicated that Histone 1 binding drives chromatin compaction
not only within B compartments, but also within a subset of A
compartments that are enriched for PRC2 binding. To which
extent the latter could represent I compartments, similar to the
ones described in activated B cells (29) remains to determined.
Loss of H1 either in B or T lymphocytes was also shown to
induce a profound reprogramming of epigenetic states with an
expansion of H3K36me2 deposition at the expense of
H3K27me3, suggesting that H1 binding plays an active role in
balancing these modifications (203). Deletion of H1c and H1e in
murine GC B cells conferred enhanced fitness and self-renewal,
while at the molecular level inducing large-scale, but focal,
chromatic decompaction and de-repression of stemness
signature gene (202). Accordingly, Hi-C analysis revealed
thousands of B-to-A compartment switches, which mostly
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represented expansion of A compartments, coinciding with
spreading of H3K36me2. The above studies unravel novel and
intricate functions of H1 linker histones in regulating 3D
chromatin organization, epigenetic states and transcriptional
activity that go beyond B/T cell biology (204).

Nuclear Lamina
Nuclear Lamina (NL) serves as a scaffolding deck for
heterochromatin, shaping chromatin compartmentalization
and regulating gene silencing (205). Alterations in the NL
compartment have been also reported upon lymphocyte
activation. As shown by early electron microscopy studies,
resting lymphocyte present a compact heterochromatin at the
nuclear periphery which dissociates upon activation and gene
expression (90, 206–208).

In lymphocytes, tethering of gene loci on NL and their
repositioning towards the nuclear center is considered as a
safety mechanism to prevent lymphocyte premature activation
or recombination (209–211). For example, localization of Ig loci
at the NL in pre-pro-B cells, prevents access by RAG proteins,
impeding premature V(D)J recombination, while their release
from the NL in pro-B cells constitutes a major event enabling B
cell fate and proper BCR expression (209). Moreover, while
proximal V, D and J sequences are released from the NL in
pro-B cells, distal V segments remain lamin-associated, ensuring
the spatiotemporal control of antibody repertoire diversity.
Relocalization from NL has also been shown in the context of
T cell activation. Upon TCR activation, T cell-specific genes and
their enhancers are repositioned from LAD-associated
subcompartments, to TAD-proximal subcompartments, although
they still remain in a proximity to the nuclear periphery <0.6 µm
(210). This “constrained release” mechanism contributes to a fast
transcriptional response upon T cell activation, that is lost when
specific T cell genes and enhancers relocate towards the permissive
perinuclear domains. Another example of repositioning from the
nuclear periphery in T cells was shown for the BCL11B genome
organizer (211). During thymic T cell development in DN2 cells, a
long non-coding RNA named thymocyte differentiation factor
(ThymoD) promotes the demethylation of CTCF bound sites and
activates cohesin-dependent looping to juxtapose the Bcl11b
enhancer and promoter into a single-loop domain leading to
Bcl11b expression (211).

Despite the strong association of nuclear periphery with
heterochromatin and gene silencing, there are a few relevant
and noteworthy exceptions of gene expression. 3D-immuno
DNA/RNA FISH experiments in plasma cells revealed that the
transcribed Igh, k and j genes (located on chromosomes 12, 6 and
5 respectively), are spatially clustered at the nuclear periphery
with RNA polymerase II transcription factories (212). These Ig
genes are not localized to the NL but close to nuclear pore and
reticulum endoplasmic, in support of the previously proposed
‘gene gating theory’ (213). This process has been suggested to
facilitate Ig mRNA export and maximize the antibody production
process. Active transcription at the nuclear periphery of
lymphocytes was also reported for immune-specific microRNA
genes (miR-181a1b1,miR-181a2b2,miR-181c,miR-142,miR-146a,
miR-17-92 and miR-155) during T cell development (93). These
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genes are located within the constitutive inter-LADs (ciLADs),
while their peripheral position is conserved throughout
development (from ESCs to thymocytes, CD4+ and TH cells).
Moreover, ChIP-seq analysis showed that microRNA genes are
occupied by NUP153/93 and DROSHA proteins, suggesting
spatial links among transcription, post-transcriptional processing
and nuclear export (93).

