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Abstract

Fever is a regulated increase of the body temperature resulting from both infectious and

non-infectious causes. Fever is known to play a role in modulating immune responses to

infection, but the potential of febrile temperatures in regulating antigen binding affinity to

antibodies has not been explored. Here we investigated this process under in vitro condi-

tions using Isothermal titration calorimetry and ELISA. We used selected malarial and den-

gue antigens against specific monoclonal antibodies, and observed a marked increase in

the affinity of these antibody-antigen complexes at 40˚C, compared to physiological (37˚C)

or pathophysiological temperatures (42˚C). Induced thermal equilibration of the protein part-

ners at these temperatures in vitro, prior to measurements, further increased their binding

affinity. These results suggest another positive and adaptive role for fever in vivo, and high-

light the favourable role of thermal priming in enhancing protein-protein affinity for samples

with limited availability.

Author summary

Infections with dengue viruses and malaria protozoans affect approximately a third of the

world´s population and their epidemiologic patterns constitute a burden for the human

health and the global economy. Even though infections with these parasites are often

asymptomatic, it a spectrum of physiologic responses can be elicited from the human

hosts, including fever. We explore here a hitherto unknown beneficial role of febrile tem-

peratures, namely the increase in antibody affinity for relevant antigens from these patho-

gens at 40˚C, compared to the physiologic body temperature. We also highlight the

importance of temperature equilibration prior to protein-protein measurements in vitro.

We anticipate that these results are useful for delineating the role of febrile temperatures

in the immune response against infections.
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Introduction

Maintaining a constant temperature in mammals is a tightly regulated process, including

when where infections occur and the body temperature increases. Fever, which is an initial,

nonspecific, acute-phase response to infections, is a key factor in improving survival and short-

ening disease duration [1]. Cellular events occurring during physiological fever or hyperpy-

rexia have been the focus of intensive clinical and in vitro studies [2]. Fever-inducing pathogen

load is reduced mainly due to enhanced host defence, while pathogen proliferation at febrile

temperatures is not significantly affected [3]. Physiological and reversible increase in core

body temperature is not normally higher than 40˚C [4], with survival chances beginning to

decrease when fever exceeds 39.5˚C, suggesting the existence of an upper limit for the optimal

fever range [5].

Antibodies progressively mature their affinity and specificity for various target antigens by

changing the amino acid residue composition of their complementarity-determining regions

[6]. As with other proteins, high affinity for substrates is achieved by fast association rates cou-

pled to slow off-rates in a process directly dependent, among other factors, on temperature.

The thermal optimum of antibody-antigen complex depends thus on the chemical nature of

the epitope and paratope, and on the type of bonds formed at different temperatures [7].

Recent results using cell-based assays described an increase of the association rates between

two monoclonal antibodies to receptors from cancer cells, within a temperature range of 15˚C

to 37˚C [8]. While elevated temperatures greatly alter membrane fluidity, cell signalling and

gene expression patterns, the role of febrile temperatures in directly affecting antibody affinity

for antigens from pathogens that induce fever has not been explored.

We have focused here on the in vitro changes in binding affinities for two antibody-antigen

immune complexes of two widespread, fever-inducing infectious diseases [9, 10]. To this end,

we made use of antigens from a viral agent, i.e. non-structural protein 1 (NS1) from dengue

virus serotype 2 DENV-2 [11], and from a protozoan pathogen, namely the 19-kDa carboxy-

terminal region of merozoite surface protein 1 (MSP119) from Plasmodium vivax [12], and

their corresponding monoclonal IgG antibodies [13, 14]. We measured a peak in the affinity

constant of the protein partners at 40˚C, largely due to an entropic contribution to binding,

followed by a notable decrease at 42˚C, possibly due to protein unfolding. These results may

be relevant for unravelling the physiological mechanisms that are activated during fever-

inducing infections.

Materials and methods

ELISA measurements with dengue DENV-2 antigen and antibody

ELISA with solid-phase bound NS1 protein was carried out as previously described [11].

Briefly, polystyrene Maxisorp microplates (Nunc) were coated overnight at 37˚C, 40˚C or

42˚C with a purified recombinant NS1 expressed in Escherichia coli (400 ng/well) in triplicates.

