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Abstract: There are currently limited data on how prosthetic devices are used to support lower-limb
prosthesis users in their free-living environment. Possessing the ability to monitor a patient’s physical
behaviour while using these devices would enhance our understanding of the impact of different
prosthetic products. The current approaches for monitoring human physical behaviour use a single
thigh or wrist-worn accelerometer, but in a lower-limb amputee population, we have the unique
opportunity to embed a device within the prosthesis, eliminating compliance issues. This study aimed
to develop a model capable of accurately classifying postures (sitting, standing, stepping, and lying)
by using data from a single shank-worn accelerometer. Free-living posture data were collected from
14 anatomically intact participants and one amputee over three days. A thigh worn activity monitor
collected labelled posture data, while a shank worn accelerometer collected 3-axis acceleration data.
Postures and the corresponding shank accelerations were extracted in window lengths of 5–180 s
and used to train several machine learning classifiers which were assessed by using stratified cross-
validation. A random forest classifier with a 15 s window length provided the highest classification
accuracy of 93% weighted average F-score and between 88 and 98% classification accuracy across
all four posture classes, which is the best performance achieved to date with a shank-worn device.
The results of this study show that data from a single shank-worn accelerometer with a machine
learning classification model can be used to accurately identify postures that make up an individual’s
daily physical behaviour. This opens up the possibility of embedding an accelerometer-based activity
monitor into the shank component of a prosthesis to capture physical behaviour information in both
above and below-knee amputees. The models and software used in this study have been made
open source in order to overcome the current restrictions of applying activity monitoring methods to
lower-limb prosthesis users.

Keywords: classification; physical behaviour monitoring; machine learning; accelerometer; activity
monitor; lower-limb amputee

1. Introduction

The World Health Organization (WHO) estimates that globally 100 M people need
assistive products such as prosthetic devices, but up to 80–90% of this requirement is
not currently being met [1]. Some of the reasons for this include an absence of policy,
a lack of trained personnel, and the high cost of devices [1]. This issue is even more
prominent in lower and middle-income countries, where the demographic of those in need
of these devices is typically younger with increased physical working demands and where
access to prosthetic services can be limited. Ensuring that the existing services provided
are optimised is an important step in meeting these requirements. One way this can be
achieved is by matching the correct prosthetic device to a user’s needs [2,3]. However, there
are currently limited data on how these devices are actually used and how they support
the functional ability of prosthesis users [3]. Traditionally, this information is captured by
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self-reporting from activity diaries or feedback from focus groups, but these subjective
measures can be heavily influenced by social bias and patient recall [4,5]. Due to their
small, unobtrusive size and low cost, body-worn sensors have become a commonly used
tool for objectively measuring physical behaviour/activities in free-living environments.

Methods for objectively monitoring lower-limb amputees’ physical behaviours typi-
cally use step-count measurements to classify an individual’s activity level. Each person
is then categorised into a physical function phenotype [3]. Although this method can
easily establish an individual’s physical activity capacity, step count measurements do
not provide detailed information on the user’s activities during these periods, providing
limited information for assessing their physical behaviour. Measuring bodily postures
such as lying, sitting, standing and movement would enable a more detailed analysis of
their physical function, activity patterns and how their prosthesis impacts their lives [6].
For example, this information could enable researchers to analyse the duration of time
spent in sedentary activity, which might indicate issues with an individual’s device such
as poor prosthesis socket fit [7]. This would improve the understanding of a wearer’s
prosthesis use and, therefore, the suitability of the device.

