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Abstract Malaria forecasts from dynamical systems have never been attempted at the health district
or local clinic catchment scale, and so their usefulness for public health preparedness and response at the
local level is fundamentally unknown. A pilot preoperational forecasting system is introduced in which the
European Centre for Medium Range Weather Forecasts ensemble prediction system and seasonal climate
forecasts of temperature and rainfall are used to drive the uncalibrated dynamical malaria model VECTRI
to predict anomalies in transmission intensity 4 months ahead. It is demonstrated that the system has
statistically significant skill at a number of sentinel sites in Uganda with high-quality data. Skill is also
found at approximately 50% of the Ugandan health districts despite inherent uncertainties of unconfirmed
health reports. A cost-loss economic analysis at three example sentinel sites indicates that the forecast
system can have a positive economic benefit across a broad range of intermediate cost-loss ratios and
frequency of transmission anomalies. We argue that such an analysis is a necessary first step in the
attempt to translate climate-driven malaria information to policy-relevant decisions.

Plain Language Summary The malaria parasite and its mosquito vector are both weather
sensitive, with temperature impacting development rates and mortality, and rainfall providing mosquito
breeding sites. We take advantage of these effects to provide forecasts of malaria transmission intensity up
to 4 months ahead, using a state-of-the-art climate prediction system to drive a mathematical model of the
parasite/vector cycle. The system is evaluated to have skill in Uganda at the district and local clinic scale,
a first for subnational forecasts. We then perform an economic analysis to show at which range of decision
entry points and anomalous transmission events the system has positive benefit, necessary for integration
into decision-making processes.

1. Introduction

Timely availability of information is key for effective decision making in any sector. The ability to reliably
predict the transmission of malaria for the season ahead sufficiently far in advance would be of significant
benefit to health planners in Africa (Hay et al., 2001; Thomson & Connor, 2001; Thomson et al., 2005; Cox &
Abeku, 2007). The lag between the rainy season and the peak of malaria transmission implies that monitor-
ing weather conditions can provide warning of anomalous malaria transmission 1 to 2 months in advance,
resulting in calls to improve climate monitoring capacity in Africa for health applications (Thomson
et al., 2014).

Numerous studies have investigated the potential of climate surveillance (Abeku et al., 2004; Ceccato et al.,
2007; Grover-Kopec et al., 2005; Ototo et al., 2011; Worrall et al., 2008) although to date there has been limited
progress in sustainably operationalizing such approaches into health systems (Thomson et al., 2014). This is
partly due to the challenge of effectively integrating climate into existing health planning procedures. While
referring to longer timescales of climate change, many of the issues highlighted by Campbell-Lendrum et al.
(2015) are also valid for shorter seasonal planning timescales, notably the lack of high-quality, multidecade
health data sets with which to develop and evaluate climate-driven planning systems, the potential mis-
match of scales between climate information and the local decision process, the lack of relative effective
decision support tools to marry climate-driven information with the decision process and a general lack
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of a framework to effectively communicate model system uncertainties to end users (see also Tompkins
& Thomson, 2018). Moreover, the 1-month advance warning provided by the monitoring of climate may
be too short, limiting the scope to implement or modify cost-effective, preemptive actions (Checchi et al.,
2006) such as sending out indoor residual spraying teams to identified vulnerable areas. DaSilva et al. (2004)
emphasize that this latter shortcoming could be addressed by incorporating information from reliable sea-
sonal climate forecasts that provide predictions of climate variables (such as temperature and precipitation)
from 6 to 13 months ahead. If proven skillful, these could be used to increase the advance warning time
for impending outbreaks. The present work limits the scope of the predictions to an advance warning (lead
time) of 4 months, since previous research has shown that this is likely the upper limit for skillful prediction
for the present generation of seasonal prediction systems (particularly for precipitation, e.g., Ogutu et al.,
2017; Shukla et al., 2016), while noting that this time frame may still be inadequate for some operational
decisions.