The plates were washed 3 times with phosphate-buffered saline (PBS) containing 0.05%

Tween-20 (PBST) and blocked with 1xPBST containing 3% skim milk and 0.1% of BSA for 2

hours at 37˚C or 40˚C. After a new wash cycle, the anti-NS1 mAb 4F6 [14] was diluted (log2)

starting at 157.3 nM, added to wells and incubated at 37˚C or 40˚C for 2 hours. After a new

wash cycle, the anti-mouse IgG antibody conjugated to peroxidase (Sigma, USA) was added to

wells and incubated again for 2 hours at 20 ± 2˚C. After a final washing cycle, plates were

developed with sodium citrate buffer (pH 5.8) containing ortho-phenylenediamine dihy-

drochloride (Sigma, USA) and H2O2 and the reaction was stopped after 15 min with the
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addition of 50 μl of H2SO4 at 2 M. The optical density reading was performed at 492 nm plate

reader (Labsystems Multiscan, Thermo-Scientific, USA).

ELISA measurements with malarial PvMSP119 antigen and antibody

Recombinant protein PvMSP119 was kept at 37˚C, 40˚C or 42˚C for 1 hour prior to ELISA

assays. PvMSP119 was employed as solid phase-bound antigen (200 ng/well) and a volume of

50 μl of each solution was added to each well of 96-well plates (BD Costar 3590). After over-

night incubation at each indicated temperature, the plates were washed with PBST and blocked

with 5% milk-2.5% BSA for 2 hours, at each specified temperature. The plates were washed

with PBST and the monoclonal antibody K23 [12] was tested at serial dilutions (2x) initiating

at 93.32 nM in a final volume of 50 μl of sample added to each well in triplicate, followed by

incubation for 1 hour at each temperature. After washes with PBST, 50 μl of a solution contain-

ing anti-mouse IgG (KPL) conjugated to peroxidase diluted 1:3.000 was added to each well

and incubated at 20 ± 2˚C for 1 hour. The enzymatic reaction was developed using 3,3´, 5,5

´tetramethylbenzidine (TMB) (Bio-Rad) for 15 minutes, and stopped using H2SO4 1N. The

optical density values were determined at 450 nm. ELISA data was analysed using Prism 7

(GraphPad, USA).

Circular Dichroism (CD)

CD measurements were performed with a JASCO-810 spectrometer (Jasco, Japan) coupled to

a Peltier temperature controller (Model JWJTC-484). Immune complexes were reconstituted

at 20 ± 2˚C and consisted of 3.37 μM MSP119 in complex with 1.8 μM IgG K23 or 2.7 μM NS1

in complex with 4.27 μM IgG 4H1BC. Three hundred microliters of each complex were imme-

diately thereafter placed in the 1-mm CD cell for 1 hour at specified temperatures, prior to

data acquisition. All measurements were performed in 10 mM PBS, pH 7.4 with 1 mM 2-mer-

captoethanol. Data were averaged from three scans at 100 nm/min, data pitch 0.1 nm, band-

width 1 nm. Buffer baselines were subtracted from respective sample spectra.

Isothermal titration calorimetry (ITC)

1. Sample preparation and setup. Protein concentrations were determined spectropho-

tometrically by measuring the absorbance at 280 nm with a NanoDrop 2000 (Thermo-Scien-

tific, USA). Molar absorption coefficients for all proteins were calculated with ProtParam (SIB,

Switzerland). ITC measurements were performed on a MicroCal iTC 200 calorimeter (GE

Healthcare, USA). All direct titrations were performed in the same PBS buffer at 100 mM, pH

7.4, with 1 mM 2-mercaptoethanol that was used for protein dialysis. Control antigen titra-

tions into buffer were subtracted from data using Microcal Origin v7.0 (OriginLab, USA).

Data represents averages of 2 or 3 measurements. All measurements comprised of either anti-

gen in syringe at 25 μM (NS1) or 45 μM (MSP119) and 0.9 μM (anti-NS1 IgG1) or 5 μM (anti-

MSP119 IgG) in the cell, respectively. Antibodies were kept in the iTC200 cell at each indicated

temperature for 1 hour prior to measurements. Antigens were separately heated for the same

period in 200 μL Eppendorf microcentrifuge tubes in a water bath (Thermo-Scientific, USA)

before start of titrations at same temperatures as the antibodies.

2. Fitting procedures using KinITC (Affinimeter, Spain). The binding constant (KA),

the molar enthalpy of the interaction process (ΔH), the molar heat of dilution (ΔHdil) and the

active titrate concentration correction factor (rM), were used as fitting parameters, until the

goodness of the fit given by parameter χ2� 1 (for both thermodynamic and kinetic data), thus

justifying a 1:1 independent binding sites model. The final value for rM was close to 1 in all

thermograms, indicating that the nominal concentration and stoichiometry were correct. The
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heat capacity changes between 37˚C and 42˚C were calculated using an integrated form of the

Van’t Hoff equation for the general case when ΔCp is temperature-dependent. kinITC-ETC

(Equilibration time curve) was used to also derive kinetic information from ITC experiments.

