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Medical data analysis is an important part of intelligent medicine, and clustering analysis is a commonly used method for data
analysis of Traditional Chinese Medicine (TCM); however, the classical K-Means algorithm is greatly affected by the selection of
initial clustering center, which is easy to fall into the local optimal solution. To avoid this problem, an improved differential
evolution clustering algorithm is proposed in this paper. The proposed algorithm selects the initial clustering center randomly,
optimizes and locates the clustering center in the process of evolution iteration, and improves the mutation mode of differential
evolution to enhance the overall optimization ability, so that the clustering effect can reach the global optimization as far as
possible. Three University of California, Irvine (UCI), data sets are selected to compare the clustering effect of the classical K-
Means algorithm, the standard DE-K-Means algorithm, the K-Means++ algorithm, and the proposed algorithm. The experimental
results show that, in terms of global optimization, the proposed algorithm is obviously superior to the other three algorithms, and
in terms of convergence speed, the proposed algorithm is better than DE-K-Means algorithm. Finally, the proposed algorithm is
applied to analyze the drug data of Traditional Chinese Medicine in the treatment of pulmonary diseases, and the analysis results

are consistent with the theory of Traditional Chinese Medicine.

1. Introduction

Clustering belongs to unsupervised learning, so it can
improve the objectivity of the results when applied to
medical research. The earliest application of clustering
technology to assist medical diagnosis was in the 1970s
[1]. With the rapid development of intelligent medicine in
5G era, some scholars study the medical auxiliary diag-
nosis and have made some achievements [2-5]. For ex-
ample, Xu et al. simulated the process of TCM diagnosis
and created an online analysis platform for TCM based on
Latent Tree to assist TCM diagnosis. When using clus-
tering to study TCM syndrome differentiation, it can show
obvious objectification and quantification characteristics
[6, 7]. Therefore, clustering analysis has become a com-
mon data analysis method in TCM diagnosis and treat-
ment and provides an objective method for TCM clinical
syndrome differentiation and treatment. However, at
present, most studies apply clustering to TCM symptoms

and syndromes, while few studies apply clustering to drug
analysis [7].

K-Means is a classical clustering algorithm, which has
the advantages of simple implementation, fast convergence,
and high efficiency. However, in the K-means clustering
algorithm, it is necessary to determine the number of
clusters K in advance based on experience and randomly
select the initial clustering center. Therefore, the results of
cluster analysis are greatly affected by the selection of initial
clustering center, outliers, and noise data, which will lead to
the unstable results and fall into local optimal solution. Itis a
feasible idea to determine the initial clustering center and
optimize the location by the optimization algorithm. Dif-
ferential Evolution (DE) is a relatively new stochastic op-
timization algorithm, which has strong robustness and
global optimization capability [8]. At present, although some
scholars have introduced global optimization algorithms
such as genetic algorithm and ant colony algorithm into K-
Means clustering algorithm [9, 10], the DE algorithm is


mailto:flyxyl@126.com
https://orcid.org/0000-0002-6983-8181
https://orcid.org/0000-0002-5131-1242
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4468741

more efficient and easier to implement than the above
optimization algorithms [11-20].

This paper proposes an improved mutation strategy of
DE and optimizes the determination problem of K-Means
clustering center, which can replace the traditional K-Means
clustering algorithm to update the clustering center con-
tinuously. In this way, it can effectively avoid the K-Means
algorithm falling into the local optimum. Accordingly, the
high-quality initial clustering center can be obtained, and the
convergence speed of DE also can be improved. To verify the
effectiveness of the proposed algorithm, three UCI datasets
are used to compare K-Means, DE-K-Means, and the pro-
posed algorithm. The experimental results show that the
proposed algorithm has better clustering effect.

Finally, the proposed algorithm was used to conduct
cluster analysis on the data of TCM drugs in the treatment of
diffuse interstitial pulmonary disease, and the method that
using TCM to treat the disease and the compatibility rule of
drugs are obtained. The contributions of this paper are as
follows:

(1) An improved DE clustering algorithm is proposed
for analyzing the data of Traditional Chinese
Medicine
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(2) Experimental studies are used, using UCI standard
datasets to verify the performance of the proposed
algorithm

The rest of this paper is organized as follows: Section 2
introduces the relevant theories. Section 3 presents an im-
proved differential evolution-based K-Means clustering al-
gorithm. Section 4 describes the experiment and evaluation.
Section 5 surveys related works and Section 6 concludes the
study.

