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ABSTRACT

mBodyMap is a curated database for microbes
across the human body and their associations with
health and diseases. Its primary aim is to pro-
mote the reusability of human-associated metage-
nomic data and assist with the identification of
disease-associated microbes by consistently anno-
tating the microbial contents of collected samples
using state-of-the-art toolsets and manually curat-
ing the meta-data of corresponding human hosts.
mBodyMap organizes collected samples based on
their association with human diseases and body
sites to enable cross-dataset integration and com-
parison. To help users find microbes of interest
and visualize and compare their distributions and
abundances/prevalence within different body sites
and various diseases, the mBodyMap database is
equipped with an intuitive interface and extensive
graphical representations of the collected data. So
far, it contains a total of 63 148 runs, including 14
401 metagenomes and 48 747 amplicons related to
health and 56 human diseases, from within 22 hu-
man body sites across 136 projects. Also available
in the database are pre-computed abundances and
prevalence of 6247 species (belonging to 1645 gen-
era) stratified by body sites and diseases. mBodyMap

can be accessed at: https://mbodymap.microbiome.
cloud.

INTRODUCTION

Microbes inhabit almost all human body parts and play crit-
ical roles in human health and disease (1–4). The human mi-
crobiota is located primarily in the gut, where the numbers
and diversity from the stomach to the colon multiply con-
tinuously (3,5). However, other anatomical parts, includ-
ing the lungs, skin, vagina, eyes, placenta, ears, mouth and
nasal compartments also harbor microbiomes (6,7). Mi-
crobiome’s composition varies depending on the anatomy
(e.g. between the intestine and the lungs), between individ-
uals and even over time (4,8–10); it can be altered by di-
etary changes (including the use of probiotics, the use of
antibiotics and other drugs (11–14), age (15) or diseases)
and other factors and is also dynamic (16–19). For in-
stance, the human skin microbiome is highly personalized,
depending on multiple factors, such as body site, age, gen-
der and lifestyle elements (20–23). In addition to individ-
ual microbes (e.g. known pathogenic bacteria), changes in
the composition of microbes (i.e. dysbiosis) are increasingly
observed in many diseases, like colorectal cancer (CRC),
type 2 diabetes (T2D), and inflammatory bowel disease
(IBD) (24). Therefore, the importance of maintaining a
healthy microbiota has garnered attention over the years, al-
though the exact definition of ‘healthy microbiota’ remains
to be provided (25,26). This increased attention has seen
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probiotics, prebiotics, and synbiotics developed and used to
intervene in microbial dysbiosis and/or restore ‘healthy mi-
crobiota’ in cases of numerous diseases (13,27–38).

Public databases, such as HMDAD (the Human
Microbe-Disease Association Database) (39), Disbiome
(22) and MicroPhenoDB (40) that store associations be-
tween human diseases and microbes across body sites have
been established. Table 1 summarized their main features.
Briefly, HMDAD and Disbiome collect text-mining-based
microbe-disease associations from peer-reviewed publi-
cations and determine the strength of these associations
based on the credibility of the data sources. MicroPhenoDB
harvests microbe-disease relationships from the HMDAD
and Disbiome databases and other open resources and is,
therefore, the largest database with associations between
microbes and diseases so far. However, despite the valued
contributions to microbe-disease associations that these
databases provide, they tend to focus primarily on individ-
ual pathogenic microbes through text-mining and largely
overlook vital contributions from the microbial community
as a whole on health and diseases. A comprehensive collec-
tion of curated and consistently annotated metagenomic
datasets to link human-related microbes within different
sites of the whole body to health and diseases, therefore,
remains unavailable.

In that regard, we developed mBodyMap, a curated
database for microbes across 22 human body sites and
their relationships with health and diseases. Overall, we
collected 63 148 metagenomic samples/runs from both
16S rRNA and metagenomic next-generation sequencing
(mNGS) across 136 projects. The core mBodyMap fea-
tures include: (i) manually curated healthy and diseased
information for each collected run/sample and all possi-
ble related meta-data, such as age, sex, country and body-
mass-index (BMI); (ii) consistently annotated microbial
contents, including taxonomic assignments of sequencing
reads and precomputed species/genus relative abundances
using state-of-the-art toolsets; (iii) collected samples or-
ganized based on their associated health control and dis-
eases, sample harvesting body sites and statistics, including
species-prevalence and abundances; (iv) equipment with an
intuitive graphical representation of the distributions and
abundances/prevalence of microbes across the human body
that enables users to browse the distribution of microbes
across the human body and compare microbes’ distribution
among various diseases and health intuitively.

