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Abstract: Hyperalphalipoproteinemia (HALP) is a lipid disorder characterized by elevated plasma
high-density lipoprotein cholesterol (HDL-C) levels above the 90th percentile of the distribution of
HDL-C values in the general population. Secondary non-genetic factors such as drugs, pregnancy,
alcohol intake, and liver diseases might induce HDL increases. Primary forms of HALP are caused
by mutations in the genes coding for cholesteryl ester transfer protein (CETP), hepatic lipase (HL),
apolipoprotein C-III (apo C-III), scavenger receptor class B type I (SR-BI) and endothelial lipase
(EL). However, in the last decades, genome-wide association studies (GWAS) have also suggested a
polygenic inheritance of hyperalphalipoproteinemia. Epidemiological studies have suggested that
HDL-C is inversely correlated with cardiovascular (CV) risk, but recent Mendelian randomization
data have shown a lack of atheroprotective causal effects of HDL-C. This review will focus on primary
forms of HALP, the role of polygenic inheritance on HDL-C, associated risk for cardiovascular
diseases and possible treatment options.
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1. Introduction

Hyperalphalipoproteinemia (HALP) is a condition characterized by elevated plasma
high-density lipoprotein cholesterol (HDL-C) levels > 90th percentile of the distribution of
HDL-C values in the general population [1], associated or not with overt clinical manifesta-
tions and predisposition to atherosclerotic coronary artery disease (CAD) [2]. Plasma total
cholesterol (TC) levels may be increased, while very low-density lipoproteins (VLDL) and
low-density lipoproteins (LDL) are often in the normal range. HALP is classified as moder-
ate (HDL-C levels between 80 and 100 mg/dl) and severe (HDL-C levels > 100 mg/dl) [2].
HALP is the hallmark of primary hyperalphalipoproteinemia, a heterogeneous genetic
lipoprotein disorder, usually transmitted as a co-dominant trait, due to mutations in known
candidate genes or to other genes yet to be identified (“orphan” primary HALP). Mutations
in the genes coding for cholesteryl ester transfer protein (CETP), hepatic lipase (LIPC),
and apolipoprotein C-III (APOC3) are known causes of primary HALP [1]. The patho-
physiology of other forms of HALP is not well characterized, and it is still unknown if the
increased production or reduced catabolism of HDL are the cause of this lipid disorder [1].
Epidemiological studies have demonstrated a strong inverse relationship between low
HDL-C levels and risk for developing atherosclerotic cardiovascular disease (ASCVD) [3,4].
On the other hand, Mendelian randomization studies have failed in demonstrating a causal
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relationship between HDL-C and ASCVD [5]. Low plasma HDL-C levels strongly correlate
with high CV risk, but genetically determined low HDL-C levels are not associated with
an increased risk for ASCVD, suggesting that low HDL-C levels per se are not a cause of
cardiovascular diseases [5,6]. Epidemiological studies have shown contradictory results on
the relationship between high HDL levels and CV risk in subjects with primary HALP [7,8].
Several mechanisms may play a role in explaining this phenomenon, including HDL
function in reverse cholesterol transport (RCT) [9]. Besides the major involvement in RCT,
HDLs exert several anti-inflammatory effects that may prevent endothelial dysfunction [10],
which is considered one of the first events in atherogenesis [11].

