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Abstract

Prolonged muscle exposure to low PO2 conditions may cause oxidative stress resulting in severe muscular injuries. We
hypothesize that PO2 cycling preconditioning, which involves brief cycles of diaphragmatic muscle exposure to a low
oxygen level (40 Torr) followed by a high oxygen level (550 Torr), can reduce intracellular reactive oxygen species (ROS) as
well as attenuate muscle fatigue in mouse diaphragm under low PO2. Accordingly, dihydrofluorescein (a fluorescent probe)
was used to monitor muscular ROS production in real time with confocal microscopy during a lower PO2 condition. In the
control group with no PO2 cycling, intracellular ROS formation did not appear during the first 15 min of the low PO2 period.
However, after 20 min of low PO2, ROS levels increased significantly by ,30% compared to baseline, and this increase
continued until the end of the 30 min low PO2 condition. Conversely, muscles treated with PO2 cycling showed a complete
absence of enhanced fluorescence emission throughout the entire low PO2 period. Furthermore, PO2 cycling-treated
diaphragm exhibited increased fatigue resistance during prolonged low PO2 period compared to control. Thus, our data
suggest that PO2 cycling mitigates diaphragm fatigue during prolonged low PO2. Although the exact mechanism for this
protection remains to be elucidated, it is likely that through limiting excessive ROS levels, PO2 cycling initiates ROS-related
antioxidant defenses.
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Introduction

Low oxygen/hypoxic conditions can significantly reduce

skeletal muscle contraction [1]. In normal resting muscle, it has

been reported that skeletal muscles, such as the diaphragm,

produce reactive oxygen species (ROS) including hydrogen

peroxide (H2O2) [2]. However, when the diaphragm is repetitively

stimulated, these muscle fibers generate excessive ROS leading to

oxidative stress with accelerated fatigue development [2]. More-

over, the production of ATP is driven by electron transmission

through mitochondrial complex I to complex IV, creating a

proton gradient across the inner mitochondrial membrane (IMM)

and triggering ATP synthesis [3,4]. Through this mechanism, a

small portion of electrons may leak out of the IMM and react with

adjacent oxygen molecules to produce superoxide anions, H2O2,

and other ROS. Under prolonged low PO2 conditions, the

physiological concentration of O2 is altered which results in

increased uncoupling between O2 and electron flow, ultimately

causing ROS overproduction [5].

A variety of cellular preconditioning pathways associated with

muscular protection have been proposed. For instance, ischemic

preconditioning (IPC), which consists of ischemic-reperfusion

cycles produced by variations in low-high PO2 levels, has been

used to prevent cardiac muscle injuries [6]. In addition, IPC

initiates intracellular protein kinase pathways, resulting in

increased activation of antioxidant enzymes such as catalase [6].

IPC also plays a critical role in protecting the heart against

ischemia-reperfusion injuries by opening mitochondrial ATP

sensitive potassium channels (mKATP) [7]. The mKATP channels

are regulated by several factors, including adenosine, H+, and/or

protein kinase C. Thus, these mediators may partially contribute

to the protective response involved in preconditioning therapies

[8,9]. Similar to IPC, PO2 cycling preconditioning, which consists

of brief periods of lower-higher PO2, significantly protects heart

muscle cells subjected to prolonged ischemia by decreasing ROS-

induced cell death [7,10]. In addition, human studies have shown

that intermittent low oxygen exposure at low altitude significantly

increases an aircraft crew’s adaptation to low oxygen conditions
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experienced at high altitude [11]. Since the method of both IPC

and PO2 cycling preconditioning involves brief periods of low and

high oxygen levels, it is possible that PO2 cycling follows a similar

molecular pathway as IPC. Furthermore, it has been shown that a

protocol consisting of PO2 cycling provides a protective response

against mesenchymal stem cell (MSC) apoptosis through phos-

phorylation of extracellular regulated kinase (ERK1/2) and

protein kinase B (AKT) [12]. Therefore, it is possible that these

signaling factors also may be involved in the molecular mechanism

of PO2 cycling in skeletal muscle.

Moreover, lower PO2 or hypoxic conditions may cause changes

in the cytosolic redox equilibrium, resulting in a rise in NADPH.

The increase subsequently stimulates inositol triphosphate (IP3)

receptor mediated release of Ca2+ from the endoplasmic

reticulum. This release of Ca2+ activates important cell survival

signaling pathways, which may potentially contribute to the

preconditioning response during lower PO2 stress [13]. However,

the redox mechanism of PO2 cycling preconditioning particularly

in respiratory skeletal muscle has not been fully elucidated. The

ultimate importance of the work is to develop treatments for those

who may experience respiratory muscle fatigue. It is likely that

PO2 cycling initiates ROS-related protective responses, particu-

larly in a key muscle of respiration such as the diaphragm, which

must be active throughout life [14].