The importance of nuclear lamina for LAD organization
together with the strong association between LADs and B
compartments, argue for the potential function of NL for
proper chromatin compartmentalization. To address this
question, a recent study deleted Lamin B receptor (LBR-/-) in
thymocytes and tracked changes in nuclear organization by
imaging and compartmentalization by Hi-C analysis (214). As
expected, LBR-/- thymocytes presented an inverted nuclear
architecture with heterochromatin localized in the nuclear
center while euchromatin pushed towards the periphery.
However, despite this striking change in subnuclear organization,
the au thor s de t e c t ed on ly modera t e change s in
compartmentalization and TAD organization. This suggests that
NL is critical for the peripheral positioning of heterochromatic
regions but not involved in the spatial segregation between
heterochromatin and euchromatin (B and A compartments).

Taken together, the abovementioned reports support that
during lymphocyte development and activation several dynamic
chromatin changes take place at the NL compartment, controlling
the expression of immune-related genes. Lymphocyte nuclear
periphery is not exclusively linked to gene repression, but can
also function as a permissive microenvironment, that can host
either accessible chromatin regions and/or active genes that are
important for lymphocyte development and adaptive
immune responses.
CHAPTER V: ALTERATIONS OF THE 3D
CHROMATIN ORGANIZATION UPON
LYMPHOID TRANSFORMATION

Alterations that affect the function or levels of critical TFs and
epigenetic modulators are well-appreciated drivers of lymphoid
transformation by inducing a global dysregulation of the
transcriptional program and epigenetic landscape (215, 216).
Increasing evidence supports that perturbations of structural
proteins involved in 3D chromatin organization might also
play critical roles in lymphoid malignancies (217). The
development of advanced imaging and 3C techniques over the
past years combined with elegant genetic models allowed for a
better understanding of the extent of 3D chromatin
dysregulation during lymphoid malignancies and its potential
role in driving transformation (Table 1).

Lamin Dysregulation
One of the first nuclear organizers that were discovered to
promote lymphoid transformation were Lamin A/C.
Downregulation of type A Lamin genes by hypermethylation
of Lamin A/C promoters occurs in about 20% of B-cell Acute
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TABLE 1 | Overview of 3D chromatin alterations in lymphoid malignancies.

Lymphoid
malignancies

Structural
rearrangments
and mutations

3D chromatin layers alterations Molecular mechanisms References

Compartments
A/B and LADs

TAD (length, activity,
insulation)

Loops

B-ALL and
DLBCL

– Lamin A/C
downregulation

– – Promoter hypermethylation (218, 219) Nuclear
lamina

CLL and GC-
derived
lymphomas

– Lamin B1
downregulation

– – Unknown (no promoter
hypermethylation). Post-
transcriptional?

(220)

T-ALL Change in CTCF
binding site
accessibility

10% of switches TAD boundaries insulation
modulation in correlation with
CTCF binding and intra-TAD
activity changes

Notch-
dependent
E-P loops

MYC Proto-oncogene activation
(TAD Fusion at Myc locus due to
the loss of CTCF-mediated
insulation)

(221) CTCF and
cohesin

CTCF binding
alterations

– – CTCF-
mediated
loops

NOTCH-induced CTCF binding
gain associated with enhancer
activities

(222)

B-ALL CTCF deletion Not affected TAD boundaries disruption E-P loops MYC Proto-oncogene activation (223)
CTCF
downregulation
and mutations

– Reduction of TAD boundaries
insulation

– Aberrant E-P looping upon TAD
boundary insulation reduction

(224)

DLBCL SMC3 mutations – Reduction of TAD boundaries
insulation and increased inter-
TAD activity

Loss of E-P
loops

loss in E-P connectivity at
lymphoma-associated TSG

(225)

MM – – Increase of TAD boundaries
insulation and changes in intra-
TAD activity

– Increase CTCF peaks in NSD2High

cells contribute to the weakening
of compartment structure

(226)