2. HDLs Physiology

HDLs are characterized by a heterogenous sub-population of lipoprotein particles,
which undergo remodeling and transformation processes mediated by several plasma en-
zymes and transcription factors [12]. The main HDL-associated apolipoprotein is apolipopro-
tein AI (apoA-I), a protein of 243 amino acids [13] which is synthesized by the liver and
intestine and represents the principal structural component of HDLs. Schematic repre-
sentation of the biogenesis of HDL is illustrated in Figure 1. HDL particles are involved
in the so-called “reverse cholesterol transport (RCT)”, a pivotal pathway involved in the
return of excess cholesterol from peripheral tissues to the liver for excretion in the bile and
eventually in the feces. RCT from macrophages in atherosclerotic plaques (macrophage
RCT) is a critical mechanism of the antiatherogenicity of high-density lipoproteins (HDLs)
(Figure 2) [14–20]. Besides their major role in promoting cell cholesterol efflux and reverse
cholesterol transport, HDLs may exert atheroprotective activity by preventing endothelial
dysfunction [10], a key step in the development of atherosclerosis. HDL downregulates
cytokine-induced expression of cell adhesion molecules (CAMs) [10] and increases en-
dothelial nitric oxide synthase (eNOS) expression and activation [21], NO release, and
bioavailability [22]. HDLs induce the production of NO by increasing the endothelial
nitric oxide synthase (eNOS) activity, thus improving the endothelial function [23,24].
Besides the antioxidative properties of apoA-I, the HDL accessory protein—paraoxonase 1
(PON1)—may exert an important role in determining the antioxidative capacity of HDL
particles, and is implicated in reverse cholesterol transport and atheroprotective effects [25].
In addition, HDLs together with ABCA1 and ABCG1 may play an anti-atherogenic role
by inhibiting hematopoietic stem cell (HSC) proliferation and suppressing macrophage
activation, thus decreasing inflammatory responses [26].

Although in this review we will mainly focus on the primary familial causes of
HALP, it is worth mentioning that several conditions are known to be associated with
elevated HDL-C levels. Patients with secondary HALP tend to be asymptomatic, aside
from some rare reported cases of juvenile or premature corneal opacities [27] or multiple
symmetric lipomatosis [28], and are characterized by high levels of HDL-C and a low
incidence of CVD [29]. Lifestyle factors include vigorous and sustained aerobic exercise,
regular and substantial alcohol consumption, and weight loss, and the increase in HDL-C
levels may be mainly attributed to CETP and/or HL inhibition [30–32]. HDL-C levels
are known to be higher in women than in men, and estrogens play an important role in
this phenomenon [30,33]. In users of combination oral contraceptives, the rising effect of
estrogen is partly counter-regulated by the presence of added progestin such levonorgestrel,
which exerts an androgenic effect by decreasing the Apo-AI synthesis and increasing LPL
activity [34]. In uncomplicated pregnancy, especially over the second and third trimester,
women may exhibit an increase in HDL-C levels due to a reduction in CETP activity (33).
The liver is one of the main sites for HDL catabolism [35], and in some chronic conditions,
such as biliary cirrhosis, HDLs may accumulate in the bloodstream because of a defect in
their catabolism giving rise to secondary HALP [35]. Several classes of commonly used
drugs in clinical practice exert effects both on HDL levels and functions through various
mechanisms. Among them are anti-inflammatory medication (NSAIDs, corticosteroids,
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methotrexate, sulfasalazine, hydroxychloroquine or biologics) [36–38] and lipid-lowering
drugs (statins, fibrates, and niacin) [39].
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Figure 2. Schematic representation of the Reverse Cholesterol Transport (RCT) mechanism. In 

the RCT process, the ApoA-I receives the cholesterol from the foam cells (macrophages) through 

the ATP-binding cassette transporter member 1 (ABCA1) (1), leading HDL to become mature in a 

mechanism mediated by the transporter ABCG1 (2). The Lecitin:cholesterol acyltransferase (LCAT) 

(3) esterifies the free cholesterol (FC) thus contributing to form mature and spherical HDLs formed 

of a cholesteryl ester (CE) core. Finally, HDLs bind to the scavenger receptor class B type-1 (SR-B1) 

in the liver (4) and are selectively removed from the blood stream. 

Although in this review we will mainly focus on the primary familial causes of 

HALP, it is worth mentioning that several conditions are known to be associated with 