The uptake of seasonal climate predictions in malaria-related health planning has been hampered by sev-
eral knowledge bottlenecks. Historically, prediction at seasonal timescales was reliant on statistical models
of seasonal anomalies based on regional sea surface temperature anomalies (Mason et al., 1996; Mutai et al.,
1998), and forecast skill of rainfall and temperature in the tropics from dynamical systems was limited to the
very short range of at most a few days (Vitart, 2014), thus preventing longer range, skillful, climate-based
prediction of outbreaks. At the same time, spatial disease modeling systems that accounted for climate were
statistical in nature and relied on accurate and long-term health data records. The quality, consistency, and
availability of subnational level health data for malaria was often inadequate for the training and subse-
quent evaluation of disease prediction systems (Thomson et al., 2014). Paper-based surveillance systems
and limited confirmation of suspected cases through microscopy or diagnostic test kits lead to large health
data uncertainties that compound those deriving from the use of imperfect climate and malaria modeling
systems. The first demonstration of climate forecasts for malaria prediction used dynamical climate fore-
cast models to drive a statistical model for national malaria cases in Botswana (Thomson et al., 2005). To
date, there has been no demonstration of malaria early warning from dynamical modeling systems at the
subnational, health district scale.

Scientific and surveillance advances are reducing the barriers to the development of dynamical disease pre-
diction systems. Case confirmation through rapid diagnostic test kits, while still not universal, has increased
substantially (Zhao et al., 2012), while many countries in Africa now have digital-based health surveillance
systems in place (Chaulagai et al., 2005). In tandem, weather forecasting techniques and order-of-magnitude
increases in the use of satellite monitoring of the atmosphere have improved climate forecasting skill (Bauer
et al., 2015). Mathematical dynamical disease modeling systems that account for climate have been devel-
oped and can be applied to model seasonal and interannual spatial changes in malaria hazard (Hoshen &
Morse, 2004; Laneri et al., 2010; Lunde et al., 2013; Tompkins & Ermert, 2013). Recent theoretical studies
have used climate forecast information to drive such dynamical disease models to demonstrate the potential
predictability of malaria over regional scales (Jones & Morse, 2010, 2012; Tompkins & Di Giuseppe, 2015),
with the caveat that no validation was made for the presented systems with actual health data. One example
of an early warning system evaluated with monthly case data aggregated at the national scale for Botswana
has been presented by MacLeod et al. (2015), consisting of a dynamical malaria model driven by monthly
and seasonal forecasts. The forecasts were statistically skillful, while highlighting the considerable number
of outbreak false alarms (MacLeod et al., 2015).

Here we present the first subnational evaluation of a spatially distributed, climate-driven, malaria early
warning system built (MEWS) with dynamical modeling systems. The system is evaluated using high-quality
sentinel site and regional health district data in Uganda, and it is demonstrated that the system can pre-
dict which seasons may have enhanced transmission up to 4 months in advance. Our key finding is that,
despite the use of an imperfect forecast system verified with imperfect health data, a threshold has now been
superseded whereby the system skill may translate into positive economic value for decision making.

2. Methods

Technical details of the MEWS are given in Tompkins and Di Giuseppe (2015) and in supporting information
S1-S3. Briefly, the early warning system consists of dynamical malaria model that models the parasite sexual
reproduction in the human host in a classic compartmental susceptible-exposed-infected-recovered model,
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Figure 1. Standardized anomaly of the detrended observed total malaria cases (C,) at the Jinja, Kanungu, and

Mubende Sentinel sites (red line) compared to the standardized anomaly of the detrended cases proxy (C,,) from the

forecast ensemble, with the black line showing the ensemble mean and the gray shading the range (minimum and

maximum) of the five-member forecast ensemble members. In the left-hand column, each point of the forecast time
series is a forecast started 1 month prior to the observation and thus give an early warning of 1 month (lead 1), while

the right-hand column shows a forecast started 4 months ahead (lead 4). EIR = entomological inoculation rate.
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Table 1
Spearman Rank Correlation Coefficient at Jinja, Kanungu, and Mubende
Sentinel Sites as a Function of Forecast Lead Time From 1 to 4 Months