Only a few studies have investigated measuring the physical behaviours of lower-limb
prosthesis users with a device capable of identifying postures, and most of these studies
focused on validating the measurements against direct observations. van Rooij et al. [8]
found that the overall average agreement between the thigh worn Activ8 activity monitor
(2M Engineering Ltd., Valkenswaard, The Netherlands) and video observations was 97.3%.
Similarly, Salih et al. [4] investigated the impact of wearing the activPAL device (PAL
Technologies, Glasgow, UK) on the prosthesis socket and found a classification sensitivity
of 90.5% for the non-amputated side and 86% for the amputated side in a population
of unilateral lower-limb amputees. To date, only one study has looked at measuring
lower-limb amputees’ physical behaviours in free-living. Bussmann et al. [9] found that
individuals with a unilateral transtibial amputation caused by vascular disease are con-
siderably less active than matched comparison subjects. Although this study provides
useful information for clinicians, this research should be extended to different lower-limb
amputee communities, providing a more detailed analysis.

There are several commercially available devices capable of measuring postures from
raw acceleration data, such as activPAL and ActiGraph (ActiGraph LLC, Pensacola, FL,
USA). These devices are worn on the thigh and provide accurate measurements in a
range of populations [4,6,9]. The thigh is a favourable location to classify the postures
that describe daily physical behaviour (lying, sitting, standing, and stepping) because
each posture exhibits a unique gravitational-acceleration profile. This method was first
developed by activPAL and has since been adopted by other device manufactures and
used effectively in cohort studies [10]. However, for long-term monitoring and ease of use,
prosthesis users have the unique opportunities to embed a device within their prosthesis.
This would remove the requirement of taping a sensor to the skin, and the user would not
need to remember to wear it, hopefully improving study compliance. The shank area of
the prosthesis is a suitable location for both transtibial and transfemoral amputees and
provides a stable interface to minimise movement artefact within the acceleration signal.
However, a robust classification method is needed to ensure that the data are valid for
this location.

Classifying amputee postures using a single shank worn accelerometer has only been
explored by using threshold-based classifiers [6,11]. Redfield et al. [6] proposed a binary de-
cision tree classifier based on accelerometer signal magnitude area for classifying postures,
movement, and wear, achieving high classification accuracy (96.6%, SD = 3%). However,
these data were collected by using a structured format, for short durations (<10 min), and
were, therefore, unlikely to capture the posture variations present in unobserved free-living.
This variation would reduce the accuracy of threshold-based classifiers, and this is sup-
ported by the findings of Kwon et al. [11], who found poorer classification accuracy (66.7%,
SD = 6.0%) when using the same classifier on free-living data. Archer et al. [12] attempted
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to classify postures using both accelerometers and gyroscopes along with a decision tree
and k-nearest neighbour classifier, achieving 95% sensitivity. However, the inclusion of a
gyroscope sensor restricts the ability to collect data for longer durations due to increased
power demands. Similarly, many studies have attempted to classify postures [13–15] and
gait patterns [16–20] in both amputee and healthy populations using several sensors, but
this does not transfer to a practical long-term monitoring solution due to the burden of
wearing many sensors and the predicted decrease in compliance.

The aim of this study was to develop a model capable of accurately classifying lower-
limb amputee postures by using data from a single shank-worn accelerometer. Many
machine learning classifiers have proven capable of correctly recognising activities using
different open access IMU datasets [21–24], including k-nearest neighbours, support vector
machines, random forest classifiers, and neural networks. In this study, we explored the use
of several machine learning classifiers with heuristic features to predict the postures that
make up daily physical behaviour. Furthermore, one of the major drawbacks of research
on activity classification is that the resulting models are often difficult to apply in practical
monitoring applications as the data processing software is not available, and there is a lack
of skills necessary to re-create the models. Therefore, the software and models developed
as part of this study are available as open source to encourage their use in future physical
behaviour monitoring research.