In this study, we tested the hypothesis that PO2 cycling

preconditioning decreases intramuscular ROS levels and enhances

diaphragm muscle function. Our results demonstrate that PO2

cycling effectively reduces diaphragm fatigue during a prolonged

low PO2 (40 Torr) condition, which is accompanied by decreased

intracellular ROS levels. These findings provide insight into the

molecular redox mechanism of PO2 cycling in diaphragmatic

skeletal muscle exposed to a lower PO2 environment.

Materials and Methods

Animals
Male adult C57BL/6 mice (,20–30 g, average age of ,3 mo.)

were used in accordance with the Ohio State University’s and

Oakland University’s Institutional Laboratory Animal Care and

Use Committee (IACUC). We strictly followed the Guide for the

Care and Use of Laboratory Animals of the National Institutes of

Health and Ethics of Animal Experiments. Mice were anesthetized

via intraperitoneal (IP) injection with a combination of ketamine

(70 mg/kg) and xylazine (10 mg/kg). The diaphragm was quickly

removed from the mouse and muscle strips (,0.5 cm wide,

,1 cm long, 1–2 strips obtained from each mouse) were dissected

from the diaphragm with the corresponding rib attachment and

central tendon. After isolation, the muscle strip was kept in

Ringer’s solution (in mM: 21 NaHCO3, 1.0 MgCl2, 1.2

Na2HPO4, 0.9 Na2SO4, 2.0 CaCl2, 5.9 KCl, 121 NaCl, and

11.5 glucose), at 37uC.

PO2 cycling and muscle function measurement
Function experiments were performed in a contraction chamber

(model 800 MS; Danish Myo Technology, Denmark), with the

central tendon of the muscle strip sutured to a mobile lever, which

was used to adjust the muscle length for optimal performance. The

opposite end of the strip was secured to a force transducer

(detection range 0–1,600 mN). After being mounted, muscle

optimal length (L0) was set as the baseline tension and no

adjustments were made throughout the muscle function experi-

ments. All muscles were electrically stimulated (S48 stimulator;

Grass Technologies, RI) using square-wave pulses (250-ms train

duration, 0.5-ms pulse duration, 70 Hz, 30 V), following previous

skeletal muscle function protocols [15,16]. The A-D board (model

ML826; AD instruments, CO) converted the analog signals to

digital data, and LabChart 7.3.1 software was used to analyze the

function data. The muscle was equilibrated in Ringer’s solution for

20–30 min. During the function experiments, the treated muscle

strips were switched to a Ringer’s solution equilibrated with PO2

of 40 Torr O2 (lower) for 2 min, followed by PO2 of 550 Torr O2

(higher) for 2 min. This PO2 cycle was repeated five times,

followed by a prolonged 30-min 40 Torr PO2 period. During this

exposure, muscle contractility was evaluated, in order to determine

the effect of PO2 cycling on the muscle function. The chamber

solution during lower PO2 was found to be 40 Torr and during

higher PO2, 550 Torr. In the middle of the 40 Torr PO2 period

(from 15–20 min), the muscle was stimulated for 5 min at 37uC
and muscle tension development was recorded. The control group

followed an identical protocol as the experimental group except

for the one intervention of PO2 cycling. Following the removal of

the attached rib bone and excess tendon, the diaphragm was first

air dried which was followed by a 30-min oven drying. The dry

mass was then determined using an analytical balance. To reduce

random effects due to animal variance, all function data were

normalized by dry weight of the muscle strip (mN/mg).

Regarding the H2O2 treatment with PO2 cycling group for low

PO2 contraction measurements, the muscle strips were treated the

same as above except that after PO2 cycling, we added H2O2 into

the muscle contraction solution. Although H2O2 may degrade

rapidly, at sufficient levels, it can enter the cell freely and affect the

intracellular activity [17]. Specifically, the muscle was loaded with

Ringer’s solution with adequate H2O2 (50 mM) for 15 min prior to

the 5-min contractions in low PO2 conditions. In addition, the

time to reach 50% (T50) of the initial tension in contracting

diaphragm muscle during a 5-min low PO2 contraction period was

recorded in control, PO2 cycling, and PO2 cycling + H2O2 groups.

The effect of varying H2O2 dosage on muscle tension

development was evaluated. The muscle strips were prepared in

the same manner as mentioned above. During a high PO2 (550

Torr) period, each muscle strip was equilibrated with Ringer’s

solution for 15 min followed by a 15 min incubation with a

particular dosage of H2O2 (0 mM, 50 mM, 100 mM, 1 mM, to

10 mM, respectively). After incubation, each diaphragm strip was

stimulated for 5 min at 37uC and the muscle tension development

was recorded.