DATABASE CONSTRUCTION

Data collection of sequencing reads and manual curation of
associated meta-data

To identify human-related metagenomic datasets, we sys-
tematically searched public databases, including the NCBI
BioProject (https://www.ncbi.nlm.nih.gov/bioproject/) and
EBI ENA (41) (European Nucleotide Archive, https://www.
ebi.ac.uk/ena) and manually examined related project in-
formation to determine the accuracy of datasets as human-
associated metagenomic datasets.

Next, we downloaded the raw sequencing data from EBI
ENA (41) and NCBI SRA (42) (Sequence Read Archive,

https://www.ncbi.nlm.nih.gov/sra) using enaBrowserTools
(https://github.com/enasequence/enaBrowserTools) and
SRA-Tools (https://github.com/ncbi/sra-tools) facilitated
by Aspera (a high-speed data transfer tool). For each
run and sample, we also downloaded relevant meta-data,
including technical metadata, such as the sequencing
platform, number of reads, and read length, and biological
metadata, such as the body site from which the samples
were taken, as well as the age, gender, country, body mass
index (BMI), and disease(s) of the human host. We man-
ually curated the meta-data twice: round one consisted of
manually inspecting the extracted meta-information with
the help of in-house R or Perl scripts to find all meta-data
of interest; if necessary, the related publication(s), supple-
mentary materials, and even the corresponding authors
were consulted. During the second round of manual
curation, different curators from the first round reviewed
the collected meta-data and made necessary corrections.

We stratified samples according to their associated hu-
man health or disease and body sites from which the sam-
ples were harvested. The body sites in question are as fol-
lows: ear, nose, oral, trachea, esophagus, upper respiratory
tract, lung, stomach, uterus, cervix, fallopian tube, ovary,
vagina, urethra, skin, blood, peritoneal fluid, large intes-
tine and small intestine.

Processing of raw sequencing reads

We processed the downloaded raw sequencing reads
in FASTQ format using FastQC (v0.11.8, http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) to evalu-
ate the quality and Trimmomatic (43) to remove low-quality
bases and sequencing vectors. Sequences shorter than two-
thirds of the original read length were excluded from subse-
quent analyses.

For 16S sequences, we used single-ended sequencing
reads directly in ensuing analyses but merged pair-ended
reads using Casper (44) v0.8.2 at default parameters be-
fore subsequently analyzing them. Metagenomic sequences
comprising single-ended and pair-ended sequencing reads
were all underwent subsequent analyses directly.

We referred to the resulting sequences as ‘clean data’
and used them for further scrutiny. We also used Seqtk
(https://github.com/lh3/seqtk) to convert FASTQ sequences
to FASTA formats at default parameters if necessary.

Taxonomic assignment of processed sequencing reads and the
calculation of relative abundances

For 16S sequences, we used MAPseq v1.2 (45) to analyze
the clean data and assign taxonomic classification informa-
tion to the reads. As indicated by the creators of MAPseq,
we applied a combined score of 0.4 at the genus level to as-
sign the taxonomic classification. For each sample/run, the
relative abundances at the genus and species levels were sub-
sequently calculated, with total abundance values of 100%.

For metagenomic sequences, we used MetaPhlAn2 (46) at
default parameters to assign taxonomic classification data
to the sequencing reads and calculate relative abundances
at species and genus levels.

https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ebi.ac.uk/ena
https://www.ncbi.nlm.nih.gov/sra
https://github.com/enasequence/enaBrowserTools
https://github.com/ncbi/sra-tools
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https://github.com/lh3/seqtk
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Table 1. Key features of mBodyMap and comparison with similar databases on microbe-human disease associations

Database Key features Data source Data size Reference

# Disease # Microbe

mBodyMap • Comprehensive collection of metagenomic data and
analysis using state-of-the-art tools
• Careful curation of human-related meta-data such as
diseases and health
• Disease-centric organization of pre-calculated
microbial abundance data across the body sites and
diseases
• Intuitive graphical interface and extensive
visualization of the microbial profiles

Metagenomics
data

56 6247 This study

HMDAD • Text mining in large quantity of publications
followed by manual curation
• Construction of a microbe-based human disease
network

Text-mining 39 292 (39)

Disbiome • Collection and presentation of published
microbiota-disease information in a standardized way
• Assessment for each study’s reporting quality using a
standardized questionnaire

Text-mining 372 1622 (22)

MicroPhenoDB • Provision of non-redundant associations between
microbes and human disease phenotypes across
human body and relationships between unique
clade-specific core genes and microbes
• Development of a refined score model to prioritize
the associations based on evidential metrics

Text-mining,
HMDAD and
Disbiome

542 1781 (40)

Quality controls for samples/runs

We conducted sample/run level quality control to guar-
antee the quality of our data: first, we excluded amplicon
samples/runs with <5000 reads from subsequent analy-
ses and marked them as ‘failed QC (QC status = 0)’ in
mBodyMap and then ensured samples/runs contained only
a single taxon, i.e. we also marked a species or a genus ac-
counting for more than or equal to 99.99% of total abun-
dance as ‘failed QC (QC status = 0)’.