2. Materials and Methods
2.1. Data Collection

Fifteen participants were recruited to participate in the study (male = 12; female = 3):
14 anatomically intact individuals and one double-transfemoral amputee. The mean
participant age was 37.3± 9.4 years, height was 177.1± 7.1, and weight was 71.3 ± 7.8. The
participants declared that they were fit and healthy with no comorbidities, and one amputee
declared that they took part in regular exercise and frequently used their prostheses daily.
Although this model is intended for use with lower-limb amputees, anatomically intact
participants were selected due to the ease of recruitment and because their acceleration
profiles in each posture are likely to be similar to amputees. The study was conducted
according to the guidelines of the Declaration of Helsinki and approved by the Institutional
Ethics Committee of the University of Salford (ID: 2068; Approved: 8 July 2021). Each
participant consented to collect up to 7 days of free-living physical behaviour data during
a typical week. The participants were requested to wear two commercially available
3-axis accelerometers (activPAL PAL3) on the anterior aspect of their thigh and shank,
mid-way down each limb (Figure 1). The PAL3 was chosen for its validated posture
classification algorithm within several populations and the ability to extract and analyse
the raw accelerometer data. The device worn on the thigh was used to record the everyday
postures of the wearer by using the in-built PAL3 classification algorithm (CREA. PAL
Technologies. http://docs.palt.com/display/AL/CREA. Published 2020. Accessed on
2 May 2021) [25]. The device worn on the shank was used to capture the corresponding
3-axis shank accelerometer data at a sampling rate of 20 Hz. Both devices were fixed to
the skin or prosthesis by using 3M Tegaderm tape and were only removed for bathing
and swimming. If the participant removed their prosthesis or the monitor, the participant
logged these periods in a diary, and these data were then removed during processing. The
participants were asked to behave as they normally would throughout data collection,
enabling the monitor to observe a broad range of free-living postures. At the end of the
seven days, the participants returned the devices to the research team, where both the raw
accelerometer data and classified events were extracted for analysis.

http://docs.palt.com/display/AL/CREA
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30, 60, 120, and 180 s). Windowing was chosen because it enabled the analysis of different 
classification algorithms, while multiple window lengths were chosen to explore the im-
pact of window length on prediction accuracy. Each window contained both the thigh 
PAL3 assigned posture class and the corresponding raw shank accelerometer data. Win-
dows that overlapped multiple postures were removed from the dataset to ensure good 
class separation for developing the model. Any non-wear and travelling posture classes 
were removed from the dataset, while related posture classes were grouped into one com-
bined class in order to reduce the complexity of the model. For example, cycling was com-
bined with stepping, and primary and secondary lying were combined. The data were 
extracted by using a 50% overlapped sliding window to capture more unique posture data 
for training the models. 

The 3-axis accelerometer data were used to calculate 100 time and frequency domain 
features for each window. Each accelerometer axis was first filtered using a 4th order low-
pass Butterworth filter with a cut-off frequency of 5 Hz [26] and then combined to create 
a vector magnitude (VM) signal. The resulting filtered X, Y, Z, and VM acceleration signals 
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Figure 1. Experiment setup for activPAL PAL 3 in both positions: (a) thigh worn PAL3 for measuring postures; (b) shank
worn PAL3 for measuring 3-axis accelerations.

2.2. Data Processing

In order to create a classification training dataset, both raw data and event data were
processed using the Python programming language (version 3.7.4). The PAL3 event data
were exported as posture codes, where each posture is classified by using its actual duration
and not in windows with fixed durations. Each code represented one of the following
posture classes predicted by the PAL3 software: sedentary/sitting, standing, stepping,
cycling, primary lying, secondary lying, non-wear, and travelling. These data were then
transformed into six different datasets of fixed windows ranging from 5 s to 3 min (5,
15, 30, 60, 120, and 180 s). Windowing was chosen because it enabled the analysis of
different classification algorithms, while multiple window lengths were chosen to explore
the impact of window length on prediction accuracy. Each window contained both the
thigh PAL3 assigned posture class and the corresponding raw shank accelerometer data.
Windows that overlapped multiple postures were removed from the dataset to ensure
good class separation for developing the model. Any non-wear and travelling posture
classes were removed from the dataset, while related posture classes were grouped into
one combined class in order to reduce the complexity of the model. For example, cycling
was combined with stepping, and primary and secondary lying were combined. The data
were extracted by using a 50% overlapped sliding window to capture more unique posture
data for training the models.

