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Abstract

Background

In clinical practice, the bodily distribution of chronic pain is often used in conjunction with

other signs and symptoms to support a diagnosis or treatment plan. For example, the diag-

nosis of fibromyalgia involves tallying the areas of pain that a patient reports using a drawn

body map. It remains unclear whether patterns of pain distribution independently inform

aspects of the pain experience and influence patient outcomes. The objective of the current

study was to evaluate the clinical relevance of patterns of pain distribution using an algorith-

mic approach agnostic to diagnosis or patient-reported facets of the pain experience.

Methods and findings

A large cohort of patients (N = 21,658) completed pain body maps and a multi-dimensional

pain assessment. Using hierarchical clustering of patients by body map selection alone, nine

distinct subgroups emerged with different patterns of body region selection. Clinician review of

cluster body maps recapitulated some clinically-relevant patterns of pain distribution, such as

low back pain with radiation below the knee and widespread pain, as well as some unique pat-

terns. Demographic and medical characteristics, pain intensity, pain impact, and neuropathic

pain quality all varied significantly across cluster subgroups. Multivariate modeling demon-

strated that cluster membership independently predicted pain intensity and neuropathic pain

quality. In a subset of patients who completed 3-month follow-up questionnaires (N = 7,138),

cluster membership independently predicted the likelihood of improvement in pain, physical

function, and a positive overall impression of change related to multidisciplinary pain care.

Conclusions

This study reports a novel method of grouping patients by pain distribution using an algorith-

mic approach. Pain distribution subgroup was significantly associated with differences in

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0254862 August 4, 2021 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Alter BJ, Anderson NP, Gillman AG, Yin Q,

Jeong J-H, Wasan AD (2021) Hierarchical

clustering by patient-reported pain distribution

alone identifies distinct chronic pain subgroups

differing by pain intensity, quality, and clinical

outcomes. PLoS ONE 16(8): e0254862. https://doi.

org/10.1371/journal.pone.0254862

Editor: Claudia Sommer, University of Würzburg,

GERMANY

Received: March 25, 2021

Accepted: July 6, 2021

Published: August 4, 2021

Copyright: © 2021 Alter et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This study was supported by the

University of Pittsburgh School of Medicine

(https://www.medschool.pitt.edu/) funds awarded

to ADW and the International Anesthesia Research

Society Mentored Research Award (BJA; https://

iars.org/iars-mentored-research-award/). The

funders had no role in study design, data collection

https://orcid.org/0000-0002-0171-3411
https://orcid.org/0000-0002-6394-6077
https://doi.org/10.1371/journal.pone.0254862
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254862&domain=pdf&date_stamp=2021-08-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254862&domain=pdf&date_stamp=2021-08-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254862&domain=pdf&date_stamp=2021-08-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254862&domain=pdf&date_stamp=2021-08-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254862&domain=pdf&date_stamp=2021-08-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254862&domain=pdf&date_stamp=2021-08-04
https://doi.org/10.1371/journal.pone.0254862
https://doi.org/10.1371/journal.pone.0254862
http://creativecommons.org/licenses/by/4.0/
https://www.medschool.pitt.edu/
https://iars.org/iars-mentored-research-award/
https://iars.org/iars-mentored-research-award/


pain intensity, impact, and clinically relevant outcomes. In the future, algorithmic clustering

by pain distribution may be an important facet in chronic pain biosignatures developed for

the personalization of pain management.

Introduction

The experience of pain is complex and personal, making it difficult to communicate and quan-

tify. Despite these measurement challenges, parsing the experience into distinct constructs has

afforded considerable progress in grouping chronic pain syndromes, defining chronic pain as

a disease, and tailoring pain treatments [1, 2]. Pain quality, intensity, duration, temporal fluc-

tuations, and regional distribution over the body are all important characteristics that are fre-

quently queried [3]. Pain location and radiation are fundamental to chronic pain diagnosis, as

outlined by multiple consensus statements [4]. The bodily distribution of pain is most com-

monly measured with the use of pain drawings, in which the patient or participant marks areas

of their pain on a drawn figure of the body, i.e., the body map [5]. A body map is included in

many validated measures of chronic pain, including the McGill Pain Questionnaire [6] and

the Brief Pain Inventory [7]. Recent variations on the pain body map have improved granular-

ity [8, 9], overlayed other pain characteristics [10], and transitioned from hand-drawn to digi-

tal maps [11–13]. In their clinical use, these tools aid experienced clinicians in quickly

identifying a pattern of pain distribution that fits with a known clinical diagnosis.