Database construction and web development

We loaded all data into the MySQL v5.7.25 (https://www.
mysql.com/) database and coded the frontend (the web-
pages) of the website using HTML and JavaScript and
the backend using Python v3.7.7 (https://www.python.
org/) with a Flask v1.1.2 (https://flask.palletsprojects.com/)
framework to support queries to the MySQL database. We
bridged the front- and back- ends using the Vue.js v 2.6.12
(https://cn.vuejs.org/) framework and visualized the front-
end with plotly.js v1.58.4 (https://github.com/plotly/plotly.
js/). We also used several other open-source JavaScript
libraries, including Element UI v2.15.1 (https://element.
eleme.io/) and BootstrapVue v2.21.2 (https://code.z01.com/
bootstrap-vue/). The website is hosted on an Apache
v2.4.29 (https://www.apache.org/) server.

DATABASE OVERVIEW AND FUNCTIONALITY

Overview of mBodyMap

So far, mBodyMap contains 63 148 runs, including 14 401
metagenomic and 48 747 amplicon runs relating to health
and 56 human diseases, linked to 22 human body sites
across 136 projects (Figure 1A). Of the total, we considered

61 913 runs ‘valid runs’ based on our quality controls and
subsequent analysis processes.

Through multiple rounds of manual curation, we as-
signed clear healthy or disease information to almost all
collected samples, subsequently describing and organizing
these information using the MeSH system (Medical Subject
Headings, a controlled and hierarchically organized vocab-
ulary produced by the National Library of Medicine). We
identified health- and 56 diseases-related information from
the microbiome data. Table 2 contains health and the top
10 diseases included in mBodyMap; they are ranked by the
number of samples/runs they are linked-to in our database.

We also strived to collect as voluminous meta-data as
possible for the microbiome datasets; however, our ardent
efforts yielded only three most basic host details: the age,
sex, and BMI of a very small proportion (3.97%) of the sam-
ples (Figure 1B). 22.61% of the samples contained none of
the basic meta-data, while the rest contained only one or
two (64.23% and 9.19%, respectively) (Figure 1C). These
results are consistent with our previous discovery in gut
microbiome datasets (47). They indicate the difficulties in
reusing metagenomic information and call for detailing
guidelines of meta-information or metagenomic samples.

We identified 6247 species belonging to 1645 genera from
the 61 913 valid runs in our database, with 3710 of the
species belonging to 1075 genera identified in more than one
sample each (with a median relative abundance higher than
0.01% within one or more health/diseases); these results
match our previous finding from gut metagenome analy-
sis that about ∼50% of microbes are specific to individuals
(47). While the prevalence of most species is low, our results
demonstrate that a small number of runs contained massive
amounts of taxa under abundances limitation, expanding
the recognized microbiota species in various parts of the hu-
man body. We believe that further analyses of samples will

https://www.mysql.com/
https://www.python.org/
https://flask.palletsprojects.com/
https://cn.vuejs.org/
https://github.com/plotly/plotly.js/
https://element.eleme.io/
https://code.z01.com/bootstrap-vue/
https://www.apache.org/
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Figure 1. Overview of data in mBodyMap. (A) The left panel contains an interactive body map indicating clickable body sites for which metagenomic
data are available; the right panel contains the number of samples for each body site, stratified by health (dark green) and diseases (yellow). (B) A barplot
summarizing the meta-data we have collected for samples. The Y-axis represents meta-information, and the X-axis denotes the proportion of the samples
comprising this meta-information. (C) The integrity of the metadata assessed based on age, sex and BMI.