For the H2O2 treatment group with no PO2 cycling for high

PO2 contraction measurements, the muscle strips were exposed to

high PO2 (550 Torr). Each muscle strip had two independent 5-

min contraction periods, which were separated by a 60-min rest

period. The muscle was loaded with H2O2 (50 mM) for 15 min

followed by the first 5-min contractile period. The H2O2 was then

washed out with fresh Ringer’s solution, and the muscle was kept

for a 60-min rest period before a second 5-min contraction bout in

the absence of H2O2. This protocol was also performed in a

blocked order to ensure the statistical value.

Confocal studies
To analyze the effects of PO2 cycling treatment on ROS levels

in superfused diaphragm, confocal microscopy was used to

measure real-time ROS (H2O2) production in both PO2 cycling-

treated and control diaphragm tissue. Specifically, each muscle

strip was loaded with a 40 mM solution of dihydrofluorescein

diacetate (Hfluor-DA; stock in dimethyl sulfoxide; Sigma-Aldrich)

for 30 min. The dye diffused into the intramuscular compartment

and was able to chemically react with intracellular ROS (mainly

H2O2) resulting in enhanced florescence. For statistical purposes,

one muscle strip was taken from each mouse. We used five mice
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for control and five mice for PO2 cycling treatment. A laser scan

confocal microscopy system (Nikon confocal microscope D-Eclipse

C1 system) recorded fluorescent emission signals from the tissue

sample in a glass bottom culture dish (MatTek Corporation,

Ashland, MA) in real time. The treated muscle strips were

mounted and superfused with Ringer’s solution, followed by PO2

cycling treatment, which was a similar method as described above

for the muscle function experiments. To ensure an accurate

oxygen level, the chamber was sealed except for the tubing inlets

containing gas bubbling and superfusate as well as the temperature

probe. The superfusate solution was fully saturated with designat-

ed gas and preheated to ensure the temperature in the chamber

remained at 37uC. The strips were then subjected to a 10-min

baseline period (PO2 of 550 Torr) and a subsequent 30-min 40

Torr PO2 period at 37uC. The control muscles followed the same

protocol except that there was no PO2 cycling treatment. During

the 40-min experimental period (10 min for baseline of 550 Torr

PO2 and 30 min 40 Torr PO2 period), we captured an image

(5126512 pixels) every 5 min and calculated the mean fluores-

cence to determine intramuscular ROS levels. To reduce the

signal-to-noise ratio, each recorded image was an average from

eight sequentially scanned images within 5 s at each time point.

The setup parameters for the confocal imaging system were listed

as follows: laser, argon; pinhole: medium or large; excitation,

488 nm; emission, 535625 nm. The baseline autofluorescence

was kept at a minimum and did not interfere with the ROS signal

in our set-up. To reduce photobleaching or photodamaging, the

laser power was set at ,15% without noticeably sacrificing image

quality. To reduce imaging saturation due to possible excessive

ROS in 40 Torr PO2 conditions, the PMT gain was set as low as

possible from the start of each experiment. In order to verify that

the increased fluorescence signal was due to ROS, a series of

antioxidant experiments were conducted. The glutathione perox-

idase mimic, ebselen (30 mM), which is an effective ROS scavenger

particularly for skeletal muscle tissue [5], was utilized. The animals

were divided into 4 experimental groups, including control, PO2

cycling, ebselen, and PO2 cycling + H2O2. In each experimental

group, five muscle samples were directly isolated from five fresh

isolated diaphragms. For each experiment, we were able to

measure ROS levels from ,8–10 muscle fibers in each image

field.

In preliminary studies, we found that the PO2 cycling protocol

did not change the fluorescence baseline in the current set-up (data

not shown). Each acquired image was analyzed with Adobe

Photoshop element 6.0 and the final images were presented in a

300 DPI resolution with LZW compression.

Statistics
By performing the power analysis on the sample, we defined the

PO2 cycling effect on the skeletal muscle force development as well

as intracellular ROS formation. For instance, we determined the

PO2 cycling effect on multiple groups including control, antiox-

idant (ebselen) treatment and H2O2 application, using the

prospective means across these groups. We derived the power

when the sample size was ,5 or greater mice per group by

calculating the standard deviation. In addition, data were analyzed

using a multi-way ANOVA with the animal as a variable, and

expressed as means 6 SE. The differences between the two

treatments were statistically determined by a series of post-

ANOVA contrast analyses using JMP software (SAS Institute,

Cary, NC). Specifically, the post-ANOVA contrasts involve the

comparison among all the groups of subjects and the display of the

statistical difference between each pair of data. The treated

groups, such as PO2 cycling, antioxidant (ebselen) treatment and

H2O2 application, were used to compare with the control group,

revealing any potential significance. P,0.05 was regarded to be

significant.