Figure 1. Schematic representation of the biogenesis of HDL. The first step in HDL biogenesis
begins with the secretion of Apo-A1 by the liver and the intestine. The lipid-poor Apo-A1 then
interacts with ABCA1 and progressively gains phospholipids (PL) and free cholesterol (FC) from the
cells. The lipidated apoA-I is gradually converted to discoidal particles composed of unesterified
cholesterol. Then, the enzyme lecithin/cholesterol acyltransferase (LCAT) esterifies the FC and
the discoidal HDLs are finally converted to spherical HDL particles containing Apo-A1, Apo-E or
Apo-A4: secondary causes of hyperalphalipoproteinemia.
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Figure 2. Schematic representation of the Reverse Cholesterol Transport (RCT) mechanism. In the
RCT process, the ApoA-I receives the cholesterol from the foam cells (macrophages) through the ATP-
binding cassette transporter member 1 (ABCA1) (1), leading HDL to become mature in a mechanism
mediated by the transporter ABCG1 (2). The Lecitin:cholesterol acyltransferase (LCAT) (3) esterifies
the free cholesterol (FC) thus contributing to form mature and spherical HDLs formed of a cholesteryl
ester (CE) core. Finally, HDLs bind to the scavenger receptor class B type-1 (SR-B1) in the liver (4)
and are selectively removed from the blood stream.
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3. Primary Causes of HALP
3.1. CETP Deficiency

The CETP gene maps on the long arm of chromosome 16 (16q12-16q21); it comprises
16 exons [40] and encodes for a glycosilated plasma protein which catalyze the exchange of
triglycerides (TGs) and cholesteryl esters (CEs) among lipoprotein particle cores [41,42]. In
more detail, it mediates the transport of CE from HDL to VLDL/chylomicrons and TG from
VLDL/chylomicrons to HDL and low-density lipoproteins (LDL) [41,43], thus regulating
HDL-C plasma levels. The genetic epidemiology of HALP is mostly based on studies
performed in Japan, the country with the highest known prevalence of primary HALP and
where CETP deficiency was first described in 1985 [44–46]. Since then, several cases of
CETP deficiency due to mutations of the CETP gene have been reported in the Japanese
population, and it has been shown that in subjects with moderate and severe HALP,
the prevalence of CETP deficiency is ~60% and ~31%, respectively [47,48]. According to
Japanese epidemiological data, 27.6% of Japanese subjects with HDL cholesterol > 60 mg/dl,
and 31.4–32.5% of those with HDL-cholesterol > 80 mg/dl are carriers of CETP gene
mutations [49]. Three CETP gene mutations account for most cases among the Japanese:
intron 14 G (+1) > A (Int14A) splicing defect (1–2%), exon 15 missense mutation (D442G) (14)
(6–7%) and the nonsense mutation G309X [50,51]. CETP deficiency is quite common in other
Asian populations (mostly Chinese, Siberians and Thai) [52], and with this observation a
founders’ effect might be hypothesized [52]. However, this genetic defect is rare in other
ethnic groups, even though some studies have reported sporadic cases of CETP deficiency
in the United States [53], Italy, Greece and the Netherlands [54–57]. Resequencing of the
CETP gene in White Americans and Black Africans allowed the identification of rare
variants (allele frequency < 0.01), which may explain the extremely high HDL-C phenotype
in both groups [58]. The loss-of-function CETP protein results in significantly elevated
HDL-C levels in homozygotes (usually > 100 mg/dL), in whom CETP mass and/or activity
is not detectable in plasma [33,47] and moderately elevated HDL-C levels in heterozygotes
with a CETP mass half of that compared to healthy controls [33,47]. The lack of CETP
activity is responsible for the accumulation of CE in HDLs that becomes larger (>11 nm);
on the other hand, LDL-C levels tend to be low and LDL particles are rich in triglycerides
and polydisperse with a subpopulation of small LDLs [1,2,45,48,59,60]. Moreover, in CETP-
deficient subjects, HDL size correlates inversely with the CETP mass and activity, and
HDLs are larger not only in normal subjects but also in patients with other forms of
HALP [61]. This key biochemical feature in CETP deficiency influences HDL functional
properties and may help to discriminate the CETP deficiency from other genetic causes of
HALP [62,63]. In addition, the LDL particles in CETP deficiency [60] are compositionally
altered and display a low affinity for LDL receptor and may be atherogenic [60]. Plasma
apolipoproteins AI, CIII and E are increased while apoB is normal or decreased [63]. Even
though CETP deficiency is associated with high HDL-C and decreased LDL-C, its role
in atherosclerotic cardiovascular diseases has been controversial. In an early observation
by Inazu et al., 10 subjects with very HDL-C levels due to complete CETP deficiency,
belonging to five unrelated families, did not have any premature atherosclerotic diseases,
and two families displayed a trend toward longevity [64]. In the Honolulu Heart Program,
3469 Japanese male subjects, carriers of two different CETP gene mutations, were evaluated
for correlations between CETP deficiency, HDL-C levels and cardiovascular diseases [7]. It
was found that male heterozygous carriers of CETP gene mutations with low or slightly
increased HDL-C levels (1.0–1.6 mmol/L) exhibited a higher cardiovascular risk than
non-carriers matched for gender and HDL-C levels [7]. On the other hand, males with
considerably elevated HDL-C levels (>1.6 mmol/L), regardless of the CETP gene status,
had a low frequency of cardiovascular disease (coronary heart disease) [7]. Furthermore,
analysis of cardiovascular outcomes in a Japanese cohort of 19,044 males and 29,487 females
showed that subjects with both markedly elevated and mild-to-moderate HDL-C levels
experienced fewer cardiovascular diseases independently of the status of the CETP gene
mutation carrier [65]. To date, the correlation between CETP and cardiovascular diseases
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is still controversial, as is its role on longer life expectancy. Further studies are needed to
clarify these observations [66,67].