The 3-axis accelerometer data were used to calculate 100 time and frequency domain
features for each window. Each accelerometer axis was first filtered using a 4th order
low-pass Butterworth filter with a cut-off frequency of 5 Hz [26] and then combined to
create a vector magnitude (VM) signal. The resulting filtered X, Y, Z, and VM acceleration
signals were used to calculate the features. For the full list of features, refer to Table 1; each
of these features were calculated for the four signals. These features were chosen from
previous activity classification research [12,27,28]. Finally, all data were combined to create
a single dataset for each window length.
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Table 1. Table of calculated time domain and frequency domain features for each window.

Time Domain Features Frequency Domain Features

Mean 1st Autocorrelation Coefficient

Standard Deviation Power of First 6 Spectral Peaks

Mean Absolute Deviation Frequency of First Spectral Peaks

Maximum Sample Value Total Power in 4 Adjacent Frequency Bands

Minimum Sample Value

Signal Magnitude Area

Signal Energy

Interquartile Range
Features were calculated for all 4 signals (X, Y, Z, and VM).

2.3. Classifier Development

The features contained within each dataset were analysed to understand which fea-
ture was the most useful for separating the posture classes. They were first scaled to their
minimum and maximum sample; thus, each value fell between 0 and 1, and then any
strongly correlated features (Pearson’s correlation >0.8) and quasi-constant features (vari-
ance <0.01) were removed from the dataset. Typically, this left 30–35 features depending
on the window length.

Each classifier was trained by using the Python Scikit-Lean library (version 0.22). The
classifiers chosen for analysis were K Nearest Neighbour (KNN), Linear Discriminant Anal-
ysis (LDA), Support Vector Machine (SVM), Random Forrest (RF), Extra Trees (ET), Logistic
Regression (LR), Naive Bayes (NB), and Quadratic Discriminant Analysis (QDA). These
algorithms were chosen because they required minimal pre-processing and performed well
on similar classification problems [29–31]. Each classifier’s hyperparameters were tuned on
a stratified subset of the dataset (10%) using an 80% train and 20% test data setup. This was
performed on each of the windowed datasets in order to find the best performing version
of each. During the training, each dataset’s classes were balanced to prevent classification
bias by having an overwhelming amount of one specific class, which was assumed to be
highly likely based on the typical duration each participant spent lying down and sitting
compared to standing and stepping.

The datasets and classifiers were assessed by using a 10-fold stratified cross-validation,
where 1/10th of the data was systematically removed from the dataset for testing while the
remaining data were used for training. This is repeated until all the data had been tested.
Stratification enabled consistent class balance across the training and testing datasets.
F-scores were used to assess the accuracy of each model and were calculated by using both
the precision and recall of each cross-validation pass. Furthermore, average confusion
matrices from the 10-fold cross-validation were created to describe how the postures
were misclassified.

3. Results

The amount of data collected from each participant ranged from 3 days to 7, so only the
first 3 days of data were used to ensure each individual contributed equally to the dataset.
This resulted in datasets with between 787,658 and 14,433 samples for the 5 s and 180 s
windows, respectively. As predicted, there were large discrepancies between the quantity
of each posture class instance based on each participant’s physical behaviour pattern. After
balancing these classes by removing random samples from the more prominent classes, the
resulting datasets contained between 85,835 and 685 samples for the 5 s and 180 s windows.

The feature selection stage of the processing found an average of 69 correlated and
quasi-constant features within each window length’s dataset. There was a trend for more
correlated and quasi-constant features as window length increased. The most popular
prediction features included each acceleration signal’s mean value, standard deviation,
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max and min values, and spectral peak-frequencies. Using this subset of features reduced
the computation time needed for each dataset and had a notable impact on the model’s
development and inference time.