Results

Representative confocal images of the same muscular area in

each group are illustrated in Fig. 1. Fluorescence (green color),

which represents ROS levels, increased substantially at the end of

prolonged 40 Torr PO2 period (30 min, Fig. 1B) compared to

baseline in the control group (Fig. 1A). However, after PO2

cycling treatment, fluorescence displayed no significant change at

the end of 40 Torr PO2 (Fig. 1D) when compared to baseline

(Fig. 1C). The disappearance of increased fluorescence emission in

PO2 cycling treatment demonstrated that PO2 cycling effectively

suppressed 40 Torr PO2-induced intracellular ROS levels in the

diaphragm. In addition, ebselen treated muscle strips showed no

fluorescence increase at the end of 40 Torr PO2 exposure

(Fig. 1F). Interestingly, exogenous addition of H2O2 (50 mM)

mitigated the antioxidant effect of PO2 cycling (Fig. 1H).

Grouped data of mean florescence during 40 Torr PO2 are

illustrated in Fig. 2A. At the end of 40 Torr PO2 periods, ROS

levels were elevated from baseline in the control group. However,

in the PO2 cycling group, ROS levels were kept low compared to

control (1.0060.04 RU vs. 1.4860.05 RU; n = 5 from five

animals; P,0.05). Furthermore, in the control group, intracellular

ROS elevation did not appear within the first 15 min of 40 Torr

PO2 period. After 20 min, ROS levels were enhanced and these

increases lasted until the end of the 30 min period. Fig. 2B

displayed the intracellular ROS fluorescence rate (RU/min). In

the control group, this rate was close to zero for the first 15 min of

40 Torr PO2, followed by three ROS bursts occurring at 20, 25,

Figure 1. Representative ROS images from Hfluor-loaded
diaphragm tissue. A: control muscle before 40 Torr PO2. B: the same
area of A at the end of 40 Torr PO2. C: PO2 cycling treated muscle before
40 Torr PO2. D: the same area of C at the end of 40 Torr PO2. E: Ebselen
(Eb) treated muscle before 40 Torr PO2. F: the same area of E at the end
of 40 Torr PO2. G: PO2 cycling + H2O2 treated muscle before 40 Torr PO2.
H: the same area of G at the end of 40 Torr PO2.
doi:10.1371/journal.pone.0109884.g001
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and 30 min, represented by positive values shown in Fig. 2B (in

RU/min). The first ROS burst was relatively smaller (,50% less)

compared to the other two larger bursts. However, in PO2 cycling-

treated diaphragm muscles, no ROS burst occurred at 40 Torr

PO2. It is important to note that although Fig. 2B looks similar to

Fig. 2A, they refer to two separate measurements: fluorescence in

Fig. 2A and fluorescence rate in Fig. 2B. In other words, Fig. 2B

shows the mathematical slope of the fluorescence increase/

decrease, indicating how fast the signal changes while Fig. 2A

shows the level or the intensity of fluorescence.

Muscle absolute tension data during 40 Torr PO2 are shown in

Fig. 3. In the control group, the tension (in mN/mg muscle dry

weight) at 0 min and the tension at each subsequent time point

thereafter (1–5 min), was significantly lower than the PO2 cycling

group (n = 5 from five animals, P,0.05), suggesting that PO2

cycling ameliorated skeletal muscle resistance to fatigue during the

40 Torr PO2 period (Fig. 3A). The tension decline rate in PO2

cycling treated muscles markedly slowed down in the first 3 min

compared to control (n = 5 from five animals for each group, P,

0.05, Fig. 3B). However, after 3 min the decline rate of all groups

was similar, indicating that PO2 cycling had no effect on the force

decline rate for later fatigue development. Furthermore, the time

to 50% of the initial tension (T50) from PO2 cycling diaphragm

muscle was significantly prolonged when compared to control

diaphragm (in seconds, 216.2633.0 vs. 99.5610.0; n = 5 from five

animals, P,0.05, Fig. 4). However, this difference disappeared in

the presence of H2O2 in the PO2 cycling + H2O2 group (in

seconds, 117.167.2 vs. 99.5610.0; n = 5 from five animals,

Fig. 4). Maximal diaphragm force was always measured prior to

low PO2 exposure. The corresponding muscle absolute tension

values were reported in Table 1.