3.2. Hepatic Lipase and APO-CIII Deficiency

HL deficiency is another cause of monogenic HALP. Hepatic lipase (HL) is a heparan-
sulfate proteoglycan (HSPG)-bound lipolytic enzyme synthesized and secreted by hep-
atocytes. It is encoded by the LIPC gene mapping on chromosome 15 [68], and it is
involved in HDL and triglyceride metabolism [69–74]. Single-nucleotide polymorphisms
(SNPs) of LIPC may be pro-atherogenic, whereas others induce an anti-atherogenic pheno-
type [69,75,76]. This different role of LIPC SNPs is influenced by secondary influences such
as environmental, lifestyle and hormonal factors [77]. HL deficiency may increase the HDL
size and their functions in the RCT process, thus increasing the risk of premature cardiovas-
cular diseases [72]. To date, only a few case reports of families with primary HALP caused
by a genetically defined HL deficiency have been described [78–82]. Polymorphisms in the
HL gene promoter act as modifiers of HDL-C levels, but the moderate increase in HDL
induced by these polymorphisms cannot explain the high HDL levels observed in primary
HALP. APO-CIII. Apolipoprotein CIII (Apo-CIII) is a small apolipoprotein synthesized
mainly in the liver and regulates plasma TG homeostasis by inhibiting lipoprotein lipase
(LPL) activity [83]. Apo-CIII plays an important role in HDL metabolism as well as in
TG physiology. Loss of function of APO-CIII gene mutation carriers exhibits 39% lower
plasma TG levels, 22% higher plasma HDL-C levels, 16% lower plasma LDL-C levels, and
reduction in CVD risk [84,85]. Two novel loss-of-function mutations which affect the splice
site of the APOC3 gene (c.13-2A > G and c.55+1G > A) have been identified and associ-
ated with plasma HDL-C levels above the 95th percentile and an atheroprotective lipid
profile [86]. A missense APOCIII variant (Lys58 > Glu) in heterozygosity was described in
two women with hyperalphalipoproteinemia [87].

3.3. Scavenger Receptor Class B Type I (SR-BI)

The scavenger receptor class B type I (SR-BI), encoded by the SCARB1 gene, is primar-
ily expressed in the steroidogenic tissues and in the liver, where it acts as an important
receptor for HDLs and controls selective uptake of the cholesterol esters by HDL [88]. SR-BI
is involved in the bi-directional transfer of esterified cholesterol between cells and HDL [89].
SR-BI knock-out mice exhibited a twofold increase in HDL-C plasma levels, accelerated
atherosclerosis, impairment of liver cholesterol transfer [90], and adrenal glucocorticoid-
mediated stress response [91]. SCARB1 rare point mutations associated with a decreased
SR-BI protein expression and function have been identified in subjects with high plasma
HDL-C levels in humans [92–94]. However, despite the high plasma HDL-C concentration,
carriers exhibit an increased risk of CVD due to the impaired RCT pathway caused by
the reduced hepatic SR-BI function [95–97]. Carriers of the P376L mutation have been
shown to have a 79% higher risk of CHD, as compared to non-carriers. Vergeer M. et al. re-
sequenced SCARB1 genes in subjects with high HDL-C levels (>70.4 mg/dl to 1.8 mmol/L)
and identified a family carrying the missense mutation P297S, which co-segregated with
high HDL-C levels, decreased the cholesterol efflux from macrophages, increased platelet
dysfunction, and reduced adrenal steroidogenesis [94], although without significant impact
on atherosclerosis [94]. Yang X. et al. have described the association of SCARB1 variants
resulting in a decreased function of SR-B1 in the binding/intracellular transport of Lp(a)
associated with a peculiar, combined lipid phenotype characterized by elevated HDL-C
and Lp(a) levels [98].