Fitted response time [seconds] and kon were varied until χ2� 1. Koff rates were calculated

from Kd = koff/kon, at each temperature.

3. Statistical analyses. Thermodynamic and kinetic data was first tested for normality,

followed by one-way analysis of variance (ANOVA) and a post-hoc analysis with Tukey HSD

test, using OriginPro (OriginLab, USA). We compared the data means obtained for the three

temperatures of each experimental parameter for either immune complex. We also compared

the means of ELISA data obtained at 37˚C and 40˚C with or without the thermal equilibration

step. Calculated powers varied between 0.67 and 0.99 (0.1 for comparison of means for ELISA

data at 37˚C and 40˚C for thermally equilibrated samples). All p-values are shown at 0.05 sig-

nificance level.

Results and discussion

ITC and ELISA measurements

We used Isothermal Titration Calorimetry (ITC) in order to perform a systematic investiga-

tion into the formation of dengue and malarial immune complexes at 37˚C, 40˚C, and 42˚C.

We first equilibrated in vitro all the proteins for 1 hour at indicated temperatures. Such proce-

dure ensured that the partner proteins were subjected to temperatures more relevant to those

caused by fever-inducing pathogens, and for periods that are not lethal in vivo, e.g. less than 6

hours at 41˚C-42˚C for P. vivax infections [15]. Representative ITC thermograms are shown

in Fig 1 (also S2 Fig in Supporting Information).

The changes in enthalpy are different in the two systems, and are characterized by the low-

est positive values at 42˚C for the malarial complex, following a peak increase at 40˚C and then

a decrease at 37˚C (Fig 1A and 1C); in contrast, for the dengue immune complex, we measured

a linear increase of enthalpy with temperature (Fig 1B and 1D).

We observed that for both systems there was an increase in binding affinity at 40˚C that

was not observed in other temperatures. This was also measured in solid-phase assay with

ELISA, as presented in Fig 2.

For both immune complexes, we observed a ~1.15–1.3 increase in affinity from 37˚C to

40˚C, in the absence of thermal priming, according to ELISA measurements. Thermal pre-

equilibration led to significant improvements in KD by a factor of ~9.5 (at 37˚C) and ~8 (at

40˚C) for the dengue immune complex, and to a decrease in KD by a 1.3 factor (at 37˚C) and a

1.2 factor at 40˚C for the malarial complex, respectively. An overview of ITC and ELISA

results, together with statistical analyses is shown in Table 1.

ELISA did not yield statistically significant differences in data between the thermally pre-

equilibrated dengue complexes at 37˚C and 40˚C (Table 1). Statistical differences were calcu-

lated between the thermally pre-equilibrated and non-thermally primed ELISA samples (p-

value of 5.9−6 for measurements at 37˚C, and a p-value of 1.3−5 at 40˚C, respectively). Previous

in vitro non-calorimetric measurements of antibody-antigen complex formation at increasing

temperatures reported either a very limited variation in the values of the equilibrium constants

from 25˚C to 40˚C [16, 17], or even a decrease thereof from 2˚C to 40˚C [18, 19].

In contrast, our ITC measurements for the dengue system at 40˚C revealed a KD that was

lower by a factor of ~4 compared to values at 37˚C and by a factor of ~7, if compared to mea-

surements at 42˚C, respectively. The main contribution to binding affinity is entropic, without

compensation by the large positive enthalpy variations, as previously described for other anti-

body-antigen complexes [20]. The intrinsic free energy of binding peaking at 40˚C was largely
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independent of temperature variations or of the entropic/enthalpic terms [21]. Kinetic param-

eters that depend directly on temperature were largely responsible for the differences in affini-

ties observed across the temperature range, especially with the most favorable koff rates

measured at 40˚C.