We observed that ebselen completely quenched the 40 Torr

PO2-induced ROS signal in the control (Fig. 1E and F, Fig. 2;

n = 4), which demonstrated a similar effect to the PO2 cycling

treatment group (Fig. 1C and D, Fig. 2, n = 5). The addition of a

small amount of H2O2 (50 mM) entirely abolished the PO2 cycling-

induced ROS inhibition effect in the confocal experiments

(Fig. 1G and H). Grouped data are shown in Fig. 2A. Following

15 min from the onset of 40 Torr PO2 period, fluorescence was

significantly higher in PO2 cycling + H2O2 group than the control,

PO2 cycling, and ebselen groups. However, after 30 min of 40

Torr PO2 period, the control group showed higher fluorescence

than the PO2 cycling + H2O2 and ebselen groups, respectively

(n = 5, P,0.05). In Fig. 2B, at 15 min during 40 Torr PO2

periods, there was a larger fluorescent burst in the PO2 cycling +
H2O2 treatment group compared to the other groups. A large

fluorescent burst in the control group occurred ,10 min later

than in the PO2 cycling + H2O2, while there were no bursts in

ebselen treatment groups, respectively (n = 5, P,0.05).

Figure 2. Intracellular ROS fluorescence and fluorescence rate
under 40 Torr PO2. A: averaged fluorescence data recorded in a
relative unit (RU). Data showed intracellular ROS levels from control, PO2

cycling, ebselen (Eb), and PO2 cycling + H2O2 treated diaphragm muscle
(*significantly different from PO2 cycling, P,0.05; #significantly
different from Eb treatment, P,0.05; {significantly different from
control, P,0.05). B: intracellular ROS burst represented by fluorescence
rate. Data was recorded in a relative unit per min (RU/min) from control,
PO2 cycling, Eb, and PO2 cycling + H2O2 (50 mM) treated diaphragm
muscle under 40 Torr PO2. Fluorescence data was recorded every 5 min
(*significantly different from PO2 cycling, P,0.05; #significantly
different from Eb treatment, P,0.05; {significantly different from
control, P,0.05).
doi:10.1371/journal.pone.0109884.g002

Figure 3. Muscle tension and tension decline rate data under
40 Torr PO2. A: absolute tension (mN/mg) was recorded for 5 min
from control, PO2 cycling, and PO2 cycling + H2O2 group (*significantly
different from PO2 cycling, P,0.05). B: data showing the tension decline
rate (RU/min) from control, PO2 cycling, and PO2 cycling + H2O2 (50 mM)
muscles during a 5-min contractile period under 40 Torr PO2

(*significantly different from PO2 cycling, P,0.05; #significantly
different from PO2 cycling + H2O2, P,0.05).
doi:10.1371/journal.pone.0109884.g003
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Furthermore, under high PO2 conditions (550 Torr), we

investigated the effect of a small amount of H2O2 (50 mM) on

muscle contraction as shown in Fig. 5 (representative curves) and

Fig. 6 (grouped data). The tension development (mN/mg) and the

tension decline rate (RU/min) at 1–5 min during the 5-min

contraction were recorded in the presence or absence of H2O2.

Both figures clearly illustrate that H2O2 had no marked effect on

muscle function at a level of 50 mM (n = 6).

Moreover, H2O2 dosage experiments were performed in a

range from 0 mM to 10 mM under high PO2 conditions (550 Torr)

as shown in Fig. 7. Muscle tension development was recorded for

the maximal contraction during the baseline period and the initial

and end contractions during the 5-min contraction period. There

was no significant difference between the control group (0 mM)

and the 50 mM group. However, the 100 mM and 1 mM groups

(n = 9 for both groups) did show a significant decrease in muscle

function during the end contraction when compared to both the

control and 50 mM groups (P,0.05). The greatest declines in

muscle tension were observed in the 10 mM group (n = 8) as both

the initial and end contractions showed a marked decrease in

muscle tension development in comparison to all other dosage

groups (P,0.05).

Discussion

The current study provides evidence that the PO2 cycling

preconditioning procedure we used reduces intracellular ROS

levels in respiratory skeletal muscle during prolonged low PO2.

The absolute skeletal muscle tension and T50 were both greater in

the PO2 cycling group than the control group, but the addition of

a small amount of ROS (H2O2) reduced these values to control

levels. However, this amount of ROS was so marginal that it

exerted no significant effect on muscle function during hyperoxia.

Collectively, these data indicate that the protection of PO2 cycling

on the diaphragm is related to the reduced levels of intracellular

ROS signaling molecules.

Dihydrofluorescein (Hfluor) is a highly sensitive intracellular

probe commonly used for fluorescent detection of ROS. Fluores-

cein (Fluor) formation results when Hfluor reacts with ROS [5].