3.4. Endothelial Lipase (EL)

Endothelial lipase (EL) is mostly involved in HDL phospholipid hydrolysis [99]
through a mechanism independent from the dissociation of lipid-free/lipid-poor apoA-
I [100]. EL is coded by the LIPG gene and it is expressed mainly in endothelial cells [99],
but also in other several tissues including the liver, lungs, placenta, thyroid, kidney, and
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macrophages [99]. EL, together with hepatic lipase (HL), exerts a negative regulation
in HDL metabolism and modulates the cholesterol efflux capacity (CEC) of serum and
isolated HDL [101,102]. Experiments in EL and HL knock-out mice have shown that these
two lipases affect the RCT process and promote the HDL antioxidant properties [102].
Carriers of loss-of-function variants of EL have a reduced lipolytic activity [103] and a
lipid phenotype characterized by an increase in HDL-C plasma levels with large HDL
particles [100,101,104]. Further studies are needed to evaluate the role of loss-of-function
variants and if reduced EL activity might be cardioprotective [105].

3.5. Polygenic Causes of Hyperalphalipoproteinemia

Several polymorphisms of the CETP gene with a reduction in CETP activity have been
associated with HDL-C levels in the general population [106]. TaqIB is a silent base change
affecting a nucleotide at position 277 on the first intron of the CETP gene and represents
a common polymorphism associated to increased HDL cholesterol plasma levels and to
a slight reduction in cardiovascular risk [107]. Some CETP genotypes correlate with a
mild reduction in CETP activity, a marginal HDL-C increase, and an inverse association
with coronary artery disease [108]. The variation in CETP activity is much better explained
by using a haplotype model consisting of TaqIB and four other polymorphisms in the
CETP gene [109]. Different studies (the Framingham Offspring Study, the Veterans Affair
HDL-c Intervention Trial and the WOSCOPS) have confirmed the association of CETP
and a low CV risk in males [110–112], as has the AtheroGene Study, which, by evaluating
1211 patients with coronary artery disease (CAD) on follow-up, has demonstrated an
association of the A allele of the CETP-629 variant with a reduced CV lethality [113].
Another haplotype analysis demonstrated a correlation between the -2505 CETP variant
and HDL metabolism and CV risk [114]. Interestingly, a study performed in southern
China (Hainan) has shown a correlation between CETP polymorphisms and longevity:
TaqIB and the variant I405V were combined and analyzed in a group of centenarians
matched with controls [115], and it was found that the alleles B1 and V contributed to a
protective role on longevity in this cohort of subjects. In the last decade, genome-wide
association studies (GWAS) have suggested a more complex polygenic inheritance of HDL
plasma levels [116]. Beside the known candidate genes of primary HALP, other genes
(such APOA1, LCAT, APOA4, APOE, PLTP and PON1) involved in HDL metabolism have
been reported to modulate HDL-C plasma levels [117–119]. Although several genes have
been discovered to be associated with HDL metabolism, to date, only a small percentage
of this genetic variability can be explained and their effects on HDL phenotypes should
be further investigated and probably related to environmental factors [120,121]. Further
genetic variants will be identified; therefore, it will be possible to predict, through an allelic
risk score, subjects at high cardiovascular risk and possible strategies for prevention [122].