DLBCL Histone 1 A to B switches No change in TAD boundaries
insulation but gain of intra-TAD
activity

Gain of E-P
loops for
stem cell
genes

Genome-wide decompaction
allowing for the abnormal
expression of stem cell genes in
GC B-cells

(227) Epigenetic
modifiers

DLBCL and
FL

Ezh2Y646X – – – TSG silencing in inactive TADs (228)

T-ALL BCL11B-TLX3
among others

Minor switches
(1.5%)

– – BCL11B enhancer hijacking (113) Enhancer
hijacking

B-ALL TCF3-HLF – – – MYC enhancer hijacking (229)
BCP-ALL FLT3 deletion – Loss of TAD boundaries – Switch of FLT3 enhancer (113)
Ph+ B-ALL GATA3 germline

variant
– – – CRLF2 enhancer hijacking (113)

MM IgH-CCND1 – – – Epigenomic translocation of
H3K4me3 broad domains
following super-enhancer hijacking

(230)

CLL/MCL – A to B switches
in CLL and B to
A switches in
MCL

– – Compartment switch leading to
the abrogation/increase of
interactions and RE in a disease-
specific manner

(29) Others

T-ALL – – – – TAL1 / LMO2 Proto-oncogene
activation

(231)

– – – Loss of E-P
loops

TAL1 Proto-oncogene activation (232)

DLBCL IgH-BCL6 – de novo TAD and TAD
boundaries loss

Loop
strength
unchanged

Gain of TAD structure of cancer-
related genes

(40)

MCL IgH-CCND1 – – – Perinucleolar relocalization of IgH-
CCND1 allele

(233)

– – – – NOTCH-mediated E-P
repositionning and formation of
3D-Cliques

(177)

MM – A to B (8%)
switches and B
to A (24%)
switches

25% increase in de novoTADs
(partitioning) and overlap with
CNV breakpoints

– CNV-mediated disruption of TAD
boundaries affecting MM-related
pathways and key genes
expression.

(234)
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Lymphoblastic Leukemia (B-ALL) and 35% of Diffuse Large B-
cell Lymphomas (DLBCL) patients and are associated to poor
prognosis (218, 219). Although the loss of A/C lamin was
hypothesized to contribute to genomic instability and
aneuploidy by preventing proper cytokinesis (235), defects on
3D chromatin organization cannot be excluded. Lamin B1,
which maintains the Igh V genomic segments within the
repressive heterochromatin in naive B cells, has also been
shown to be involved in B-cell malignancies (220). Its transient
downregulation has been reported to be necessary for the GC
reaction and more particularly for Igh V transcription and
somatic hypermutation (SHM) upon antigen encounter. In
comparison to normal human reactive lymph nodes, Lamin B1
expression has been documented to be further decreased and
permanently locked in primary GC derived B-cell lymphoma
and in transformed Follicular Lymphoma (FL). Together, these
reports support a role for lamins and LADs dysregulation in the
initiation and the progression of lymphoid malignancies beyond
genomic instability.

Compartment Switches
A/B-compartment switching has been identified in T and B cell
malignancies, albeit the functional and biological consequences
of these alterations remain to be determined, in a cell-specific
and context-dependent manner. A recent study comparing
Chronic Lymphocytic Leukemia (CLL) and Mantle Cell
Lymphoma (MCL) patient samples to normal B cells reported
that about 25% of the genome undergoes compartmental
changes (29). These switches were mostly associated to a global
inactivation (A to B) in CLL and activation (B to A) in MCL,
suggesting that while similar cellular transformation
mechanisms might be in place for these neoplasms supposedly
originating from memory and naive B cells, disease-specific 3D
chromatin topology alterations might be uncovered (29). When
comparing CLL to naive B cells, the EBF1 locus was associated
with a shift from A to I compartment along with a drastic loss of
enhancer activity and weakening of E-P interaction, consistent
with the low expression of the EBF1 gene as a diagnostic marker
in CLL. A similar study comparing T-cell Acute Lymphoblastic
Leukemia (T-ALL) genome to normal peripheral T-cells revealed
that about 10% of the genome experienced compartmental
changes which were subtype-specific (221).