Table 2. Statistics of health and the top 10 diseases included in mBodyMap

Health/disease
No. of

associated sites
No. of

processed runs
No. of valid

runs
No. of associated

species
No. of associated

genera

Health 21 42 816 36 852 6070 1623
Respiratory tract infections 3 2357 2274 3525 1103
Cystic fibrosis 1 2129 1656 4569 1353
Pouchitis 2 1858 889 3621 1190
Bacterial vaginosis 1 1541 1538 3775 1227
Chronic obstructive pulmonary disease 3 1174 1084 4122 1292
Premature birth 2 1137 1110 3040 952
Necrotizing enterocolitis 1 1094 659 1037 323
Asthma 1 870 850 3654 1196
Crohn disease 2 714 398 1189 423
Endometrial neoplasms 8 660 604 2835 999

No. of associated sites: the number of body sites from which the sample with this health/disease was harvested.
No. of processed runs: the number of all runs with processed sequence data; all the runs are processed eventually.
No. of valid runs: the number of runs whose data passed our quality control procedure, with the corresponding species/genus relative abundances available
in our database.
No. of associated species: the number of species associated with processed and valid runs.
No. of associated genera: the number of genera associated with processed and valid runs.
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yield an increase in the total number of species/strains in
various parts of the human body.

Web usage

mBodyMap provides a user-friendly and interactive
portal for browsing and querying metagenomic data
and related information. To help researchers find body
site-health/disease associations, mBodyMap provides
users with two search options: one requires a click on the
directives depicting body sites of interest on the picture
of a human body on the front page to view associated
health or diseases, and the other demands choosing be-
tween health/diseases on the ‘Health&Disease’ page to
view related body sites. For each body site-health/disease
pair, we provide information about related projects and
samples/runs and the associated species/genera and their
relative abundances and prevalence in related samples.
For example, to see related details on Chronic Obstructive
Pulmonary Disease of the lung, users can select Chronic
Obstructive Pulmonary Disease on the ‘Health&Disease’
page and then the lung as the body site, for which the query
result will show that there are 4026 associated microbial
species assigned to 1270 genera. Of these, we identified
only 274 species (∼6.81% of the total) assigned to 86
genera (∼6.77% of the total) in more than one sample,
with a median relative abundance higher than 0.01%. See
https://mbodymap.microbiome.cloud/#/health&diseases/
Lung/Chronic%20Obstructive%20Pulmonary%20Disease/
D029424 for more details. Users may then select a species,
such as Streptococcus mitis, to access further information,
including its distribution and abundances in healthy and
diseased samples; for more details, see https://mbodymap.
microbiome.cloud/#/taxon/species/Lung/D029424/28037.
The ‘Taxa’ page that includes ‘Species’ and ‘Genera’ pages
is available to users who can browse through a microbe of
interest to view the body sites it inhabits and the health or
diseases it is associated with.

The ‘Data’ page provides the manually curated meta-
data of metagenomic projects and samples/runs for users
to download. Additional links to NCBI BioProject, NCBI
SRA, and NCBI MeSH Browsers for each of the projects,
runs, and health/diseases are available to help researchers
download data and acquire more material. Furthermore,
for each microbial taxon (i.e. species and genus), we have in-
cluded links to the corresponding pages (if available) in pub-
lic databases, such as NCBI Taxonomy (https://www.ncbi.
nlm.nih.gov/taxonomy) (48), GMrepo (a comprehensive
gut microbiome database stratified by human phenotypes)
(47), and MVP (a microbe-phage association database) (49).
We intend to create more links to external databases as we
continue to improve the site.

Species relative abundance and prevalence within and across
diseases and body sites

With the availability of pre-calculated relative abundances
for all valid runs in mBodyMap, users can visualize the
prevalence of microbes of interest in different diseases;
for comparisons, the distributions of the microbes in
healthy individuals are also provided. Figure 2A presents

the distribution of Haemophilus parainfluenzae: a barplot
is used to depict its prevalence in health and ten dis-
eases associated with the upper respiratory tract (see
also https://mbodymap.microbiome.cloud/#/taxon/species/
Upper%20respiratory%20tract/729; by default, diseases
with >10 valid runs are included in this barplot). Addition-
ally, we visualized its relative abundances across selected
body sites in healthy controls and other diseases and com-
pared the outcomes in a box plot (by default, diseases with
>10 valid runs are included in this box plot; Figure 2B). To
better illustrate the proportions of samples under different
relative abundance thresholds for a species/genera across
each body site, we created a line plot whose Y-axis repre-
sents the percentage of runs per all valid runs within certain
ranges of relative abundances and whose X-axis denotes the
threshold of relative abundances. The line plot displays the
distribution of the relative abundances of selected taxons
across selected body sites (Figure 2C).