Stemming from recent work on fibromyalgia, it has become clear that clinical pain syn-

dromes thought to be distinct entities may share clinically-relevant features, especially regard-

ing the impact of pain distribution on clinically important outcomes. A main feature of

fibromyalgia is widespread pain with the most recent diagnostic criteria relying heavily on

patient-reported areas of pain [14–16]. Clinical similarity to fibromyalgia, without necessarily

a comorbid diagnosis, strongly influences the course and outcome of post-operative pain [17,

18] and multiple chronic pain syndromes [19–21]. In a sample of patients from primary care

clinics who were not previously diagnosed with fibromyalgia, researchers have found that

chronic widespread pain, defined by reaching a threshold number of painful body areas, is

associated with considerably worse overall health outcomes [22]. Clinical gestalt would suggest

that patterns of pain distribution would also be important, in addition to a total sum of painful

body areas, since these patterns are used in current methods of diagnosis. However, to our

knowledge, patterns of pain distribution have not been systematically examined as a predictor

of pain characteristics, functional impact, and/or outcomes.

The goals of the current study were (1) to identify discrete patterns of patient-reported pain

distribution in chronic pain patients, and (2) to determine the relationship(s) of these patterns

with pain intensity, impact, and clinical outcome. If patterns are evident, they may provide

additional information beyond the simple tally of painful areas. Rather than relying on prior

diagnostic classifications, our approach was to utilize hierarchical clustering as a way to iden-

tify distinct groups of patients by similarities in body map selection alone. This algorithmic

approach did indeed reveal several subgroups of patients in a large sample of chronic pain

patients with considerable differences in pain intensity, quality, impact, and course.

Methods

This was an observational cohort study utilizing the University of Pittsburgh’s Patient Out-

comes Repository for Treatment registry (PORT) [23], which links patient-reported outcomes
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collected with the Collaborative Health Outcomes Information Registry software (CHOIR)

[24, 25] with electronic medical record data related to appointments at University of Pitts-

burgh Medical Center (UPMC) Pain Medicine clinics. The University of Pittsburgh Institu-

tional Review Board and the UPMC Quality Improvement committee approved this research

with a waiver of individual informed consent.

Patients

The study cohort consisted of 21,658 patients (3/17/2016–6/25/2019) who completed the pain

body map question while completing a set of validated pain assessments as part of a clinical

visit to the University of Pittsburgh’s seven pain management clinics (S1 Fig). The earliest

available body map and assessment were used for each patient. A subgroup of patients

(N = 7,138) completed follow-up pain assessments three months after this initial assessment.

Patients presenting to UPMC Pain Medicine clinics come from a large geographic area of

Western Pennsylvania and present with a variety of pain complaints. As previously described

and as part of routine clinical care, patients complete validated pain assessments, including the

pain body map and other validated chronic pain measures, in the waiting room prior to their

clinical visit [23, 26].

Patient demographics and other characteristics

Data from the electronic medical record (EMR) variables in PORT were used to determine age

(at time of initial assessment), gender (male or female), race, payor (Medicaid or not Medic-

aid), comorbidity, and body mass index (BMI). Race was patient-reported and derived from

the EMR as one of 17 categories which were combined due to group sizes for statistical analysis

into 3 groups: White, Black, and all other races. Reporting of race is standard in the field [27]

and required by funding agencies. Comorbidity was measured using the Charlson Comorbid-

ity Index, which allows for quantification of severity of medical comorbidities [28, 29]. BMI

was calculated in the EMR closest in time to the initial body map assessment with the following

equation: BMI = weight (kg) / height (m)2.

Patient-reported measures

Patients completed a set of validated pain assessments on a tablet using the Collaborative

Health Outcomes Information Registry (CHOIR), which is an open-source, web-based soft-

ware program designed for tracking of patient-reported outcomes in chronic pain patients in

the context of pain management programs [24]. Pain location, pain intensity, pain interfer-

ence, neuropathic quality, physical function, sleep disturbance, global physical health, anxiety,

depression, and global mental health were all captured using validated instruments as

described below, consistent with assessment recommendations of the Initiative on Methods,

Measurement, and Pain Assessment in Clinical Trials (IMMPACT) [3, 30]. All Patient-