Previous research has shown that Hfluor is much less sensitive to

nitric oxide (NO) compared to its analog dichlorfluorescein

(DCFH) and also shows a higher resistance to photobleaching

than DCFH [5,18,19]. Since it is superior for detecting ROS

(particularly H2O2), it was used in our experiments. Our results

showed that there was no marked ROS formation in the muscle

during the first 15 min of a 40 Torr PO2 period. In the control

group (Fig. 2A), ROS levels were significantly increased after

20 min from the initiation of 40 Torr PO2, which may suggest that

during this timeframe antioxidant defenses were overwhelmed in

diaphragm muscle not treated with PO2 cycling. Moreover, the

completely abolished ROS signals in the antioxidant (ebselen)

treated control group (Fig. 1 and 2), confirms the existence of

ROS, which seems to be quenched by PO2 cycling treatment in

our experiments (Fig. 1 and 2). Interestingly, after PO2 cycling

treatment, extracellular addition of a small amount of ROS

(50 mM H2O2), which has no effect on normal muscle function

(Fig. 5 and 6), completely negated the PO2 cycling effect. These

observations suggest to us that PO2 cycling may be involved in the

initiation of intracellular antioxidant signaling pathways.

Figure 4. Time to reach 50% (T50) of the initial tension in
contracting diaphragm muscle under 40 Torr PO2. A: a typical
chart record illustrating the duration of T50 in a contracting diaphragm
muscle during a 5-min contraction period. B: summarized T50 values
from control, PO2 cycling, and PO2 cycling + H2O2 (50 mM) groups
during the contraction (*significantly different from control, P,0.05;
#significantly different from PO2 cycling + H2O2, P,0.05).
doi:10.1371/journal.pone.0109884.g004

Table 1. % of maximal force prior to low PO2 exposure.

Control (n = 5) PO2 cycling (n = 5) PO2 cycling + H2O2 (n = 5)

Force (mN/mg) Force (mN/mg) Force (mN/mg)

23.7 20.8 37.4

31.1 45.6 41.0

61.0 59.6 35.2

29.8 71.5 51.6

31.1 41.5 42.9

Average 6 SE 35.466.56 47.868.58 41.662.84

doi:10.1371/journal.pone.0109884.t001

ROS and PO2 Cycling in Skeletal Muscle
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It should be noted that the experimental conditions used to

detect ROS are different from those used to evaluate skeletal

muscle function in our settings. ROS detection was performed in

unstimulated muscle, while function was assessed in contracting

muscle, for the following reasons: 1) Due to large motion artifact, it

is extremely difficult to perform muscle function experiments

under confocal microscopy; 2) The muscle function experiment is

focused on measurement of maximal force and time to fatigue.

However, the confocal experiment is primarily designed to

determine intracellular ROS levels in the muscle.

Evidence has shown that PO2 cycling triggers the expression of

superoxide dismutase (SOD), an endogenous antioxidant, which

may further contribute to reduced ROS levels [7,10,20]. This is

highly consistent with our observations of reduced ROS level in

PO2 cycling treated skeletal muscle. Similar to heart studies which

show that both IPC and PO2 cycling are mediated by ROS [7],

intracellular ROS levels were also critical for PO2 cycling efficacy

in diaphragm muscle. There is a potential concern that PO2

cycling could have altered mitochondrial function and integrity.

However, our muscle function data (Fig. 3 and 4) suggest that

fatigue resistance in PO2 cycling treated mouse diaphragm muscle

was substantially greater than that of control muscle. Thus, it is

likely that mitochondrial activity was not negatively altered by

PO2 cycling treatment. Although in the current study design we

are unable to determine whether PO2 cycling treatment causes

decreased ROS production or increased antioxidant scavenging, it

is likely that there is a specific redox mechanism that suppresses

ROS generation during prolonged respiratory muscle exposure to

the 40 Torr PO2. The detailed mechanism associated with PO2

cycling protection, however, is still unclear and requires further

study. In addition, based on a similar previous study of PO2 levels

in myocytes, 40–550 Torr PO2 was an effective setting to initiate

intramuscular redox changes in skeletal muscle [21,22].

Interestingly, we noticed that at 15 min during the 40 Torr PO2

period, ROS levels were significantly higher in the PO2 cycling +
H2O2 group compared to the other groups; yet, at 30 min, the

control group showed a higher ROS level than the PO2 cycling +
H2O2 group (Fig. 2A). This suggests that the two treatment plans