2. Relevant Theories

The clustering algorithm divides similar data objects into the
same class when analyzing data, and its definition can be
described as follows: the known set D={0,, O,, ..., O,}, O;
represents the ith object, i={1, 2, ..., n}, C;={O0, Op, ...,
Ou}, G, D, t={1,2, ..., k}, in the set C,, the first subscript ¢
represents the category in the set, and the second subscript
represents a data object in the category . If proximity (O;,
0j) represents the similarity between objects O; and O;, then
each C, satisfies the following formula:

Uk ,C, =D. (1)

For all the C,, C,€ D and C,#C,, if C,n C, = ¢ (only for
rigid clustering), then

MINyo,,0,,ec, vC,eD (similarity (0,,,0,,)) > MAXvoxmec 0,,€C, ¥C,C,<D (Similarity (0,,,0,,))’ (2)

The result of clustering is that the data in the same
category are less different from each other and have greater
similarity, and the data of different categories have large
differences and small similarity. The similarity between the
data is estimated based on the property values of the data
objects and is measured by density, distance, connectivity,
etc. The distance between data objects is taken as the
measurement indicators. The smaller the distance, the
greater the similarity. Similarly, the larger the distance, the
smaller the similarity. At present, a variety of distance
calculation formulas are available; the most commonly used
are as follows [1].

Manbhattan distance:

d(0,,0,) = g[o,.k -0y (3)

Euclidean distance:

d(0,0;) = (4)
Cosine distance:
d(0,0)) = (5)

X, yn

The data object O;={O0;;, Op, - . ., O;,,}, and n represents
that the data object has » attributes.

2.1. K-Means Algorithm. K-Means algorithm belongs to
hard clustering algorithm, which is a prototype-based ob-
jective function clustering method. It obtains the optimized
objective function by calculating the distance from data
points to the prototype and obtains the adjustment rules of
iterative operation by using the function to calculate the
extreme value.

2.2. Differential Evolution Algorithm. Differential Evolution
(DE) is a population-based heuristic algorithm, which has
the characteristics of strong robustness, high speed, and
simple structure. The basic operations of Differential Evo-
lution algorithm include mutation, crossover, selection, and
iteration. Its process is briefly introduced below.

First of all, the DE algorithm needs to initialize the
parameters and generate the initial population randomly.
Then, mutation operations operation is performed on the
population. The common mutation strategies are as follows:

DE/rand/1:

vi(9) = x, (9) +Fx[x, (9)-x, (9)]  (6)
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DE/best/1:
vi(9) = Xpee (@) + FX[x, (9) - %, ()] (D)

DE/current-to-best/1:

vi(9) = x;(9) + F x [y (9) = %, (9)] + F x[x,, (9) - x,,(9)]
(8)

After that, the cross operation is performed to improve
the diversity of the population, and binomial crossover is
generally selected as follows:

(9) Vij (g),
u; . =
1] g xi)j (g)’

if randi,]‘ [0,1]<CR orj = jrand’
otherwise.
9

Binomial crossover intersects the generated mutation
vector V;(g) with the parent individual vector X;(g) to
obtain the experimental vector U, ; (g), in which the symbol
U, (g) represents the jth gene of the ith individual in the g
generation populations, j=1, 2, ..., D, and D denotes the
dimension of the problem. The symbol j.,4 denotes a
random integer with uniform distribution in [1, D], which
ensures that at least one dimension of the experimental
vector comes from the mutation vector. Crossover proba-
bility CR controls the convergence speed of the algorithm,
and CR€ [0, 1].

Finally, the selection operation is performed, in which
the excellent individuals with the optimal objective function
value are preserved and evolved into the next generation.
Take the solution minimization as an example, as shown in
the following equation:

x(g+1) = { ui (), if f (:(9), (10)

x;(g), otherwise.

3. Improved Differential Evolution-Based K-
Means Clustering Algorithm

3.1. Population Initialization. The clustering algorithm
based on DE randomly generates the initial population
POP= [.xl, X2y X35 v 0y XNP], Xi= [x,-’l, Xi2> Xi3se e o .xi,D]; the
symbols NP and D denote the population size and the data
dimension, respectively. Compared with the traditional K-
Means algorithm, it can provide a larger search space for
finding the optimal clustering center.