Reported Outcomes Measurement Information System (PROMIS) instruments, except the

pain intensity numeric rating scale, yield standardized T-scores normalized to a large sample

of the US population (mean (M) = 50, standard deviation (SD) = 10, range Var(X) = 0–100)

[31, 32]. Pain interference, physical function, sleep disturbance, anxiety, and depression were

administered as Computerized Adaptive Tests, which use item-response theory to calculate T-

scores thereby reducing the total number of questions required of the respondent [24, 33]. The

validity of these instruments has been established through their iterative development in multi-

ple chronic conditions [34, 35], including chronic pain (recently reviewed by Patel and col-

leagues [36]).
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Pain body map. Areas of pain are selected on two side-by-side manikins, an anterior and

posterior representation of the body with lines dividing anatomically distinct body regions

and a craniocaudal line dividing left and right sides as previously validated and used in multi-

ple studies [23–26, 37–39]. The instructions were “Select the areas where you are experiencing

pain” (see Fig 1). In total, there are 74 regions that may be selected. The total number of body

regions reflects the simple sum of selected regions for each patient, ranging from 0 to 74. The

body map presented to each patient was either female or male depending on their reported

gender in the EMR. Female and male manikins were the same as previously developed and val-

idated, showing excellent face validity, test-retest reliability, and concordance with verbal

descriptors of pain location [39]. The anatomic regions were the same between female and

male manikins, however six regions (arbitrary numbers 112–117) on the male body map were

not labelled with the same numbers as the female map. These inconsistent labels were re-

coded to match the numeric coding of the female body map. The region numbers used for

hierarchical clustering of male and female patients are displayed in S2 Fig.

Pain intensity. Patients reported the average pain intensity in the last seven days using a stan-

dard numeric rating scale ranging from 0 (“No pain”) to 10 (“Pain as bad as you can imagine”) [23].

Neuropathic quality. PainDetect is a validated instrument rating the neuropathic quality

of multiple pain complaints [40] that has been used in the study of several chronic pain syn-

dromes [41, 42]. Scores range from -1 to 38.

Physical function. Using PROMIS bank v1.1 physical function administered via CAT

[32, 33], patients reported their ability to perform day-to-day physical tasks. Individual results

were converted to T-score (M = 50, SD = 10, Var(X) = 0–100). Greater values indicate greater

functional capacity.

Depression. PROMIS bank v1.0 depression via CAT was used to measure depression

[32]. Results were converted to T-score (M = 50, SD = 10, Var(X) = 0–100) with greater values

corresponding to more patient-reported depression symptoms.

Anxiety. PROMIS bank v1.0 anxiety with CAT was used to measure anxiety [32]. Results

were converted to T-score (M = 50, SD = 10, Var(X) = 0–100). A higher score reflects more

patient-reported anxiety symptoms.

Sleep disturbance. Sleep quality was measured using PROMIS bank v1.0 sleep distur-

bance CAT with conversion of results to T-score (M = 50, SD = 10, Var(X) = 0–100) [32].

Greater values reflect more patient-reported sleep disturbance.

Pain interference. Pain-related limitations on physical, mental, and social activities,

referred to as pain interference, was measured using PROMIS bank v1.1 pain interference

CAT [43]. Results were converted to T-scores (M = 50, SD = 10, Var(X) = 0–100). Higher val-

ues of T-score reflect a greater pain impact.

Global mental and physical health. Health-related quality of life was measured in mental

and physical domains using PROMIS Short Form v1.1 or v1.2 global mental and physical

health measures [44]. Results were converted to T-score (M = 50, SD = 10, Var(X) = 0–100).

Higher values reflect a better health-related quality of life.

Global impression of change. Patients reported their overall impression of change since

the first clinical encounter with the pain clinic using the following Likert scale: 1 = “Very

Much Worse”, 2 = “Slightly Worse”, 3 = “No Change”, 4 = “Sightly Improved”, 5 = “Very

Much Improved”.

Hierarchical clustering

Dummy variables were created for each body region and coded 0 = not selected, 1 = selected.

The resulting dataset, consisting only of body map selection from the initial survey, was then
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Fig 1. Hierarchical clustering of patient-reported body map selections reveals 9 distinct clusters. Each cluster is represented with a body

map. The frequency of each region being selected within each cluster is depicted by heatmap (increasing frequency with white–yellow–red,

scale at bottom).

https://doi.org/10.1371/journal.pone.0254862.g001
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used for hierarchical clustering. Hierarchical clustering is an agglomerative clustering method

and can result in a tree-based representation known as a dendrogram. In the dendrogram,

observations that fuse earlier will be more similar. There are two crucial steps in hierarchical

clustering, i.e., determining the similarity measure and selecting the agglomeration method.