3.6. HALP and Cardiovascular Risk

Following the seminal data provided by Gofman J.W. et al. [123] and the Framingham
study [124], several studies have confirmed the inverse relationship between HDL-C
plasma levels and coronary heart disease (CHD), suggesting an atheroprotective role of
HDLs [125–127]. Furthermore, some studies have reported a positive correlation between
elevated HDL-C and longevity [128]. The Long-Life Family Study (LLFS) has demonstrated
that subjects with high HDL-C are healthier in terms of CV outcomes [129]; a study on aging
male veterans revealed that elevated HDL-C correlates with longer life expectancy [128].
However, recent findings provided by Mendelian randomization studies support the
hypothesis that some genetic mechanisms that raise plasma HDL cholesterol do not seem
to lower risk of myocardial infarction [5,6]. These data may question the concept that
HALP and/or the pharmacological raising of plasma HDL cholesterol will translate into
atheroprotection and a reduction in risk of myocardial infarction [130]. For example, in
statin clinical trials, ApoAI was inversely related to low CV risk, whereas HDL-C was
not [131]. In addition, in the JUPITER trial of treatment with the high-intensity statin
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rosuvastatin, HDL-C was not a predictive factor of residual CV risk [132]. In LDL receptor
KO mice, naturally lacking CETP, the expression and overexpression of CETP led to an
atherogenic phenotype [133]. On the other hand, inhibition of CETP activity in rabbits leads
to a condition mimicking the human primary HALP due to CETP deficiency with a striking
HDL increase (about 90%) and antiatherogenic effects. Targeting the SR-B1 gene in mice
increases HDL-C levels but is associated with accelerated atherosclerosis [133]. In brief,
in animal models, the targeting of different HDL metabolism-related genes produces the
same HDL-C increase but may induce atherogenic or atheroprotective effects based on the
metabolic scenario and on the role that the different genes play in the specific biochemical
pathway. In humans, HALP due to CETP deficiency represents a unique setting in which
the high HDL-C and cardiovascular disease relationship has been studied. In Japan, CETP-
deficient patients with HDL-C levels > 80 mg/dl do not seem to be protected against
atherosclerotic vascular disease [7]. A recent hypothesis raised the focus on a dysfunctional
RCT process which might increase the plasma HDL-free cholesterol (HDL-FC) level [16].
Thus, HDL-FC levels may represent a valuable biomarker independent of HDL-cholesteryl
ester (HDL-CE and TC to assess cardiovascular risk, progression of ASCVD and response
to lipid lowering treatments). HALP subjects exhibit higher levels of HDL-FC, and the
plasma efflux capacity is lower than in those with normal HDL-C [16]. This process, which
regulates FC bioavailability, could exert potentially toxic and pro-atherogenic properties
on several tissues, including the artery wall, thus increasing the risk of atherosclerosis [16].
The RCT model was supported by several large studies which have revealed an inverse
correlation between macrophage cholesterol efflux to plasma HDL and ASCVD [18]. In the
Copenhagen City Heart Study and in the Copenhagen General Population Study, two large
prospective population-based studies, a U-shaped association between HDL plasma levels
and overall and cardiovascular mortality has been observed in both males and females,
with a more pronounced risk of all-cause mortality in men [134,135]. The lowest frequency
of CV events was observed for HDL-C levels close to 58 mg/dl (1.5 mmol/L) for men and
77 mg/dl (2.0 mmol/L) for women, and no further CV protection was evidenced with HDL-
C plasma levels higher than these cut-offs [134]. Moreover, in the Copenhagen City Heart
Study, it was demonstrated that two CETP polymorphisms were correlated with a reduced
cardiovascular risk as well as longevity [136]. Similarly, in the CANHEART (Cardiovascular
Health in Ambulatory Care Research Team) study [137] and in the study by Bowe et al. [138],
increases in CV disease at HDL-C levels > 90 mg/dl (2.3 mmol/L) and > 90th percentile,
respectively, were associated with increased hazard risk for mortality [138]. In summary,
low HDL-C remains a significant factor for increased disease risk, whereas high HDL-C
levels are not associated with cardioprotection, and this should prompt a re-evaluation of
high HDL-C cutoffs in CVD risk calculations [136,137]. It has been hypothesized that this
paradox could be the result of larger and dysfunctional HDL particles that might remain
entrapped in the arterial intima, thus promoting cholesterol deposition and atherosclerosis
progression in subjects with extremely high HDL-C levels [139].