With mBodyMap, users can also explore the distribu-
tion of microbes of interest across body sites. Figure 3
shows a graphical representation of the human body used to
show the abundances and prevalence of Streptococcus mitis
across human body sites. We used different colors to rep-
resent various relative abundance and prevalence levels, en-
abling users to browse the distribution of microbes across
the human body intuitively. The distributions of microbes
of interest in both healthy and diseased sites are shown
side by side. In our database, we identified S. mitis in 22
body sites and associated them with 55 diseases (https://
mbodymap.microbiome.cloud/#/taxon/species/28037). The
relative abundances and prevalence of S. mitis were higher
in multiple body sites of the diseased population than in
the corresponding healthy sites, which is consistent with the
characterization of S. mitis as a pathogenic bacterium (Fig-
ure 3).

FUTURE DIRECTIONS

In addition to continuously collecting new metagenomic
data of various human body sites over the next few years,
we plan to add new contents to mBodyMap, including
(but not limited to) viral abundances, functional profiles,
and metabolic pathway profiles of the collected samples.
We also plan to include more functions that allow users
to perform on-site cross-sample comparisons, differential
abundance analyses, and mathematical modeling. Further-
more, we will aim to identify body site-specific or enriched
species and microbial disease markers and compare them
across datasets and projects. We have used the LEfSe (lin-
ear discriminant analysis effect size) (50) method to iden-
tify the marker microbes between health control and dis-
eases in certain projects and visualized them on the web
page; see the ‘in-depth analysis’ section of the following
page for an example: https://mbodymap.microbiome.cloud/
#/data/project/PRJNA275918. This feature will be available
for all projects in the future. These developments should
promote the reusability and accessibility of human metage-
nomic data further and help users better understand the re-
lationship between the dysbiosis of microbiota at multiple
body sites and human diseases.

https://mbodymap.microbiome.cloud/#/health&diseases/Lung/Chronic%20Obstructive%20Pulmonary%20Disease/D029424
https://mbodymap.microbiome.cloud/#/taxon/species/Lung/D029424/28037
https://www.ncbi.nlm.nih.gov/taxonomy
https://mbodymap.microbiome.cloud/#/taxon/species/Upper%20respiratory%20tract/729;
https://mbodymap.microbiome.cloud/#/taxon/species/28037
https://mbodymap.microbiome.cloud/#/data/project/PRJNA275918
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Figure 2. Graphical representation of the abundances, prevalence, and distributions within health and diseases of a selected taxon. Here, Haemophilus
parainfluenzae at the upper respiratory tract is used as an example. (A) Its prevalence across health and multiple diseases. The Y-axis represents health and
various diseases, and the X-axis denotes the proportion of the samples comprising this health or disease. (B) The box plot’s Y-axis representing health and
other diseases and its X-axis denoting relative abundances. (C) Its distributions among health and various diseases.



D814 Nucleic Acids Research, 2022, Vol. 50, Database issue

Figure 3. Distribution of Streptococcus mitis, a known disease-causing bacterium, across body sites in mBodyMap. Display of the relative abundance (A)
and prevalence (B) of S. mitis in various sites of healthy and diseased human bodies. S. mitis was isolated in significant abundances in multiple body sites
of the diseased population, which is consistent with its characterization as a pathogenic bacterium.
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CONCLUSION

This article introduces mBodyMap, a curated database for
microbes across the human body and their associations with
health and diseases. So far, mBodyMap contains 63 148
runs, including 14 401 metagenomes and 48 747 amplicons
relating to health and 56 human diseases, linked to 22 hu-
man body sites across 136 projects. We aim to provide a
central resource for curated and consistently annotated mi-
crobes from various human body sites, which would allow
users to quickly find microbes of interest and visualize their
distributions across the human body and facilitate the iden-
tification of site- and/or disease-specific marker microbes.
We collected the metagenomic datasets of human samples
from multiple sources, manually curated their meta-data,
and annotated their microbial contents using state-of-the-
art toolsets. We then stratified samples according to the
human health or diseases and body sites they are linked
to and pre-computed species/genus relative abundances
and prevalence. As compared with existing databases on
microbe-human disease associations, mBodyMap focuses
on metagenomics data and highlights the important roles
of the microbial community as a whole in health and dis-
eases. In the future, we will add more data and functions to
mBodyMap.

DATA AVAILABILITY

All data are freely accessible to all academic users. This
work is licensed under a Creative Commons Attribution-
Non-Commercial 3.0 Unported License (CC BY-NC 3.0).
Users can view data and associated information from many
web pages and download all data from the ‘Data down-
loads’ section of the ‘Help’ page. Programmable access
through REST APIs is also supported: detailed instruc-
tions on using R and Python to access our data can be
found at the ‘Programmable access’ section of the ‘Help’
page or our GitHub page: https://github.com/whchenlab/
mBodymap/tree/main/programmable-access.
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