3.2. Population Diversity-Based Double-Mutation Operation

3.2.1. Population Diversity Calculation. The ability of the
algorithm to search the optimal solution depends on the
current population diversity. Tang et al. [21] defined the
population similarity coefficient to judge the population
diversity, and Wang et al. [22] defined the variance of the
population fitness value to reflect the aggregation degree of
all individuals in the population. Referring to their studies,

this paper proposes a new indicator A, to evaluate pop-
ulation diversity, and the indicator A, can be calculated by
the following formulas:

1 NP
o = xp gx,-(g), (11)
NP
2

@ = \Np ;(’Cz (@)~ #y) (12)
99

Mg =—= (13)
7 g

Here, the symbols NP, x;(g), u(g), and o(g) represent
the population size, the individual i of gth generation, the
central individual in the population, and the average dis-
tance from all individuals in the population to the central
individual. As shown in Figure 1, it is assumed that there are
three individuals x;, x,, and x5 in the population, and the
central individual is y (g). The larger the value of A(g), the
greater the distance between individuals, that is, the better
the diversity. The smaller the value of 1(g), the worse the
population diversity, and the individuals in the population
are more clustered.

3.2.2. Double-Mutation Strategy. In the evolution process,
in order to balance the development ability and convergence
speed of algorithm, Zhang and Sanderson [23] and Islam
et al. [24] adopted a new mutation strategy, and Qin et al.
[25] and Yi et al. [26] proposed the multimutation strategy.
Based on the previous studies, this paper combines two
mutation strategies to carry out mutation operation on
individual population, which is recorded as double-muta-
tion operation. That is, according to the current population
diversity, the appropriate mutation strategy is selected.

{ %, (9) + Fx[x, (9) - x,,(9)].  A(y<Threshold,

Vilg) =

Xpest (9) + F x [xrl (9) - Xy, (g)], otherwise.
(14)

As shown in formula (14), in the early stage of evolution,
the population diversity is good, and the value of A(g) is
greater than the set threshold. At this time, the mutation
strategy DE/best/1 is selected to guide the search direction of
the population with the optimal individual, which can en-
hance the development ability of the algorithm and accel-
erate the convergence speed of the algorithm. With the
increase of evolution generation, the population diversity
will rapidly decline. When the population diversity evalu-
ation indicator is less than the set threshold, the mutation
strategy DE/rand/1 is selected, which selects individuals
randomly to guide the search direction and improves the
population diversity to avoid falling into the local optimal
solution.

In evolution algorithms, population diversity is generally
approximate to the variance of individual variable values.
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FIGURE 1: The central individual u(g).

The larger the variance, the higher the diversity. The average
indicator A (g) proposed in this paper includes the distance
from all individuals to the central individual, which belongs
to the variation of variance measurement and can reflect the
change of population diversity.

3.3. Fitness Function. Clustering belongs to unsupervised
learning method. When using evolution algorithm to solve
the clustering, it should be transformed into an optimization
problem at first, and the optimal objective function (i.e.,
fitness function) should be established. In this paper, the
sum of within-class distances (WCD) is taken as the fitness

function.
k my

wcd = Zfo—ck. (15)

k=1i=1

As shown in formula (15), the symbols k, m, xf, and ¢
represent the number of clustering, the total number of data
in the K class, the ith data in the K class, and the clustering
center of the K class, respectively. In this paper, formula (4)
is used to calculate the distance from each data point to each
clustering center. The smaller the value of WCD, the more
concentrated the data points in various types, and the better
the clustering effect; that is, the minimization of WCD is
solved.

3.4. Improved Differential Evolution Clustering Algorithm.
The improved DE is combined with K-Means clustering
algorithm to obtain the optimized clustering algorithm, that
is, the clustering algorithm based on the improved differ-
ential evolution. The initial clustering center of the algorithm
is randomly selected, and the optimal location of the clus-
tering center is realized in the evolution process, so that the
final clustering result can reach the global optimal. The
overall flow of the algorithm is given in Algorithm 1.

In Algorithm 1, the population POP and each parameter
value should be initialized at first. Then, according to for-
mula (15), the objective function value of each individual can
be calculated, and the current optimal value can be obtained.
After that, the indicator of population diversity is calculated
by formulas (11)-(13), and the mutated individual is
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obtained by directing all individuals to perform variation
operations based on current population diversity. Then, the
experimental individuals can be obtained by performing
cross operation on the mutated individuals. Formula (15) is
used to evaluate the fitness of experimental individuals and
contemporary individuals, and the better individuals are
selected to enter the next generation; accordingly, the ob-
jective function value of the optimal individual is retained.
Finally, the algorithm will go to statement 3 for execution
until the optimal solution is obtained or the maximum
number of iterations is reached.