Because the variables in our analysis are all binary variables (0 = body region not being

selected, 1 = body region being selected), we used Jaccard index or Jaccard similarity coeffi-

cient as the similarity measure [45, 46]. The Jaccard index defined as J A;Bð Þ ¼
jA\Bj
jA[Bj, where the

numerator is the intersection of two observations and the denominator is the union of two

observations. The agglomeration method that we adopt is Ward’s method, which aims to min-

imize the total within-cluster variance. At each step in Ward’s method, the algorithm finds two

clusters that will result in minimum increase in total within-cluster variance after fusing. The

number of clusters was narrowed by cluster size and similarity to 9 total groups through review

of dendrograms and heat maps by non-clinician investigators (A.G. and N.A.). Finally, a Pain

Medicine board-certified physician (A.W.) reviewed heatmaps of body area selections for the

9-clusters to assign descriptive labels to each cluster.

Multidisciplinary pain care

Patients presenting to the University of Pittsburgh pain management clinics undergo a com-

prehensive clinical assessment by fellowship-trained, board-certified Pain Medicine physicians

to develop a multidisciplinary treatment plan [47]. In broad terms, the multidisciplinary treat-

ment plan involves consideration of five treatment domains: (1) medication management, (2)

pain interventions such as injections or rhizotomy, (3) rehabilitation with physical and/or

occupational therapy, (4) psychological therapy, and (5) alternative and complementary

approaches. In the time period studied (3/17/2016–6/25/2019), treatment plan patterns were

obtained and characterized on the population level (N = 21,975). Given limitations of the cur-

rent dataset, granular details of treatments and patient compliance with the prescribed treat-

ments could not be determined.

Statistical analysis

Data were organized, cleaned, and analyzed in Excel (Microsoft, Redmond, Washington), Sta-

taMP v14 (Statacorp, College Station, Texas), and R (“utils”, “base”, and “stats” packages; R

Foundation for Statistical Computing, Vienna, Austria [48]). For continuous variables, nor-

mality was assessed graphically with histograms and q-q plots. The only variable with a partic-

ularly non-normal distribution was the total number of body regions selected, with rightward

skew due to a subset of participants selecting a large total number of body regions. Total num-

ber of body regions was log-transformed by calculating the natural log of total number of body

regions.

Three-month outcome variables included the continuous variables, change in pain intensity

and change in body regions selected, and a dichotomized composite outcome variable. Com-

posite outcome variables reflect clinically meaningful changes in chronic pain and pain impact

[36]. A patient was classified as a treatment responder if he/she showed a 30% decrease or

more in pain intensity, an increase of 3 or more in physical function T-score, and/or a

response of “very much improved” on the global impression of change question [49].

Descriptive results are reported as frequencies for categorical variables and means with

standard deviations or medians with interquartile ranges for continuous variables. Univariate

associations were probed by calculating Pearson’s chi-squared test (categorical—categorical),

t-tests (binary—continuous), 1-way ANOVA (categorical–continuous), and Pearson correla-

tions (continuous–continuous). For the non-normal variable, total number of body regions,
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Spearman or Kruskal-Wallis tests were used instead. Multivariate analysis was performed with

linear and logistic regressions.

Results

Hierarchical clustering based on pain distribution yields distinct patient

subgroups

Data from all patients (N = 21,658) completing a pain body map as part of a clinical visit to a

large, multisite pain management practice was used in a hierarchical clustering approach,

revealing 9 distinct groupings (Fig 1) according to the heatmap (Fig 2A). The frequency of

body area selection within each group is depicted in Fig 1. With clinician (A.W.) review of

these heatmaps, we assigned descriptive labels for each cluster based solely on the distribution

of pain reported on the body map question (Fig 1).

To better appreciate the relationship between cluster assignment and a simple sum of body

regions selected, patients were grouped by cluster and the selection of each body region is

depicted in a heat map (Fig 2A). Although the total number of body regions differs by cluster

(Kruskal-Wallis: χ2 = 8969.8, df = 8, p = 0.0001), hierarchical clustering appears to differentiate

several clusters with a similar number of body regions selected. For example, inspection of

box and whisker plots in Fig 2B show similar median and range values for the E-Neck and

Shoulder, F-Low Back Pain (LBP) Below Knee, and G-Neck Shoulder and LBP clusters.