Changes in TAD Activity and
Boundary Insulation
Common TAD alterations in cancer include TAD fusions or
splits due to the loss or de novo establishment of TAD
boundaries, respectively (236). These changes have been
associated with downregulation of Tumor Suppressor Genes
(TSG) or overexpression of oncogenes within TADs. About
10% of TAD boundaries changed upon T-cell transformation
to T-ALL, with more than half of these changes associated with
altered CTCF binding (221). At the global level, this study
demonstrated a correlation between increased intra-TAD
activity and transcriptional upregulation as well as higher
boundary insulation enriched with CTCF and Notch binding.
Frontiers in Immunology | www.frontiersin.org 14
Conversely, weakening of TAD boundaries and downregulation
of proximal genes was recently described in hyper-diploid B-ALL
patients which usually present lower CTCF expression (224).

Using a low-input Hi-C method, Diaz et al. were able to
profile chromatin interactions in primary DLBCL cells in
comparison to peripheral B cells. This analysis uncovered >600
regions with altered interaction patterns and 6% of these
corresponded to de novo patients-specific TADs. Furthermore,
some of these neo-TADs were located around cancer related
genes such as TP63 or TPRG1 in the vicinity of BCL6 locus (40)
although both the driving mechanisms and functional
consequences of these reorganization remain to be tested.
Similarly, the Hi-C analysis in DLBCL cell lines with gain of
function Ezh2 mutation (Ezh2Y646F) could not identify major
topological changes compared to Ezh2WT cells but only focal
effects on selected TADs (228). Increased deposition of
H3K27me3 occurred predominantly around regions that were
already decorated by this mark, arguing for a possible spreading
mechanism rather than de novo establishment. Along with
increased levels of H3K27me3, the authors identified
transcriptional downregulation of multiple TSG such as
FOXO3 and ARMC2 within “inactive” TADs due to loss of
promoter interactions (228).

Enhancer-Promoter Rewiring
3D chromatin changes that directly affect E-P communication of
tumor suppressor genes or proto-oncogenes have been
extensively described in hematological malignancies (236, 237).
The MYC oncogene is a critical regulator of NOTCH1-mediated
T-ALL. A long-range interaction between Myc promoter and its
distal (~1.4 Mb) Notch1-bound enhancer (N-Me) occurs
transiently during T-cell development, specifically at DN3 and
DN4 stage, to support Notch-Myc driven growth. More than
60% of T-ALL patients show constitutive activation of the
NOTCH pathway and aberrant upregulation of Myc
expression, partly mediated through the re-establishment of N-
Me/Myc contact, as confirmed by conditional deletion of N-Me
in mice (238). Another study in T-ALL, identified a recurrent
TAD fusion around theMyc locus along with a major increase in
inter-TAD interactions upon the loss of Notch/CTCF-mediated
insulation as shown by 4C-seq and functionally validated by 3D
DNA-FISH (221). The role of NOTCH1 in aberrant 3D
chromatin reorganization has been also reported in B cell
lymphoma, where NOTCH1 mediates spatial clusters of long-
range E-P interactions forming hyperconnected “3D cliques”,
which include crucial protooncogenes (177).

Mechanisms for 3D Reorganization
in Cancer
Genetic or epigenetic alterations that affect the function or
binding of genome organizers is the most common mechanism
which induces local or global topological changes during
malignant transformation. Heterozygous, loss-of-function
mutations of key architectural factors, such as CTCF and
various subunits of the cohesin complex, are frequently
detected in myeloid (239–241) and lymphoblastic leukemia
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(242, 243). Initially it was proposed that cohesinopathies, could
be involved in tumorigenesis by the induction of genomic
instability (244). While this hypothesis remains plausible, most
of blood malignancies demonstrate limited aneuploidy arguing
for additional mechanisms.