3.7. Pharmacological Targets to Increase HDL-C

The concept that targeting HDL-C may be advantageous in terms of CV risk reduction
has been taken into consideration for decades as an important treatment strategy. Niacin is
a potent HDL-C-raising drug, seemingly an attractive approach to reduce cardiac events in
patients with or at risk of atherosclerotic cardiovascular disease [140]. However, over the
years, several clinical trials have failed to demonstrate benefits in terms of cardiovascular
endpoints [141–145]. Table 1 shows a schematic view of the major niacin-based trials and
their effects on HDL-C and on CV outcomes [144–153]. Fibrates have been used over the
years to increase HDL-C, and their effects were evaluated in several clinical trials (the most
representative are the FIELD—Fenofibrate Intervention and Event Lowering in Diabetes;
ACCORD—Action to Control Cardiovascular Risk in Diabetes; VA-HIT—Veterans Admin-
istration HDL Intervention Trial, and the HHS—Helsinki Heart Study), although have
failed in showing a significant CV risk decrease despite an HDL-C increase [142]. Statins
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have shown a consistent effect on HDL-C increases, and several trials have demonstrated
this property. Among these, the VOYAGER study has evaluated the role of rosuvastatin
(5–40 mg), atorvastatin (10–80 mg) and simvastatin (10–80 mg) in HDL-C increases, which
were elevated as well associated with LDL-C decreases [154].

Table 1. Major niacin-based trials and their effects on HDL-C and on CV risk.

Clinical Trial Description Effect on HDL-C and CV Outcomes Reference

AIM-HIGH
3414 subjects were treated with niacin or

placebo on top of high-intensity
statin treatment

The niacin-treated arm showed a modest but
significant HDL-C increase (25% vs. 12%) but

no benefits in terms of cardiovascular
outcomes. The trial was stopped earlier

due to futility of results.

[144]

HPS2-THRIVE

25673 subjects affected by vascular diseases
were randomized to receive extended-release
niacin + laropiprant (to reduce the flushing
side-effect of niacin) or placebo both on top

of statin therapy

After a follow up mean of 3.9 year, the
niacin-treated group showed a modest but

significant HDL-C increase (6 mg/dl), but no
difference in the incidence of CV events.

[145]

Niacin Study Group
Males with metabolic syndrome (obese,

hypertriglyceridemic, non-diabetic) and low
HDL-C levels received niacin for 8 weeks

A decrease in LDL-C and total cholesterol
associated to a reduction in inflammation,

cell-adhesion and proliferation biomarkers.
No significant change of CV events.

[146]

Coronary Drug
Project (CDP)

8 341 Males after myocardial infarction
treated with niacin or clofibrate vs. placebo

HDL-C increase, LDL-C and TG decrease.
No significant change of CV events. [147]

ARBITER-2
167 patients with Coronary Artery Disease

were treated with ER-niacin 1 g/day vs.
placebo on top of stable statin therapy

HDL-C increase by 21%. Progression of cIMT
in the niacin group [148]

ARBITER-6

208 patients (≥30 years) with CAD or
equivalent of CAD risk were treated with

ER-niacin vs. ezetimibe on top of
statin therapy

HDL-C increase in ER-Niacin group; reduced
incidence of cardiovascular events by 5% in

ER-Niacin group vs. 1% in EZE-group
[149]

AFREGS

143 patients (<76 years) with low HDL-C and
coronary disease were treated with Niacin
0.25–3 g gemfibrozil 1.2 g cholestyramine

2 g vs. placebo

HDL-C increase by 36%; 13.7% decrease of
combined cardiovascular events.