4. Simulation Experiment and Analysis

4.1. UCI Standard Test Set. In order to verify the perfor-
mance of the algorithm, this paper compares K-Means, K-
Means++, and DE-K-Means clustering algorithm with the
proposed algorithm. Three data sets were selected from the
UCI as test datasets, and the properties are described in
Table 1.

In the DE-K-Means algorithm and the proposed algo-
rithm, the mutation factor F is set to 0.6, the crossover
probability CR is set to 0.5, the population size NP = 10*
dim, and the threshold value of A in the proposed algorithm
is set to 0.005. Moreover, dim represents the number of
individual attributes. If the algorithm converges to the same
optimal solution more than 400, then the algorithm is
terminated. The maximum evaluation times is 1500, and
each algorithm will run 40 times independently for the test
set. The simulation software used in the experiment is
MATLAB R2016b.

The clustering results are shown in Tables 2-4, the
maximum value, minimum value, and average value of the
inner-class distance which are obtained through 40 inde-
pendent experiments on three UCI datasets. From these
experimental results, it can be seen that K-Means algorithm
and K-Means++ algorithm have a fast convergence speed
with the least number of iterations. However, there is a large
gap between the maximum and minimum values of the
inner-class distance, and the results fluctuate greatly.
Moreover, the tightness between data in the same class is
poor, and the stability of clustering results needs to be
improved. Compared with K-Means and K-Means++ al-
gorithms, the objective function value optimized by DE-K-
Means algorithm and the proposed algorithm are better, the
stability and accuracy of clustering results are improved, and
the clustering results obtained by the proposed algorithm are
better. In short, the performance of the proposed algorithm
is better than other algorithms in three datasets, especially in
the Zoo dataset.

The comparisons of convergence curves between DE-K-
Means algorithm and the proposed algorithm on UCI data
are shown in Figures 2-4. It is found that, compared with
DE-K-Means algorithm, the target function value of the
proposed algorithm tends to be optimal earlier; that is, the
convergence speed of the proposed algorithm is better than
that of the DE-K-Means algorithm. To sum up, the proposed
algorithm performs well in stability, accuracy, and con-
vergence speed.
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Input: Data set D={d;, do, ..., d,}

Output: The optimal clustering

Begin
Initializing the population and parameters;
Evaluating fitness of population and keeping optimal value;
Do
Calculating the indicator of population diversity;
Guiding all individuals to perform mutation operation;
Performing cross operation;

@
()
A3)
(4)
(5)
(6)

(7)  Performing selection operation;

(8)  Updating the population;

(9)  Keeping the current optimal value;

(10)  While (Not the optimal solution or the maximum number of iterations)
End

ArcoriTHM 1: Improved differential evolution clustering algorithm.

TaBLE 1: The base information of datasets.

Datasets Number of data Number of attributes Number of classes
Iris 150 4 3
Wine 178 13 3
Zoo 101 16 7

TaBLE 2: The clustering results of Iris.
Algorithm  Minimum inner-class distance Maximum inner-class distance Mean inner-class distance Mean number of iterations
K-Means 97.3259 123.8497 103.042985 7.1
K-Means++ 97.3259 122.4787 100.461185 6.6
DE-K-Means 96.6555 97.3365 96.6725675 1109.3
Proposed 96.6555 96.6555 96.6555 549.8

TaBLE 3: The clustering results of Wine.
Algorithm  Minimum inner-class distance Maximum inner-class distance Mean inner-class distance Mean number of iterations
K-Means 16555.6794 18436.9521 16953.75104 7.9
K-Means++ 16555.6794 18436.9521 17384.2979 8.0
DE-K-Means 16292.1846 16295.1591 16292.43106 1500.0
Proposed 16292.1846 16292.6672 16292.19667 1319.2

TaBLE 4: The clustering results of Zoo.
Algorithm  Minimum inner-class distance Maximum inner-class distance Mean inner-class distance Mean number of iterations
K-Means 101.9719 133.4409 110.77463 5.0
K-Means++ 101.9719 118.4956 109.392745 3.9
DE-K-Means 101.3131 126.2266 106.9885275 1500.0
Proposed 101.1552 107.9804 104.4135725 1500.0

4.2. Data Comparison of Lung Diseases in Traditional Chinese
Medicine. Diffuse pulmonary interstitial disease is charac-
terized by alveolar damage and interstitial fibrosis [27]. Since
it has high morbidity and mortality, with the deterioration of
air quality, how to prevent the disease and the usage of drugs
for disease are the hot spots that people pay attention to. In
this paper, the clustering algorithm based on differential
evolution is used to analyze the usage rules of prescriptions
of Traditional Chinese Medicine in the treatment of diffuse
interstitial lung disease.