Sentinel site Lead 1 m Lead 2 m Lead 3m Lead 4 m

Apac 0.56 0.29 0.55 0.39
Jinja 0.75 0.66 0.80 0.78
Kanungu 0.87 0.14 0.69 0.63
Mubende 0.39 0.57 0.51 0.62
Tororo 0.73 0.33 0.63 0.46

Note. Statistically significant values are in bold.

coupled to a model for the vector life cycle and the parasite sporogonic cycle, which account for climate
variations. The climate conditions are provided by monthly weather and seasonal climate forecasts with one
forecast ensemble made per month for the years 1994 to 2013. The ensemble of five forecasts sample chaotic
uncertainty of the atmosphere and account for weather forecast model and analysis system uncertainties.

This version of the MEWS predicts the entomological inoculation rate (the number of infectious bites
received per person per unit time), the human bite rate, the detectable parasite ratio, and the vector density,
and the entomological inoculation rate is used to generate a proxy for total cases off-line. To focus on the
skill at predicted interannual variability, all series are detrended prior to analysis and monthly standardized
anomalies of both the model proxy and the observed cases (detailed next) are calculated. The skill is then
classified using the Spearman’s rank correlation score between the modeled and observed series of standard-
ized anomalies, with the forecasts classed as skillful if the correlation value for the period for which data are
available is significant at the 95% level.

In Uganda, high-quality, laboratory total confirmed case data from six sentinel sites distributed throughout
across the country are available for the period 2006-2013 (Sserwanga et al., 2011). Of these, Kabale has an
altitude of 2,000 m and has mean temperatures below the 18 ° C threshold required for sustained transmis-
sion in the model, while the other five sites (Apac, Jinja, Kanungu, Mubende, and Tororo) range between
1,000 and 1,320 m. We mainly focus on Jinja, Kanungu, and Mubende as the three highest altitude sites
above 1,100 m where climate variability is expected to be more important for driving interannual variability
in malaria transmission (Alonso et al., 2011; Haque et al., 2010; Ototo et al., 2011; Zhou et al., 2004). In addi-
tion to the sentinel sites, monthly totals of suspected malaria cases obtained from the Ministry of Health of
Uganda and aggregated at the administrative district level are used for a period of approximately 10 years. For
details of the forecast system, observations, and evaluation method, refer to the supporting information S1.

3. Results

The predictions of transmission anomaly compared to the actual measured anomaly in malaria cases is
shown for the three focus sites of Jinja, Kanungu, and Mubende (Figure 1). The panels show information that
would be available to a decision maker 1 month (lead 1) and 4 months (lead 4) in advance. The shaded region
shows the span of the five-member forecast ensemble, an indication of the forecasts uncertainty related to
the climate forecasts but does not include the uncertainty of the malaria model or the initial conditions (see
discussion in the supporting information and Tompkins & Thomson, 2018). The uncertainty due to climate
increases with lead time; hence, its range is much larger for the 4-month lead time predictions. This is also
emphasized in Table 1, which shows the rank correlation skill score for all five sites as a function of the
forecast lead time. The system is skillful at most forecast lead times for all five sites, but the skill does not
decrease monotonically as a function of lead time. This is an artifact of the relatively short validation period,
constrained by the availability of health data.

The comparison shows that the MEWS is able to predict the seasonal trends in case anomalies at the sentinel
sites, with the 2010 identified as a year of anomalous transmission, likely associated with the occurrence of
a medium strength El Nind event, which would produce anomalously warm temperatures and can some-
times increase rainfall if associated with warmer seas in the Indian Ocean (Lindblade et al., 1999). From
the two high altitude sentinel sites (i.e., Kanungu and Mubende), the model performance is superior in
Kanungu, with the higher transmission in 2012 at Mubende underestimated. The early warning system is
able to predict the secondary maximum that occurs in 2012 in Mubende and Kanungu in the highlands

TOMPKINS ET AL.