To estimate group differences between clusters in the total number of body regions selected,

statistical modelling with one-way ANOVA was performed. In order to satisfy the normality

assumption, which is essential for the ANOVA analysis, we transformed the total body regions

into natural log-scaled values. Using the log-transformed total body regions, one-way

ANOVA analysis was performed for a global testing of any of the clusters being different from

others (F(9, 21649) = 2090.95, p< 0.0001, R2 = 0.44), which led to the post-hoc analyses for

pairwise comparisons. Although every pairwise comparison was statistically significant after

Fig 2. Hierarchical clustering reveals distinct subgroups despite similar total number of painful body regions. A. Heatmap with body map region on horizontal axis

and each row on the vertical axis representing an individual patient out of the entire cohort (N = 21,658 unique patients) organized by cluster membership. B. Box and

whisker plots representing median values (vertical line), interquartile range (boxed area), and total range (whiskers) of the simple sum of body regions by cluster

membership.

https://doi.org/10.1371/journal.pone.0254862.g002
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Bonferroni correction, the magnitude of differences was small. The median value of pairwise

differences was 0.44, excluding the comparisons that involved H-Widespread–Light and

I-Widespread–Heavy clusters. The pairwise comparison between G-Neck Shoulder/LBP and

F-LBP Below Knee showed a difference on the natural log-scale of 0.22 (95% CI: 0.16–0.29).

G-Neck Shoulder/LBP and E-Neck/Shoulder differed by 0.34 (95% CI: 0.26–0.42). The pair-

wise comparisons between the widespread clusters (H and I) and other clusters demonstrated

larger differences. For example, the pairwise difference between I-Widespread–Heavy and

C-LBP Thigh was 2.00 (95% CI: 1.94–2.06); the pairwise difference between H-Widespread–

Light and C-LBP Thigh was 0.94 (95% CI: 0.88–0.99).

Next, demographic and health factors were compared across cluster assignment. Although

cluster assignment through hierarchical clustering was agnostic to these variables, there were

statistically significant differences between clusters in age, gender, race, Medicaid status,

comorbidity, and BMI (Table 1). Groups A-Axial LBP and C-LBP Thigh were oldest, while

I-Widespread—Heavy was the youngest. In the total sample, 60% of patients reported female

gender, with A-Axial LBP having the most male patients (52%) and I-Widespread—Heavy

having the least (28%). The proportions of each race reached statistical significance across

groups, but differences were relatively small and unlikely to be clinically significant. Comor-

bidity measured by Charlson Comorbidity Index occurred ~10% in most groups but was less

frequent in the E-Neck and Shoulder group. Cluster mean BMI for all clusters were close to

the total population mean BMI of 30.6 kg/m2, despite achieving statistical significance.

Cluster membership is associated with differences in all measured domains

of chronic pain

Patients who completed the body map questionnaire also completed multiple, validated instru-

ments that reflect the multidimensional nature of pain. Data across multiple pain domains are

Table 1. Patient characteristics by cluster membership.

All A B C D E F G H I p-

valuea

Total number of

patients (Nb)

21658 677 1019 4094 786 1794 6709 1430 3000 2149

Age, years,

mean ± SD

56.6 ± 15.5 61.0 ± 16.2 51.2 ± 16.6 60.8 ± 15.3 55.6 ± 16.9 53.3 ± 15.6 58.7 ± 15.4 53.5 ± 14.2 54.2 ± 14.2 51.5 ± 13.9 <0.001

Gender, % male 40% 52% 44% 41% 46% 36% 41% 39% 38% 28% <0.001

Race, nb 21517 671 1012 4070 779 1783 6667 1424 2981 2130 <0.001

White, % yes 83% 85% 83% 86% 82% 87% 83% 84% 81% 81%

Black, % yes 15% 14% 16% 13% 16% 10% 16% 15% 18% 17%

Other, % yes 2% 2% 2% 1% 1% 2% 1% 2% 2% 2%

Medicaid, % yes

(nb)

22%

(21358)

14% (672) 25% (1003) 15% (4043) 26% (778) 19% (1771) 19% (6623) 28% (1405) 26% (2945) 35% (2118) <0.001

Comorbidity

(CCI≧1), % yes

(nb)

10%

(21658)