The data of this section comes from the “Database of
Literature Research on the Diagnosis and Treatment of
Diftuse Pulmonary Interstitial Disease by modern famous
veteran doctors of TCM,” which contains 39 kinds of TCM
works and 16 literatures, with a total of 270 data [28].

Based on the experimental results of the UCI dataset, in
this section, the DE-K-Means algorithm and the proposed
algorithm are used for clustering the drug data of diffuse
interstitial pulmonary disease (hereinafter referred to as
TCM data). In these two algorithms, the values of variation
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FIGURE 2: The standard DE-K-Means Iris convergence curve (a) and the improved DE-K-Means Iris convergence curve (b).
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TaBLE 5: The clustering results of TCM data.

Algorithm Minimum inner-class distance Maximum inner-class distance Mean inner-class distance
DE-K-Means 493.9222 524.8227 501.462525
Proposed 489.2295 507.5878 496.5335875
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FIGURE 5: The convergence curve of DE-K-Means algorithm.
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FIGURE 6: The convergence curve of the proposed algorithm.

factor F and crossover probability CR are set to 0.6 and 0.5,
respectively, and the population size NP equals 10+dim. The
threshold value A in the proposed algorithm is set to 0.001. If
the algorithm converges to the same optimal solution more
than 400 times, the algorithm will be terminated. The
maximum number of evaluations is 2500. Each algorithm
will independently run the data for 40 times. The simulation
software used in experiments is MATLAB R2016b.

A reasonable experience value K=7 can be obtained by
analyzing and comparing the experimental results of the
number of different categories. The experimental clustering
results are shown in Table 5. The convergence graphs of DE-
K-Means and the proposed algorithm on the given data are
shown in Figures 5 and 6, respectively.

From Table 5 and Figures 5 and 6, it can be seen that the
clustering effect of the proposed algorithm is better than the

DE-K-Means algorithm for TCM data. Combined with the
theory of TCM, the seven clustering results are described as
follows.

The main drugs of class 1 include Angelica, Astragalus
membranaceus, honeysuckle, and raw Astragalus. Among
them, Astragalus membranaceus can nourish the middle and
Qi. Angelica can replenish blood and activate blood. Hon-
eysuckle can clear away heat and detoxify. Raw Astragalus
can nourish the surface and stop sweating and invigorate the
Qi and Yang. These drugs are matched to replenish Qi and
blood, replenish diarrhea, and clear away heat and toxins. It
is applicable to those who have the syndrome of deficiency of
Qi and Yin, deficiency of Qi and blood, and stagnation of
heat and toxin.

The main drugs of class 2 include Salvia miltiorrhiza,
Angelica sinensis, red peony root, and Ligusticum wallichii.



Among them, Salvia miltiorrhiza can activate blood circu-
lation and regulate menstruation and can cool blood to
eliminate carbuncle. Red peony root can clear heat and cool
blood and can activate blood circulation to remove blood
stasis. Ligusticum wallichii can open depression and can
activate blood and relieve pain. These drugs are matched to
promote blood circulation and remove blood stasis and are
suitable for the symptoms caused by blood stasis.

The main drugs of class 3 include Fritillaria sichuanensis,
Fritillaria thunbergii, Scutellaria baicalensis Georgi, and
Schisandra chinensis. Among them, Fritillaria sichuanensis
can clear away heat and moisten the lung, dissipate phlegm
and stop cough, and can disperse the knot and eliminate
carbuncle. Fritillaria thunbergii can clear away heat and
phlegm and stop cough, detoxify the knot, and eliminate
carbuncle. Scutellaria baicalensis can clear away heat and dry
dampness and can relieve fire and detoxify. Schisandra
chinensis can collect lung and stop cough and can nourish
astringent essence. The combination of these drugs can clear
the heat and reduce phlegm, which is suitable for the
syndrome of phlegm-heat accumulated in lung.