61



. Yed § ]

ADVANCING EARTH
NCE

‘AND SPACE it

GeoHealth 10.1029/2018GH000157

1.0

0.8

0.6

0.4

0.2

0.0

Figure 2. Map of Uganda showing the Spearman's rank correlations for districts for which the model forecast system
has statistically significant skill relative to the suspected malaria district data obtained from the Ministry of Health.

and yet also predicts the single period of enhanced cases at the lower-altitude Jinja site. This indicates that
the system has the potential to predict differences occurring at a subnational scale, likely driven by rainfall
spatial heterogeneity.

The forecasts are also validated using the suspected malaria case surveillance time series obtained from the
Ministry of Health of Uganda and aggregated at the district level, and it is found that the system is skillful
in approximately half of the districts (Figure 2). While the districts that are skillful include many of the
higher-altitude locations in the east and south west, there is no obvious characteristic that determines the
skillful districts, which also include districts where malaria is highly endemic.

The cost-loss analysis of relative economic value V of the MEWS is conducted using the monthly anomalies
for the three focus sentinel sites (Figure 3) and shows that the system has positive value for a range of
intermediate cost-loss ratios bounded by 0 or negative value at very low or high cost-loss ratios. As the event
threshold becomes rarer, the system has value at lower cost-loss ratios, seen in the diagonal slant of the
area of positive economic value, and for a decreasing range of cost-loss ranges. Kanungu has a wider range
of decision entry points and cost-loss ratios for which the system has positive economic benefit relative to
Mubende, for which the system only has benefit for thresholds below approximately 0.85, corresponding to a
1in 7-month event, and for cost-loss ratios of 0.15 to 0.3. At Jinja, the range of economic value is limited. Note
that an upper quintile event as calculated here is not precisely equivalent to the definition of an epidemic
by the World Health Organization field handbook on malaria epidemiology (Hook, 2004), since the latter is
defined in terms of a seasonal anomaly, whereas the present calculation is based on monthly anomalies.

4. Discussion

The forecasting system has demonstrable skill in predicting temporal variations in malaria cases, although
the analysis is necessarily limited by the temporal length of data available. This is the first time that a
dynamical early warning system for malaria has been shown to have demonstrable skill at the subnational
scale using monthly real time series of epidemiological surveillance data. For context, previous studies
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Figure 3. Relative economic value V of using the forecast system at a 4-month lead time at Jinja, Kanungu, and Mubende, using a range of cost-loss (C/L)
ratios (x axis) and percentile threshold of the monthly standardized transmission anomaly (y axis). For example, a percentile fraction of 0.66 corresponds to
higher transmission anomaly that is expected to occur 1 in 3 months, while 0.8 refers to a 1 in 5 standardized anomaly. Refer to supporting information S1 for

full outline of analysis method.

have quantitatively compared their malaria forecasts against national annually averaged malaria indices
(MacLeod et al., 2015) or qualitatively against subnational annual Plasmodiumfalciparum prevalence data
(Lauderdale et al., 2014).

The skill was demonstrated for high-quality confirmed sentinel site cases as well as for approximately half
of health districts. It is emphasized that the district malaria data are affected by many factors in addition to
climate variability, including population mobility, changes in land use, and systematic increases in preven-
tative interventions. In addition, we suspect that a key factor is that district data, especially in the earlier
period of the database, is subject to large uncertainties due to the lack of systematic confirmation of cases at
the time the data were collected (Yeka et al., 2012). As the spatial scale of seasonal climate anomalies will
exceed the district scale, in particular for temperature, one would expect a positive spatial autocorrelation
of the normalized seasonal malaria transmission anomaly. Instead, the health district data show a Moran's
spatial autocorrelation (Figure 4) close to 0 and lower than the climate-driven malaria model. Note that
heterogeneities in urban-rural settings, population densities, and land cover would not greatly affect auto-
correlation as these factors do not change rapidly on interannual timescales. Recognizing the limitations
of the district data, it is encouraging that the malaria predictions are nevertheless skillful in approximately
half of the districts in Uganda, 4 months in advance.