The F-scores for each model and window length are shown in Figure 2. For every
model other than the KNN, the 15 s window length achieved the highest F-scores, while
there was a trend of poorer performance as the window length increased, with the 120 and
180 s windows performing the worst. The RF classification model achieved the best
individual result of 93% compared to the poorest result of 63% from NB with 180 s window
length. On average, the RF and ET algorithms performed the best with 91% average
F-scores across all window lengths, followed by KNN (86%), SVM (83%), LDA (80%), QDA
(77%), LR (76%), and NB (71%).
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The F-scores for the different posture classes and weighted average F-scores for each
model are shown in Table 2. To reduce the complexity, only the best performing 15 s
window length dataset is presented. Sitting was consistently the most misclassified posture
with an average F-score of 69% across all classifiers. Meanwhile, the average F-scores for
standing events were slightly higher (79%), but lying (91%) and stepping (96%) events
consistently achieved high F-scores across all classifiers.

Table 2. Table of F-scores for each posture class and weighted average F-scores for each model with a
15 s window length.

Algorithm Sitting Standing Stepping Lying Weighted Ave F-Score

KNN 0.74 0.81 0.96 0.9 0.85

LDA 0.68 0.75 0.96 0.89 0.82

SVM 0.76 0.83 0.97 0.93 0.87

RF 0.88 0.88 0.97 0.98 0.93

ET 0.87 0.87 0.97 0.97 0.92

LR 0.51 0.72 0.96 0.88 0.77

NB 0.51 0.71 0.96 0.87 0.76

QDA 0.59 0.74 0.96 0.88 0.79

Confusion matrices show the percentage of misclassified postures for each class
(Figure 3). Across all the classifiers, misclassified sitting postures were more likely to be
classified as standing postures (11–39%). Similarly, misclassified standing postures were
more likely classified as sitting postures (1–20%). Although lying postures were consistently
classified correctly, those few misclassifications were more likely to be classified as either of
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the other static postures (<1–10%), whereas stepping postures were most likely misclassified
as standing (3–6%).
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Confusion matrices for the different window lengths for the best performing RF
classifier are shown in Figure 4. As the window length increased, there was a trend
of increased misclassification when trying to predict sitting postures (12% 5 s window
length and 21% 180 s window length) and, conversely, a small increase in performance
at classifying standing postures (13% 5 s window length and 10% 180 s window length).
Increasing the window length from 5 s to 15 s improved stepping posture classification by
4%. This gain in performance slowly grew to 99% accuracy for the 120 s window length
before dropping down again at 180 s (98%). Lying postures remained largely unaffected,
only losing a small amount of performance as the window length increased (4%).
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4. Discussion

This study shows that data from a single shank worn accelerometer with a machine
learning classification model can be used to accurately identify the postures that make
up an individual’s daily physical behaviour. These models, trained and evaluated using
free-living data, achieved F-scores greater than 90%. The RF classifier offered the best
performance of 93% weighted average F-score and between 88 and 98% classification
accuracy across all four posture classes; this is the best performance achieved to-date by a
shank-worn device. These models achieved results that enable the use of a shank-worn
system to analyse free-living physical behaviours, which is traditionally performed by
using thigh and hip worn accelerometers. Therefore, this offers an opportunity for a more
discrete and unobtrusive monitoring system that is applicable to all lower limb amputees.

The performance achieved by these models highlights the advantage of developing
a classifier using machine learning methods as opposed to threshold-based classifiers.
Previous research has shown that the accuracy of threshold-based classifiers is reduced by
up to 40% when tested on free-living data compared to previously presented results on
laboratory data [11]. This has been attributed to the variation in the execution of different
postures typically found in free-living conditions, as opposed to the strict and considered
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movements performed in a laboratory. The limited flexibility of threshold-based classifiers
means that they cannot account for these variations in posture execution. In contrast,
machine learning models have more complex classification methods and can identify these
differences. Furthermore, this study’s method of data collection enabled a wide range of
examples of the same posture to be collected over multiple days, capturing the variations
in these postures. The results of this study are more comparable to the results presented
by Redfield et al. [6] who tested a threshold-based classifier on laboratory data (96.6% vs.
93%), showing the improved performance of machine learning models when applied to
free-living data.