A recent study, using a conditional knock out (cKO) mouse
model showed that haploinsufficiency of the cohesion subunit
Smc3 in GC B cells, leads to GC hyperplasia and impairs plasma
cell differentiation (225). Hi-C analysis revealed an overall
reduction of TAD boundaries insulation resulting in increased
inter-TAD associations. More importantly, there was a
significant reduction of intra-TAD interactions in Smc3-
haploinsufficient GCs, which correlated with transcriptional
downregulation of implicated genes. The most dramatic loss in
connectivity occurred around enhancers and promoters,
especially around lymphoma-associated TSG, such Dusp4,
Zeb2 and others.

In addition to genetic alterations of architectural factors,
epigenetic changes might also affect binding and/or function of
these proteins and perturb loop extrusion. Indeed, CTCF binding
is sensitive to cytosine methylation within the CTCF-binding
elements (CBE) (160). Given that global methylation alterations
frequently occur in T and B-cell malignancies due to TET2,
DNMT3A and IDH2 mutations (245–247), it is reasonable to
expect changes in CTCF binding and thus, in TAD boundary
insulation. Mutations on CBE elements may also affect CTCF
binding and local chromatin conformation (162) and could
possibly function as cancer drivers (248). Surprisingly, loss of
CTCF binding at specific TAD boundaries and CBE in T-ALL is
neither associated with somatic mutations nor is accompanied by
increased DNA methylation but rather with a localized reduced
chromatin accessibility (221). This new paradigm of alteration of
looping machinery organizer remains to be further investigated
in other immune related diseases and malignancies as well.

Chromosomal rearrangements originating from double
strand breaks (DSBs) are frequent in lymphoid malignancies
and do not constitute a stochastic process, as intrachromosomal
segments are more frequently targeted compared to
interchromosomal ones in B cells (249, 250). Integration of
Hi-C profiling and DSB induction by etoposide in B cells
demonstrated that TAD boundaries are enriched for CTCF/
cohesin while topoisomerase II complexes are hotspots for
genomic rearrangements (251). The chimeric TF TCF3-HLF,
which confers treatment resistance in ALL was recently shown
to act as a pioneer factor that aberrantly activates a distal Myc
enhancer and mediates interaction with the its promoter and
therefore its overexpression (229). While this chimeric TF seems
to interact with ETS factors to regulate enhancer function, it was
also shown to physically form a complex with multiple chromatin
organizers such as CTCF and YY1 as well as with the histone
acetyltransferase p300 (EP300). Indeed, TCF3-HLF deletion leads
to a reduction of EP300 mediated H3K27ac deposition at TCF3-
HLF binding sites. In agreement, in vivo treatment with JQ1 and
A-485 inhibitors caused reduced BRD recruitment on enhancers
and downregulation of Myc expression, indicating p300 or BRD
proteins as potential therapeutic target for ALL.
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Finally, deletions at 13q12.2 in B-Cell Precursor Acute
Lymphoblastic Leukemia (BCP-ALL) lead to the loss of TAD
boundaries and gain/rewiring of E-P loops sustaining the
expression of the common leukemia driver FLT3 (252).
Similarly, de novo long-range interactions enabling the
expression of the protooncogenes TAL1 and LMO2 (231) have
been documented in T-ALL, posing the disruption of insulated
neighborhoods as a new paradigm in lymphoid transformation.

Reversibility of Chromatin Alterations and
Therapeutic Strategies
Chromatin conformation techniques have been proposed to
serve as novel diagnostic tools by looking at the emergence of
translocations, copy number alterations (CNA) and new
regulatory loops or subtypes within human B-cell malignancies
(253). Theoretically, DNMTi (5-azacytidine and decitabine)
treatment for patients presenting a hypermethylated genome
along with TET, IDH1/2 or DNMT3A mutations, could have
therapeutic potential by restoring CTCF binding to CBE. While
this treatment is increasingly used in clinic (254), the effects on
CTCF binding and 3D chromatin organization have widely not
been investigated. However, a recent study in T-ALL cell lines
treated with 5-azacytidine showed no restoration of CTCF
binding, challenging this therapeutic opportunity (221).