Apart from the need to reduce uncertainties and errors in the climate forecasting and malaria modeling
systems themselves, the next step is to ascertain how to best incorporate such as system effectively into a
national or regional decision-making process concerning health planning and interventions. The cost-loss
economic analysis represents a potential framework for this as it allows a decision maker to assess whether
using the forecast system to decide when to apply a particular invention makes economic sense. For example,
in the analysis of the relative economic value V, it was seen that the system never has value at low cost-loss
ratios C/L. This is straightforward to interpret since at low cost-loss ratios, the system has to be very accurate
to have positive economic value as a single miss will prove more costly than simply intervening every year.
In these cases, the decision maker would err on the side of caution and simply intervene even with a highly
accurate forecast system available for guidance. The diagonal slant of the area of positive economic value
in Figure 3 means that for rarer events, the threshold for using the early warning system moves to lower
cost-loss ratios. This also makes sense, since as anomalies that one is attempting to mitigate become rarer,
the economic wastage of always intervening when not required starts to outweigh the cost of losses due to
a forecast miss.

At high cost-loss ratios, the cost of forecast false alarms is instead the issue, since the high cost of inven-
tion in these cases outweighs the alternative strategy of never intervening. It should be said that these
cases highlight a weakness of the cost-loss analysis, in that intervention decisions are political as well as
economical, and a decision maker may decide to intervene even if it is not the optimal strategy to avoid the
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World Meteorological Organization has worked with national weather

centers to build up a wide-reaching global telecommunications system to
transmit satellite and in situ measurements to collecting centers in near real time for their use in assimilation
systems to provide the initial conditions for weather forecasts. No such system for monitoring epidemiolog-
ical or entomological conditions exists. While case data are now collected digitally in many countries using
Health Management Information Systems (Chaulagai et al., 2005), these are usually country based and, for
obvious reasons of privacy, rarely open access or shared with neighboring countries. Entomological condi-
tions such as vector density are sporadically monitored, if at all. At best, satellite information can be used to
monitor surface water availability to attempt to infer vector densities indirectly (Franke et al., 2015). The lag
between climate and malaria means that the forecast skill in the first month derives almost entirely from the
correct initialization of the epidemiological and entomological conditions (Tompkins & Di Giuseppe, 2015).
Thus, the development of improved health early warning systems will be hampered unless the issue of data
availability for initialization can be addressed. A first step would be for a coordinated international action to
collect past digital health records, processed to adequately address privacy concerns, to be released in digi-
tal format publicly as a resource for research to develop and evaluate the potential of health early warning
systems. The ensuing development of pilot systems with improved assimilation techniques for system ini-
tialization would in turn encourage further efforts to open up data resources publicly and make investments
toward the collection of health information in near real time to support operational use for intervention
planning (Tompkins et al., 2018). In addition to improving and expanding broadband networks that facilitate
the implementation of Health Management Information Systems, low-cost technology solutions now exist
for long-distance wireless networks (Zennaro et al., 2010) and low-volume data transmission via mobile net-
works to reach isolated, rural locations (Aranda-Jan et al., 2014) that would allow relevant epidemiological,
as well as supporting entomological and in situ environmental information to be transmitted and gathered
efficiently in near real time.

5. Conclusions

We have shown that a dynamical malaria system driven by a combination of monthly and seasonal climate
forecasts is able to produce forecasts of the normalized force of infection that reproduce some of the tempo-
ral variability in the malaria cases, both in terms of district unconfirmed cases and high-quality data from
several sentinel sites in Uganda. This is the first such demonstration on a subnational scale. Further confi-
dence in the system could be gained by its evaluation in alternative geographical areas or by using longer
data series, highlighting the need for continuous, subnational malaria data across large areas. An econom-
ical analysis demonstrates that the system has positive benefit for a range of intervention-benefit ratios at
some sites, possibly indicating a method for incorporating such a system into the decision-making process.
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