No significant data.
[150]

CLAS 162 Males after CABG treated with Niacin
3–12 g/day + colestipol 30 g/day vs. placebo

HDL-C increase by 31%; TC decrease by
15–20% and LDL-C decrease by 43%;
atherosclerotic regression in 16.2% of

patients at 2 years and 17.9% at 4 years,
compared with 2.4% and 6.4%, respectively,

in the placebo group

[151]

Stockholm trial 558 patients after MI, aged <70 treated with
Clofibrate 2×1 g + niacin 3×1 g vs. placebo

TC decrease by 26%; TG decrease by 30%;
nonfatal Miocardial Iinfarction

decrease by 50%
[152]

HATS

160 patients with CAD and low HDL-C
distributed in 4 arms and treated with:
Group A: simvastatin 10–20 mg/d plus
niacin 2–4 g/d; Group B: antioxidant;

Group C: simvastatin + niacin + antioxidant;
Group D: placebo

LDL-C decrease by 42%; HDL-C increase by
26%; regression of severe coronary stenosis

by 0.4% vs. placebo; 88% decrease of CV
events (coronary death, MI or stroke,

or revascularization)

[153]

AIM-HIGH (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglyceride and Impact on Global Health
Outcomes); HPS2-THRIVE (Heart Protection Study 2—Treatment of HDL to Reduce the Incidence of Vascular Events); CDP (Coronary
Drug Project); ARBITER-2 (Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol); ARBITER-6 (Arterial
Biology for the Investigation of the Treatment Effects of Reducing Cholesterol-6-HDL); AFREGS (Armed Forces Regression Study); CLAS
(The Cholesterol Lowering Atherosclerosis Study); HATS (HDL-Atherosclerosis Treatment Study). ER-niacin: extended release-niacin; cIMT:
carotid intima-media thickness; CABG: coronary artery bypass graft surgery; TC: total cholesterol; TG: triglyceride; HDL-C: high-density
lipoprotein cholesterol; LDL-C: low-density lipoprotein Cholesterol; CAD: coronary artery disease; MI: myocardial infarction.
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4. CETP Inhibitors

CETP inhibitors have been proposed over the years to raise HDL-C plasma levels,
although clinical trials have failed to prove their hypothesized positive effects [155,156].
Among these, torcetrapib was the first CETP inhibitor developed to treat hypercholes-
terolemia and prevent atherosclerotic cardiovascular diseases. Although torcetrapib was
effective in raising HDL-C and ApoA-I and reducing LDL-C with and without an added
statin [156], phase 3 trials failed to demonstrate effects on atherosclerosis burden and
cardiovascular deaths (RADIANCE and ILLUMINATE trials) [157,158]. Moreover, because
of an excess of overall mortality and cardiovascular events, the development of torce-
trapib was halted [156]. The excess deaths and adverse cardiovascular events in patients
taking torcetrapib have been attributed to off-target effects independent from CETP inhi-
bition [156,159]. Other potent and selective inhibitors of CETP have been developed and
tested in clinical trials (such as dalcetrapib, anacetrapib, and evacetrapib). Although these
drugs were effective in increasing HDL-C and reducing LDL-C without torcetrapib-like
off-target liabilities, they failed to impact cardiovascular risk and outcomes [160–162].
Moreover, meta-analysis based on clinical trials carried out with niacin, statins, fibrates
and CETP inhibitors have exhibited no decreases in CV mortality [160,163].

5. Future Directions

Clinical trials are investigating the role of new targets to evaluate cardioprotection by
increasing specific HDL-C subclasses or improving HDL functions [164]. Reconstituted
HDL (rHDL) therapies, including an HDL mimetic molecule (CER-001), an apoAI deriva-
tive (CSL112), and a recombinant human LCAT (ACP-501) together with the antibodies
anti-apoAI (anti-ApoAI IgG) could represent the basis for the development of targets
focused on HDL3 sub-class (functionally superior to HDL2) increases, or based on the HDL
functions, improvements rather than necessarily increasing HDL-C which has already been
tested without any encouraging results [161,162].

6. Conclusions

In summary, primary HALP is a heterogenous genetic lipid disorder and some
pathogenic mechanisms are still not completely understood. The supposed protective
role of HDL on CV risk have been extensively evaluated over the years, and several studies
have shown that different mechanisms based on HDL-C increases by enhancing both
the cholesterol efflux and the cholesterol esterification are not definitely anti-atherogenic.
Moreover, the different metabolic scenarios and specific biochemical pathways governed
by the numerous HDL-related genes need further studies in order to clarify in which way
a similar HDL-C increase may induce atherogenic or athero-protective effects. New func-
tional assays would be necessary to measure the HDL quality in a validated, reproducible
and cost-effective manner to better understand the mechanisms related to cardiovascu-
lar protection.
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