stimulate a time-dependent intracellular ROS formation mecha-

nism. In addition, we evaluated the ROS generation rate, defined

as a ROS burst and represented by the fluorescence rate, as shown

in Fig. 2B. H2O2 addition after PO2 cycling treatment induced the

first ROS burst at 15 min under the 40 Torr PO2 conditions,

which occurred ,10 min earlier than a large ROS burst in the

control group. Collectively, these observations suggest a faster

diffusion of extracellular ROS (H2O2) into the intramuscular

compartment, compared to the intracellular ROS generation in

the control muscle. However at a later time (after 25 min during

low PO2), the control muscle showed a higher ROS formation rate

than the PO2 cycling + H2O2 group. This could be due to leakage

of H2O2 into the perfusate. Nevertheless, these data further

demonstrate a potential antioxidant-like effect exerted by PO2

cycling, and this effect can be disturbed by a small addition of

Figure 5. Representative contraction curves showing the effect of H2O2 (50 mM) on the muscle contraction during high PO2 in a
blocked order. A: H2O2 was added 15 min prior to the first 5-min contractile period followed by a H2O2 washout and 60 min rest period before the
second 5- min contractile period in the absence of H2O2. B: The first 5-min contraction in the absence of H2O2 was followed by the second 5-min
contractile period in the presence of H2O2.
doi:10.1371/journal.pone.0109884.g005
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ROS, which was not sufficient to influence muscle contractility

(Fig. 5 and 6).

Moreover, it is suggested that PO2 cycling mitigates fatigue

within the diagram during hypoxia. Although the exact mecha-

nism by which this occurs is unclear, it is likely that ROS play a

significant role. Accordingly, our data (Fig. 1 and 2) suggest that

low levels of ROS negate the benefits of PO2 cycling and may be

involved in other signaling events, including antioxidant cascades.

Figures 5 and 6 illustrate the relationship between ROS level and

muscular force generation. These results are supported by

previous studies in which it was concluded that low levels of

H2O2 may work more towards signaling pathways since they do

not directly impact force generation in the muscle [23,24]. Further

research into the effect of both ROS and PO2 cycling on

diaphragm force generation and related muscular mechanisms

may lead to potential therapies to mitigate muscle fatigue during

hypoxia.

The H2O2 dosage experiments (Fig. 7) on the diaphragm

function suggest that high levels of ROS (H2O2) such as at 1 mM

or 10 mM levels markedly reduce muscle function; however, lower

levels of ROS, such as 50 mM, do not compromise muscle function

as compared to control. In addition, our confocal experiments

have clearly shown that this low level of ROS (50 mM) minimized

the PO2 cycling effect confirming that rather than damaging

muscle directly, low levels of ROS may be a potential mediator for

the signaling events involved in PO2 cycling preconditioning.

There are a number of intracellular sources of ROS in skeletal

muscle, including the mitochondria, xanthine oxidase (XO),

peroxisomes, and NADPH oxidase [25]. For example, under

respiratory stress, such as ischemia or low PO2/hypoxia, xanthine

dehydrogenase converts to XO, which is subsequently released

into circulation and produces ROS [22,25]. In skeletal muscle

myocytes, NADPH oxidase is another likely candidate for ROS

formation during hypoxic stress during injuries [23]. Additionally,

the mitochondria produce low levels of superoxide anion under

normal conditions [26], but in the lack of oxygen, the mitochon-

dria experience excessive oxidant production [5,26,27]. Accord-

ingly in such a condition, the mitochondria function as a source of

increased level of superoxide, one of the common precursors to

most ROS. This increase in intracellular ROS could potentially

overwhelm natural antioxidant defense systems, leading to

impaired muscle function [2,28–30]. Our data (Fig. 2B) showed

that three ROS oxidative bursts (represented by positive rate

values) occurred after 15 min of the 40 Torr period in the control

muscle, which may indicate that intracellular antioxidant defenses

have a 15 min effective period until they are eventually negated by

subsequent ROS formation. This timeframe is within the regular

activation time range of mitochondrial antioxidant enzymes

[30,31]. Therefore, both XO and mitochondria are possible

sources of ROS in this study.

Moreover, our findings have shown considerable evidence

regarding the protective effects of PO2 cycling training on skeletal

muscle function (Fig. 3A). During the middle of the 40 Torr PO2

period, the initial tension of the PO2 cycling treated muscle strips

was higher than that of control, and this trend kept increasing to

,4 fold greater than control from 1- to 5-min suggesting that PO2

cycling progressively alleviated muscle fatigue. However, after

H2O2 was loaded into the muscle at a relatively low dosage (Fig. 5

and 6), the protection from PO2 cycling was diminished. This

supports that the ROS signaling molecules may possibly play a

negative role in the PO2 cycling mechanism. PO2 cycling

markedly reduced the tension decline rate at both 1-, 2- and 3-

min from the initial contraction compared to control. These rate

differences were minimized at 4- and 5-min, respectively. The

addition of H2O2 also significantly interrupted the PO2 cycling

effect on the tension decline rate at 2- and 3-min in the middle of

the 40 Torr PO2 period (Fig. 3B), confirming that ROS signaling

Figure 6. Grouped data showing the effect of H2O2 (50 mM) on
the muscle contraction during high PO2 in a blocked order. A:
Tension development (mN/mg) at 1–5 min during the 5-min contrac-
tion period in the presence vs. absence of H2O2. B: Tension decline rate
(RU/min) during the 5- min contraction period at 1–5 min in the
presence vs. absence of H2O2.
doi:10.1371/journal.pone.0109884.g006