The classification performance of the models developed in this study is consistent
with the findings of previous studies attempting to classify other postures and activities by
using machine learning models. For example, Ernes at al. [31] used a combined decision
tree and neural network classification architecture to classify several postures (lying, sitting,
standing, and walking) and activities, achieving an accuracy of 89% when using laboratory
and free-living data. Interestingly, they also projected a 17% reduction in classification
accuracy when training their model on only laboratory data and testing it on free-living
data, showing that the reduction in accuracy when training a model with laboratory data
is less than that of threshold-based classifiers. Bastian et al. [30] attempted to classify a
similar posture set of lying, slouching, sitting, standing, walking, running, and cycling by
using a hip worn accelerometer and Bayesian model. They achieved high specificity (>90%)
when classifying both static and dynamic postures using free-living data, with significant
improvements over models trained using laboratory data. Similarly, Ahmadi et al. [29]
achieved F-scores of 86.4% when assessing the playtime activities of children using hip
and wrist worn accelerometers with a RF classifier. Although the models in these studies
were developed using different accelerometers, wear locations, number of sensors, and
population types, they achieved relatively similar accuracies. This similarity shows the
appropriateness of machine learning models when attempting to classify postures and
activities in free-living, while highlighting the need for varied examples of training data
collected in the test environments.

This study showed that window length has a significant impact on a model’s per-
formance. A range of durations was tested to understand the effect of increasing and
decreasing window length on average classification accuracy and each posture. It was
hypothesised that decreasing the window length would enable more data to be collected by
reducing the chance of windows spanning multiple postures, but larger windows would
capture more information on the movement in order to help differentiate between the pos-
tures. Specifically, the challenge was differentiating between sitting and standing postures
as the accelerometer is orientated along the same axis, unlike lying, and there are similar
amounts of movement, unlike stepping. However, the results show that a 15 s window
provides the best performance across all but one of the models. Furthermore, increasing
the window length decreased the performance of each algorithm by 2–16%, which was
mainly caused by the misclassification between sitting and standing postures. It is likely
that the longer duration windows enabled more variable movements to take place in these
postures, introducing noise to the features and reducing their separability. Future studies
should focus on feature engineering to improve the ability to differentiate between sitting
and standing before fully assessing the impact of window length. However, for this feature
set, a 15 s window length is optimal.

Model development is an important part of creating a posture/activity classifier, and
this encompasses four key steps: (1) feature selection, (2) feature engineering, (3) model
selection, and (4) hyperparameter tunning. This study explored the use of a merged set of
features from previous research on similar activity classification problems [12,27,28], which
included time domain and frequency domain features. These features were subjected to a
typical feature engineering workflow including normalisation, before removing features
that had low variance or were highly correlated. However, this process could be further
investigated by using additional features and feature engineering methods such as using
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features derived from discrete wavelet transforms or adjacent windows [29,32]. This
could enhance the performance of the classifiers presented here by introducing temporal
information to the model, which is relevant to this application as posture changes are event
related, e.g., you must stand from sitting before you can start walking. Several models
were explored in this study with some performing far better than others. The RF and ET
classifiers are both types of ensemble algorithms and, unsurprisingly, achieved similar high
performance. The SVM and KNN classifiers also achieved high F-scores (>85%) and have
previously been applied to other classification problems with similar performance [29–31],
proving their validity for solving these problems. In addition to this, further studies
should investigate the use of deep learning in order to automatically develop features,
removing the need for the feature generation and engineering stages of this process. This
could have a significant impact on performance by optimising feature development and
introducing temporal features by using recursive neural networks. The tuning of the model
hyperparameters can have a small impact on performance, and within this paper, the
parameters that make up each model were explored to find the best performance on a
train–test split dataset. This process should be explored when developing new classifiers
as it can be highly dependent on the dataset under investigation.