Epitope-mapping studies have identified the sequence 193AVHADMGYWIESALNDT209 as

the conformational epitope from a β-sheet structure of the dengue NS1 protein [22]. The pres-

ence therein of three negative charges conferred by the aspartic and glutamic acid residues

may result in more stable immune complexes at higher temperature, as previously measured

in other systems [23]. It is significant to note that the enthalpic contribution to binding is not

negligible, providing a basal binding affinity to which the entropic factor is added, brought on

by increased orientational disorder of water molecules at higher temperatures. Importantly,

the effect of temperature changes in modulating monoclonal antibodies binding to other

DENV-2 antigens was also shown to be important for its structural E proteins, where unique

quaternary conformational epitopes were exposed when virions were incubated at vertebrate

host physiological temperature (37˚C), compared to the mosquito thermal optimum of 28˚C-

30˚C [24].

ITC measurements for the malarial complex yielded a KD approximately ~6 and ~10 fold

lower at 40˚C when compared to values at 37˚C and at 42˚C, respectively (Table 2).

Fig 1. ITC measurements in PBS buffer of malarial MSP119 titrated into K23 IgG antibody (a–raw data, c–binding isotherms) and DENV-

2 NS1 titrated into 4H1BC IgG1 antibody (b–raw data, d–binding isotherms) at indicated temperatures. Assays performed at physiological

temperature (37˚C, red trace), at fever temperature (40˚C, blue trace) and at 42˚C (black trace). The heat signals due to binding were obtained as

the difference between the heat of reaction and the corresponding heat of dilution.

https://doi.org/10.1371/journal.pntd.0007239.g001
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Unlike the results obtained with the dengue system, we calculated statistical differences

between the thermally pre-equilibrated and non-thermally primed ELISA samples, with a p-

value of 4.5−4 for measurements at 37˚C, and a p-value of 1.7−2 at 40˚C, respectively (Table 2).

The peak in affinity at 40˚C is, similar to the DENV-2 system, due to favorable koff rates if

compared to those observed at 37˚C and at 42˚C. This is similar to what occurs with DENV2

system. At higher temperatures, the entropic factor becomes the primary contributor to bind-

ing, suggesting the occurrence of considerable solvation effects and/or enhanced antibody-

antigen flexibility upon complex formation. The reduced role of enthalpy of hydration in bind-

ing reaction, in contrast to the entropic contribution upon temperature increase has previously

been observed for hapten-antibody and other antigen-antibody complexes [16, 25]. For both

Fig 2. a. ELISA measurements of dengue DENV-2 NS1 antigen with IgG1 4H1BC, with a thermal pre-equilibration step (black square symbol at 40˚C, black

circle symbol at 37˚C) or without this treatment (red square symbol at 40˚C, red circle symbol at 37˚C). b. ELISA measurements of malarial MSP119 antigen

with IgG K23 with a thermal pre-equilibration step (black square symbol at 40˚C, black circle symbol at 37˚C) or without thermal priming (red square symbol

at 40˚C, red circle symbol at 37˚C). Background-subtracted data represent averages of three independent readings.

https://doi.org/10.1371/journal.pntd.0007239.g002

Table 1. Thermodynamic and kinetic data of dengue immune complexes.

Parameters Dengue complex (37˚C) Dengue complex(40˚C) Dengue complex(42˚C) p-value

KD [nM] (ELISA) 33.3 ± 2.8 25.4 ± 4.1 12.3 ± 1.3 3.5−5

KD [nM] (ELISA)� 3.5 ± 0.2 3.1 ± 0.2 NA 0.4

KD [nM] (ITC)�� 19.5 ± 0.5 4.9 ± 0.4 36.1 ± 2.4 1.8−6

ΔH [kcal/mol] 7.5 ± 0.8 9.1 ± 0.8 18.8 ± 0.9 4.1−4

T�ΔS [kcal/mol] 17.1 ± 1.9 35.8 ± 1.4 29.5 ± 1.8 2−3

ΔG [kcal/mol] -9.6 ± 0.5 -26.7 ± 0.3 -10.7 ± 0.4 3.9−4

kon [106 M-1�s-1] 2.1 ± 0.3 0.43 ± 0.13 2.73 ± 0.24 5.9−5

koff[s
-1]��� 0.04 0.0022 0.1 4−2

ΔCp [kcal/mol�K] 3.7 ± 0.3

�Values for thermally pre-equilibrated samples. NA–data not available.

��Standard deviations (s.d.) between 15–25%. Values are averages with s.d. of three measurements (two measurements for thermograms at 42˚C). P-values represent

comparisons between the data means obtained for the three temperatures of each experimental parameter.

https://doi.org/10.1371/journal.pntd.0007239.t001
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systems and especially for the dengue immune complex, we have measured a large positive

heat capacity change that also adversely affects binding affinity, which is indicative of the onset

of unfolding, and is analogous to temperature-activated TRP channels [26]. The heat capacity

change is characterized not only by the hydrophobic effect, which is due to changes in hydra-

tion of nonpolar binding surfaces upon temperature increase [27, 28], but also by changes in

electrostatic interactions and hydrogen bonding [28], resulting in the positive ΔH we

measured.