The main drugs of class 4 include Ophiopogon japonicus,
Adenophora verticillata, Schisandra chinensis, Fritillaria
sichuanensis, almond, coix seed, Flos Farfarae, cortex mori,
and aster. Among them, Ophiopogon japonicus can promote
the secretion of saliva to quench thirst and can moisten lung
to stop coughing. Adenophora verticillata can nourish yin
and clear heat, moisten lung and dissipate phlegm, benefit
stomach, and generate body fluid. Almond can relieve cough
and asthma, moisten intestines, and relieve constipation.
Coix seed can invigorate the spleen to arrest diarrhea, clear
damp, and promote diuresis. Flos Farfarae can relieve cough.
Aster can dissipate phlegm. Cortex Mori can purge the lung
to calm panting, and induce diuresis to alleviate edema. The
combination of these drugs can dissolve phlegm and arrest
cough, moistening lung and promoting fluid production,
which are suitable for the syndrome cough and asthma with
deficiency of Qi and Yin and stagnation of phlegm heat.

The main drugs of class 5 include Codonopsis pilosula
and licorice. Among them, Codonopsis pilosula can tonify
middle-Jiao and Qi, strengthen spleen, and tonify lung.
Licorice can tonify spleen and Qi, expel phlegm to arrest
coughing, and relieve spasm and pain. The combination of
these two drugs can invigorate the spleen and lung, which
are suitable for the syndrome of deficiency of lung and
spleen.

The main drugs of class 6 include honeysuckle, Tri-
chosanthes, loquat leaf, and licorice. Among them, Tricho-
santhes can clear heat and remove phlegm and moisturize
and smooth the intestines; loquat leaf can clear the lungs and
relieve cough. These drugs are matched to clear the heat and
reduce phlegm, and it is suitable for the wind heat to make
the lung cough and asthma on the inverse.

The main drugs of class 7 include tuckahoe and atrac-
tylodes. Among them, tuckahoe can clear damp and pro-
mote diuresis and tonify spleen and heart. Atractylodes can
tonify the spleen and strengthen the stomach. These two
drugs are matched to strengthen the spleen and dampness,
which is suitable for the syndrome of deficiency of spleen.

Journal of Healthcare Engineering

The analysis of the above seven clustering results is
consistent with the basic knowledge of Traditional Chinese
Medicine. In the treatment of diffuse pulmonary interstitial
disease, there are both clearing heat, resolving phlegm, re-
lieving cough, relieving asthma, promoting blood circula-
tion, removing blood stasis, eliminating dampness and
clearing damp and tonifying Qi, nourishing Yin, enriching
blood, vitality, profiting lung, tonifying the spleen and
kidney, so as to support the main etiology and pathogenesis
of diffuse pulmonary interstitial disease is the combination
of deficiency and excess.

5. Related Works

Differential evolution has emerged as one of the fast, robust,
and efficient global search heuristics of current interest. Das
et al. [11] described an application of DE to the automatic
clustering of large unlabeled data sets. In contrast to most of
the existing clustering techniques, the proposed algorithm
requires no prior knowledge of the data to be classified. To
study whether the performance of DE can be improved by
combining several effective trial vector generation strategies
with some suitable control parameter settings, Wang et al.
[12] proposed a novel method, called composite DE (CoDE),
which uses three trial vector generation strategies and three
control parameter settings and randomly combines them to
generate trial vectors. For the unconstrained global opti-
mization problems, Liu et al. [13] proposed a hybrid DE
based on the one-step k-means clustering and 2 multiparent
crossovers, called clustering-based differential evolution
with 2 multiparent crossovers (2-MPCs-CDE). In their
method, the k cluster centers and several new individuals
generate two search spaces. Xu et al. [14] proposed a su-
perior-inferior (SI) crossover scheme based on DE. In their
scheme, when population diversity degree is small, the SI
crossover is performed to improve the search space of
population. Otherwise, the superior-superior crossover is
used to enhance its exploitation ability. Mohamed et al.
[15, 16] proposed an adaptive guided differential evolution
algorithm (AGDE) for solving global numerical optimiza-
tion problems over continuous space, and they also propose
a novel differential evolution algorithm, called NDE, for
solving constrained engineering optimization problems. The
key idea of the proposed NDE is the use of new triangular
mutation rule, which is used to search for better balance
between the global exploration ability and the local ex-
ploitation tendency as well as enhancing the convergence
rate of the algorithm through the optimization process.
Meng et al. [18, 19] proposed the parameter adaptive DE
(PaDE) to tackle the weaknesses of DE, such as the improper
control parameter adaptation schemes and the defect in a
given mutation strategy. They also proposed a novel DE
variant, named Depth information-based Differential Evo-
lution with adaptive parameter control for numerical op-
timization (Di-DE), in which the novel mutation strategy,
grouping strategy, and cooperative strategy are adopted to
tackle the weaknesses of DE, such as the premature con-
vergence to some local optima of a mutation strategy and the
misleading interaction among control parameters. Wang
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et al. proposed a self-adaptive mutation differential evolu-
tion algorithm based on particle swarm optimization
(DEPSO) to improve the optimization performance of DE,
in which the population diversity can be maintained well in
the early stage of the evolution, and the faster convergence
speed can be obtained in the later stage of the evolution.