Figure 7. Grouped data showing the effect of varying H2O2

dosage on muscle tension development during high PO2. Data
showing the muscle tension development (mN/mg) during the H2O2

dosage treatments in mouse diaphragm strips [0 mM (control), 50 mM,
100 mM, 1 mM and 10 mM] in high PO2 (550 Torr). *Significantly
different from control (P,0.05). #Significantly different from 50 mM
H2O2 (P,0.05). {Significantly different from 100 mM H2O2 (P,0.05).
`Significantly different from 1 mM H2O2 (P,0.05).
doi:10.1371/journal.pone.0109884.g007
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molecules adversely affect PO2 cycling pathways. A possible

correlation among PO2 cycling, muscle fatigue and ROS implies

that PO2 cycling is able to boost muscle contractility during

fatigue, which is consistent with Clanton’s and Reid’s results

[1,32]. Specifically, PO2 cycling could result in a gradual increase

in the production of endogenous antioxidant enzymes, allocating

the additional antioxidants to serve as a ‘‘reservoir’’ that can be

promptly accessed in response to spontaneous exposure to stressful

conditions. This idea is consistent with previous research

suggesting that PO2 cycling significantly increases the expression

level of intramuscular antioxidants such as SOD [7].

Previous research has shown that the intramuscular PO2 during

strenuous exercise is ,4 Torr, while ,30 Torr conditions are seen

in resting muscle [33]. In the current research, we created a

relatively lower PO2 condition by equilibrating 40 Torr PO2 and a

hyperoxic condition with 550 Torr based on previous studies in

skeletal muscle [5,15,21,34]. However, the intracellular PO2 was

difficult to determine under our experimental set-up, particularly

in a contracting muscle with marked motion. During exhaustive

exercise, skeletal muscle conditions fluctuate between higher PO2

and lower PO2, which frequently occur especially during high

intensity interval trainings. This cycling in intracellular oxygen

exerts an intrinsic preconditioning effect, similar to the PO2

cycling protocol implemented in our studies. Additionally, it has

been shown that increased levels of catalase and SOD are

expressed in skeletal muscle during exercise training, resulting in a

reduction of ROS level and oxidative stress [35–38]. Similar to

exercise training, PO2 cycling therapy may be an alternative

method for increasing muscular endurance. Moreover, it is worth

noting that a small amount of ROS (50 mM H2O2) has no effect on

normal muscle function (Fig. 5 and 6). However, this dosage

completely abolished the PO2 cycling protection in low PO2

conditions (Fig. 3). The exact mechanism of this response is still

unknown, which will be an area of future studies.

Some limitations appear in our study. First, we are unable to

determine whether 40 Torr in the solution can cause intramus-

cular hypoxia. Second, it is possible that our PO2 cycling protocol,

by itself, can directly affect intracellular ROS and muscle fatigue

without additional mediators. Third, it is difficult to measure the

exact intracellular PO2 level in a functioning diaphragm. This is

mainly because of a marked O2 diffusion gradient across the

multiple layers of diaphragm tissue. Although previous research

has shown that in a similar condition to 40 Torr PO2, intracellular

levels of NADH in the diaphragm significantly increase [5], it is

not clear whether 40 Torr PO2 in the superfusate can cause the

intracellular compartments hypoxic. Lastly, since O2 cannot

transport across the different layers equally in the whole muscle,

it is more likely that a hypoxic condition may occur in the core of

the muscle than the peripheral region [39]. In addition,

intracellular PO2 in skeletal muscle is ,10 Torr at rest, but it

quickly drops to 3–5 Torr during intense exercise [40]. It is likely

that the transition between 550 Torr to 40 Torr triggers

mismatches of oxygen supply to the diaphragm, which may be

sufficient to induce a transient ROS formation as described in our

earlier research [5]. Our study demonstrated that intracellular

ROS is elevated in single myofibers during a similar PO2

condition [21]. Interestingly, this level of oxygen (3–5 Torr) is

regarded as normal for exercising human muscles [33]. Precisely

controlling the intramuscular O2 condition within the whole

muscle preparation is highly challenging and therefore should be

the focus of future research.

Perspectives and Significance
This study demonstrates that PO2 cycling mediates beneficial

responses through reducing intracellular ROS levels in respiratory

muscle. PO2 cycling is a drug-free treatment that possibly

stimulates the diaphragm to activate its own antioxidant defense

systems to resist fatigue development. This may be an effective

method for enhancing muscular endurance. In addition, the

current in vitro study provides a redox perspective into mouse

respiratory muscle under optimal preconditions.
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