We propose that at physiological temperatures the formation of these immune complexes is

energetically less favored, if an encounter step and a subsequent docking step for these protein

partners are envisaged. While temperature increase favors partner encounter, at higher non-

denaturing temperatures (e.g.: 40˚C), a large proportion of the immune complexes may anneal

to a more stable docked state [29]. This latter step may be optimized during affinity maturation

of the antibodies, given the intracellular thermal gradient [30], and may result in differential

activation of various temperature-sensitive proteins [31].

Using Circular Dichroism, we did not detect significant secondary structure modifications

in any protein partner or complex, across the temperature range here used (S1 Fig). The differ-

ences in affinities that we detected between the two techniques have previously been reported

for a malarial system involving MSP1 [32]. These discrepancies may be accounted for by the

presence of the adsorbed phase in ELISA measurements that could hinder epitope binding,

producing steric or attractive interactions between the mAb molecules [33] or inducing block-

ing of binding sites by multivalent binding and rebinding [34], which ultimately affect associa-

tion rates. These restrictions may be reduced for thermally equilibrated ELISA samples,

resulting in higher affinities if compared to ITC results or non-equilibrated ELISA data (Tables

1 and 2).

In conclusion, our data indicate the potential for reversible, physiological fever tempera-

tures in increasing in vitro antibody affinity for tertiary and quaternary epitopes and suggest a

thermal activation step for fever antibodies binding to antigens. This new role may constitute

an important adaptive mechanism for antibody-mediated detection and protection against

pathogens. Further validation by in vivo studies and extension to a larger set of antigens

involved in fever episodes, including from bacterial pathogens, will extend the reach of our

conclusions. In addition, our results may add to the growing interest in relating hyperthermia

to the efficiency of cancer immunotherapy [35]. Finally, thermal equilibration of the protein

Table 2. Thermodynamic and kinetic data of malarial immune complexes.

Parameters Malarial complex (37˚C) Malarial complex(40˚C) Malarial complex(42˚C) p-value

KD [nM] (ELISA) 51.2 ± 2.4 39.9 ± 3.3 47.8 ± 2.8 4.1−2

KD [nM] (ELISA) � 41.4 ± 3.2 35.3 ± 1.7 NA 1.1−3

KD [nM] (ITC) �� 22.2 ± 1.6 3.8 ± 0.3 43.6 ± 1.9 1.4−4

ΔH [kcal/mol] 16.5 ± 1.3 20.1 ± 2.3 8.9 ± 1.7 7.4−4

T�ΔS [kcal/mol] 24.7 ± 1.6 32.6 ± 1.4 12.6 ± 2.4 1.6−3

ΔG [kcal/mol] -8.2 ± 0.2 -12.5 ± 0.9 -3.6 ± 0.4 6.1−3

kon [106 M-1�s-1] 1.9 ± 0.4 0.65 ± 0.15 4.2 ± 0.6 4.3−3

koff[s
-1]��� 0.036 0.002 0.17 9.8−3

ΔCp [kcal/mol�K] 0.97 ± 0.23

�Values for thermally pre-equilibrated samples. NA–data not available.

��Standard deviations (s.d.) between 15–25%. Values are averages with s.d. of three measurements (two measurements for thermograms at 42˚C). P-values represent

comparisons between the data means obtained for the three temperatures of each experimental parameter.

https://doi.org/10.1371/journal.pntd.0007239.t002
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partners prior to performing ELISA or other relevant in vitro assays may improve the binding

affinities and inform on the appropriate temperature conditions of the testing environment,

thus assisting in cases where limited amounts of samples are available.

Supporting information

S1 Fig. Circular Dichroism data at each indicated temperature. Background-subtracted CD

data of a. malaria MSP119 antigen in immunocomplex with IgGK23and b. DENV-2 NS1 anti-

gen in complex with IgG 4H1BC, at specified temperatures.

(TIF)

S2 Fig. Supplementary ITC thermograms. ITC measurements of malarial and dengue com-

plex formation at indicated temperatures. ITC measurements of DENV-2 NS1 titrated into

4H1BC IgG1 antibody (a,c) and malaria MSP119 titrated into K23 IgG antibody (b,d) at indi-

cated temperatures.

(TIF)
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