The data collection method presented in this paper introduces a novel method of
automatically collecting labelled, free-living posture data for developing posture/activity
classifiers. Using the PAL3′s existing classification algorithm enables constant and long-
term data collection from a validated device along with corresponding 3-axis acceleration
data. This makes it much easier to collect free-living posture data as opposed to labelling
video data or conducting manual observations, which are common methods used in similar
studies [6,12,29]. As this method requires no additional work, it is likely to reduce the
chance of human errors that are typically present with repetitive tasks. This method also
captures large volumes of data from multiple participants, which is important for devel-
oping machine learning models that require large quantities of training data. However,
previous research has shown that the PAL3 posture classification algorithm achieves 90%
accuracy when classifying amputee postures in free-living. This could introduce inherent
errors within the developed classifiers and should be considered when drawing conclu-
sions from these results. Future studies should assess models developed using this data
collection method alongside direct observations in order to fully understand the impact of
these errors. This study only used windows containing single postures and not windows
that spanned multiple postures, and it is likely that the performance will be different
when testing these classifiers on mixed datasets, although Ahmadi et al. [29] found an
increase in performance when introducing mixed windows, which was attributed to an
increase in the quantity of training data for their models. Future studies should look to
investigate the impact of mixed windows on the accuracy of these models. Finally, this
method extracted data by using a 50% overlapping window to collect more unique data for
model development. However, there is the potential to alter the amount of overlap which
could increase the quantity of data collected and aid development. Future investigations
should experiment with increasing and decreasing the window overlap to understand how
this impacts model development.

The results of this study could have a significant impact on the evaluation of lower
limb amputees’ free-living physical behaviours and their prosthesis use. Technical limita-
tions, such as the cost of sensors, lack of clear methods, and software that is not simple to
use, mean that using sensors to monitor amputees’ physical behaviours and their prosthesis
is not standard clinical practice [3]. This issue is more prominent in lower-income and
middle-income countries where products are often poorly suited to their environment and
the user’s needs. This study presents a method for accurately measuring daily postures
by using a shank worn accelerometer that can be easily housed within all lower-limb
prosthetic devices. These measures offer the opportunity for an extensive evaluation of
a wearer’s physical behaviours and could help understand the broader context of those
behaviours. Furthermore, the software and models developed as part of this study are
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open access in order to overcome some of the limitations that prevent these monitoring
methods from being applied. However, the main limitation of this study is that the models
were developed by using data from a single amputee and many anatomically intact individ-
uals. Although an initial evaluation of the data showed similar variances between feature
characteristics of this amputee and the other participants, it is not possible to say that the
model accuracy presented in this paper will directly translate to an amputee population. It
is also likely that different prosthesis types, such as transfemoral or transtibial, and famil-
iarity with the prosthesis could impact the shank acceleration profiles and model accuracy.
Future studies should investigate the performance of these models on different lower-limb
amputee populations and compare the features calculated from shank-accelerations to a
non-amputee population.

5. Conclusions

This research developed a model capable of accurately classifying lower-limb amputee
postures by using data from a single shank-worn accelerometer. The RF classifier provided
the highest average classification accuracy of 93% across all four posture classes, and
a 15 s window length appears to be the most appropriate for classifying postures by
using machine learning algorithms. This method offers the opportunity to embed an
accelerometer-based activity monitor into the shank component of a prosthesis to capture
physical behaviour information in both above and below-knee amputees. This could help
us understand how prosthetic devices are actually used by amputees, how they support
their functional abilities, and the impact of changes to prosthesis design. The models and
software (see Supplementary Materials) used in this study have been made open source
in order to overcome the current restrictions on applying activity monitoring methods to
lower-limb prosthesis users and to enable their use in future research.

Supplementary Materials: The final models and processing software (Python) are available at the
following repository: https://github.com/Ben-Jamin-Griff/ProsNet (accessed on 8 November 2021).
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