6. Conclusions

This paper proposes an improved differential evolution al-
gorithm, which uses a new indicator to evaluate population
diversity, and adopts the double-mutation strategy
according to the current population diversity. The improved
DE is applied to K-Means clustering to optimize and locate
the clustering center, which can improve the performance
and stability of clustering algorithm. The simulation results
show that the improved clustering algorithm can improve
the global optimization and convergence speed. Finally, the
improved clustering algorithm is used to analyze the
medication data of TCM in the treatment of pulmonary
diseases. The clustering results are in accord with the theory
of Traditional Chinese Medicine, which verify that the main
etiology and pathogenesis of pulmonary diseases are
intermingled deficiency and excess, deficient root and ex-
cessively superficial. As a whole, it not only provides ref-
erence for clinical treatment, but also verifies the
practicability of the proposed method.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant nos. 81703946 and 61902113);
the subproject of the National Key Research and Develop-
ment Program (Grant no. 2017YFC1703506); the Science
and Technology Research Project of Henan Province (Grant
no. 212102310362); the Young Teacher Program of Higher
Education Institutions of Henan Province (Grant no.
2020GGJS104); and the Scientific Research Nursery Project
of Henan University of Chinese Medicine (Grant no.
MP2020-07).

References

[1] D. L. Wang, J. L. Lu, S. Wu, Y. Zhang, and Y. Ge, “Appli-
cations of image classification and clustering algorithms in
medical image mining,” Computer Engineering, vol. 2,
pp. 168-170, 2007.

[2] L.Sun,]. He, X. Yin et al., “An image segmentation framework
for extracting tumors from breast magnetic resonance

[3

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

images,” Journal of Innovative Optical Health Sciences, vol. 11,
no. 4, Article ID 1850014, 2018.

L. Sun and J. He, “An extensible framework for ECG anomaly
detection in wireless body sensor monitoring systems,” In-
ternational Journal of Semsor Networks, vol. 29, no. 2,
pp. 101-110, 2019.

Y. Xu, Z. Wang, Y. Lv, and L. Wang, A. Wang, H. Zhu, and
T. Song, The web version of lantern: a online analysis platform
for TCM based on latent tree,” Modernization of Traditional
Chinese Medicine and Materia Medica-World Science and
Technology, vol. 22, no. 7, pp. 2224-2232, 2020.

J. He, L. Sun, J. Rong, H. Wang, and Y. Zhang, “A pyramid-
like model for heartbeat classification from ECG recordings,”
PLoS One, vol. 13, no. 11, Article ID 0206593, 2018.

X.Y. Su, “Application of data Mining cluster analysis method
in TCM clinic,” Practical Clinical Journal of Integrated Tra-
ditional Chinese and Western Medicine, vol. 10, no. 6,
pp. 90-93, 2010.

Y. Ma, “A study of an advanced K-means clustering analysis
algorithm in hospital information system,” Journal of Infor-
mation Recording Materials, vol. 2, no. 3, pp. 93-96, 2012.
S.Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in
differential evolution - an updated survey,” Swarm and
Evolutionary Computation, vol. 27, pp. 1-30, 2016.

Y. X. Lai, J. P. Liu, and G. X. Yang, “K-means clustering
analysis based on genetic algorithm,” Computer Engineering,
vol. 34, no. 20, pp. 200-202, 2008.

F. Li, B. Xue, and Y. L. Huang, “K-means clustering algorithm
with refined initial center,” Computer Science, vol. 7,
pp. 94-96, 2002.