Clinical trials assessing another inhibitor targeting the
catalytic activity of Ezh2 (255), was sufficient to re-activate the
expression of multiple tumor suppressor genes (such as FOXO3,
SESN1, and ARMC2) and restore the connectivity of the
respective TADs in Ezh2Y646F mutated B-cell lymphoma cells,
without inducing other changes of the chromatin
compartmentalization into TADs (228). Finally, treatment of
T-ALL cell lines with NOTCH1 inhibitor g-secretase (g-SI) led to
loss of H3K27ac from select (sensitive) enhancers, without
affecting intra-TAD activity nor TAD boundary insulation.
However, treatments with the CDK7 inhibitor THZ1 was able
to reduce the activity of Myc distal enhancers as well as their
interaction with Myc promoter and restore the original TAD
structure within theMyc locus, which remain unaltered upon gSI
treatment (221).
DISCUSSION

Over the last decades, multiples studies have shed light into the
principles, mechanisms and biological significance of 3D
chromatin reorganization occurring upon lymphopoiesis.
Although these studies offered snapshots of specific stages and
transitions, many pieces in the 3D puzzle of lymphopoiesis are
still missing due to technical difficulties to capture and/or
characterize transient and dynamic subpopulations.

How is 3D genomic architecture reorganized throughout
lymphopoiesis and upon immune response and how does it
associate with transcriptional changes? Application and further
improvement of single-cell multi-omics technologies (such as
scHi-C (115, 256), HiCAR (257), GAM (258), scRNA/ATAC
May 2021 | Volume 12 | Article 669881

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Scourzic et al. 3D Chromatin Organization Driving Lymphopoiesis
(259) etc.) at high-resolution, will enable the construction of
complete 3D lymphopoietic molecular roadmaps. It will provide
a better understanding of the temporal interconnections between
3D organization, chromatin state, transcription and cell fate.
This will also enable the precise 3D chromatin mapping of
specific developmental stages that have not been investigated
so far (e.g. memory B cells). As recently described for CTCF loss
in murine B cells, special attention should be paid to cytokine-
mediated ex vivo activation, as an alternative to the in vivo
characterization and isolation. As shown in B cells, CD40
activation mimics the in vivo CTCF loss sensitivity on the
contrary to IL-4/LPS treatment (165).

The recent development of CRISPR-(d)Cas9 (260), Degron
(127) and super-resolution live imaging technologies allowed
inducible spatiotemporal perturbation of cellular processes
(including transcription and cell cycle modulation) and
genome organizers function. Using such approaches, will
enable to decipher in a more definitive and quantitative
manner the extent to which 3D chromatin organization and
transcriptional activity are functionally interconnected during
lymphopoiesis. As we discussed above, a large number of 3D
organization players have been suggested to mediate E-P loops
and to be involved in compartment, hyperconnected TAD or
hubs. However, most of the studies provide associations and not
direct experimental evidence for the architectural roles of these
factors and the underlying mechanisms.

Which factors and processes are critical for building or
maintaining 3D chromatin organization at different stages of
B/T lymphopoiesis? An answer to this question might be
provided through the involvement of the non-coding RNAs,
which are increasingly appreciated as chromatin mediators in
various systems (261). Given that a large number of non-coding
RNAs are expressed in the immune system and specifically
during lymphopoiesis (211, 262), they could possibly be
considered as good candidates controlling local chromatin
topology and distal interactions. Hence, further investigations
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towards this direction should be conducted. Although the phase
separation mechanism has only recently been introduced in
other cell types, 3D nuclear architecture studies in this
direction, during lymphocyte development and activation
could shed more lights on understanding the regulatory
landscapes and their correlation with gene expression
alterations and diseases (263, 264). Identifying the mediators
and the principles of 3D chromatin reorganization that ensures
proper lymphocyte development and differentiation, is critical to
determine their potential alterations in lymphoid malignancies.
Targeting specific architectural dysregulations (such as enhancer
hijacking, cliques, etc.) that take place upon lymphoid
transformations, might in the future open avenues to the
development of novel therapeutic strategies.
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