S. Das, A. Abraham, and A. Konar, “Automatic clustering
using an improved differential evolution algorithm,” IEEE
Transactions on Systems, Man, and Cybernetics - Part A:
Systems and Humans, vol. 38, no. 1, pp. 218-237, 2008.

Y. Wang, Z. Cai, and Q. Zhang, “Differential evolution with
composite trial vector generation strategies and control pa-
rameters,” IEEE Transactions on Evolutionary Computation,
vol. 15, no. 1, pp. 55-66, 2011.

G. Liu, Y. Li, X. Nie, and H. Zheng, “A novel clustering-based
differential evolution with 2 multi-parent crossovers for
global optimization,” Applied Soft Computing, vol. 12, no. 2,
pp. 663-681, 2012.

Y. Xu, J. Fang, W. Zhu, X. Wang, and L. Zhao, “Differential
evolution using a superior-inferior crossover scheme,”
Computational Optimization and Applications, vol. 61, no. 4,
pp. 243-274, 2015.

A. W. Mohamed and A. K. Mohamed, “Adaptive guided
differential evolution algorithm with novel mutation for
numerical optimization,” International Journal of Machine
Learning and Cybernetics, vol. 10, no. 4, pp. 253-277, 2017.
A. W. Mohamed, “A novel differential evolution algorithm for
solving constrained engineering optimization problems,”
Journal of Intelligent Manufacturing, vol. 29, no. 3, pp. 659-
692, 2018.

X.Yu, Y. Lu, and X. Wang, “An effective improved differential
evolution algorithm to solve constrained optimization
problems,” Soft Computing, vol. 23, no. 7, pp. 2409-2427,
2019.

Z. Meng, J.-S. Pan, and K.-K. Tseng, “PaDE: an enhanced
Differential Evolution algorithm with novel control parameter
adaptation schemes for numerical optimization,” Knowledge-
Based Systems, vol. 168, pp. 80-99, 2019.

Z. Meng, C. Yang, and X. Li, “Di-DE: Depth information-
based differential evolution with adaptive parameter control



10

[20

[21

(22]

[23

24

(25]

[26]

(27]

(28]

for numerical optimization,” IEEE Access, vol. 8, no. 99,
Article ID 40809, 2020.

S. Wang, Y. Li, and H. Yang, “Self-adaptive mutation dif-
ferential evolution algorithm based on particle swarm opti-
mization,” Applied Soft Computing Journal, vol. 81, pp. 1-22,
2019.

W. Tang, Z. X. Bai, and X. Gao, “Dissolved oxygen con-
centration control system based on the adaptive mutation
differential evolution algorithm,” China Pulp and Paper,
vol. 36, no. 6, pp. 49-54, 2017.

C.J. Wang, X. H. Wang, and J. M. Xiao, “Hybrid differential
evolutionary algorithm based on extremal optimization,”
Computer Science, vol. 40, no. 5, pp. 257-260, 2013.

J. Zhang and A. C. Sanderson, “JADE: adaptive differential
evolution with optional external archive,” IEEE Transactions
on Evolutionary Computation, vol. 13, no. 5, pp. 945-958,
2009.

S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan, “An
adaptive differential evolution algorithm with novel mutation
and crossover strategies for global numerical optimization,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 42, no. 2, pp. 482-500, 2012.

A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential
evolution algorithm with strategy adaptation for global nu-
merical optimization,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 2, pp. 398-417, 2009.

W. Yi, L. Gao, X. Li, and Y. Zhou, “A new differential evo-
lution algorithm with a hybrid mutation operator and self-
adapting control parameters for global optimization prob-
lems,” Applied Intelligence, vol. 42, no. 4, pp. 642-660, 2015.
R. Zhang, M. T. Dai, and K. Li, “Analyzing of the rule of drug
use for diffuse interstitial lung disease based on the experience
of modern famous traditional Chinese medicine,” Chinese
Medicine Research, vol. 10, pp. 59-61, 2017.

Y. M. Cai, L. P. Chen, J. S. Li, Q. L. Li, S. M. Sun, and C. W. Li,
“Database establishing and data mining of pulmonary dis-
eases based on clinical works by modern famous veteran
doctors of Chinese medicine,” Chinese Journal of Integrated
Chinese and Western Medicine, vol. 35, no. 10, pp. 756-765,
2015.

Journal of Healthcare Engineering