11% (677) 11% (1019) 10% (4094) 11% (786) 6% (1794) 11% (6709) 9% (1430) 9% (3000) 11% (2149) <0.001

BMI, kg/m2,

mean ± SD (nb)

30.6 ± 7.7

(16026)

31 ± 7.5

(516)

28.0± 7.2

(763)

30.9 ± 7.4

(3077)

30.6 ± 7.4

(594)

28.8 ± 6.9

(1305)

31.1 ± 7.8

(4981)

30.3 ± 7.5

(1116)

30.3 ± 7.9

(2181)

31.8 ± 8.5

(1493)

<0.001

a P-values result from 1-way ANOVA (continuous) or Chi2 (categorical) tests comparing the row variable over cluster membership.
b N reflects the total dataset, while n reflects the subset of N with available data. Abbreviations: A-Axial LBP, B-Abdominal Pain, C-LBP Thigh, D-Upper and Lower

Back Pain, E-Neck and Shoulder, F-LBP Below Knee, G-Neck Shoulder and LBP, H-Widespread—Light, I-Widespread—Heavy, CCI (Charlson Comorbidity Index for

severity of medical comorbidities), BMI (body mass index).

https://doi.org/10.1371/journal.pone.0254862.t001
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summarized in Figs 3 and 4, and S1 Table. For each domain, statistically significant differences

were detected across cluster group. Of note, cluster assignment was agnostic to these domains.

Closer inspection demonstrates that differences across cluster group occur despite similar

numbers of total body region selected. Mean and 95% CI are plotted for pain intensity

reported at the time of completing the body map in Fig 3. Cluster membership is associated

with significantly different pain intensity (1-way ANOVA, p<0.001, S1 Table). Despite a simi-

lar number of body regions selected, the pain intensity of the E-Neck and Shoulder group is

less than that of the F-LBP below knee and G-Neck Shoulder LBP groups. H-Widespread–

Light appears to have similar pain intensity to other groups (e.g. G-Neck Shoulder LBP) while

I-Widespread–Heavy appears to be higher than all groups.

Other domains also show differences across cluster membership (Fig 4). I-Widespread–

Heavy is associated with low physical function, high pain interference, high anxiety, high

depression, and high sleep disturbance. Interestingly, the second most impaired cluster is

F-LBP below knee, with somewhat better physical function in the G-Neck Shoulder LBP and

H-Widespread–Light groups. On the other hand, the E-Neck and Shoulder cluster is the high-

est functioning with relatively low pain interference. The A-axial LBP cluster is associated with

relatively low anxiety, depression, sleep disturbance, and pain interference.

Body map cluster membership independently predicts neuropathic pain

quality and pain intensity

Neuropathic pain quality measured with PainDetect also differs by cluster membership (Fig

5). Using a 1-way ANOVA to allow post-estimation testing (F(8,12941) = 231, p< 0.0001, R2

= 0.125), the A-Axial LBP cluster is associated with dramatically lower PainDetect scores than

Fig 3. Cluster membership is associated with different average pain intensity at baseline. Histograms reflect

subgroup means with error bars representing 95% confidence intervals. Total N = 21,658 unique patients. A-Axial LBP,

B-Abdominal Pain, C-LBP Thigh, D-Upper and Lower Back Pain, E-Neck and Shoulder, F-LBP Below Knee, G-Neck

Shoulder and LBP, H-Widespread—Light, I-Widespread—Heavy.

https://doi.org/10.1371/journal.pone.0254862.g003
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the F-LBP below knee cluster (-7.31, 95% CI -8.15 - -6.48), reflecting less neuropathic pain

quality. The F-LBP Below Knee cluster reports considerably more neuropathic pain quality

than the C-LBP Thigh cluster (3.78, 95% CI 3.39–4.17). Despite the clustering procedure being

agnostic to neuropathic pain quality, there is a significant association between cluster member-

ship and PainDetect score, with large differences noted between different low back pain

groups, A-Axial LBP versus C-LBP Thigh versus F-LBP Below Knee.

Multivariate modeling was used to better understand the relationship between cluster

membership and pain characteristics, including intensity and quality. First, univariate associa-

tions were calculated to identify variables to include in the model. Associations between cluster

Fig 4. Patient-reported function, pain interference, mood, and sleep vary by cluster membership. Histograms reflect

subgroup means with error bars representing 95% confidence intervals. Total N = 21,658 unique patients for physical

function, N = 21,507 for pain interference, and N = 21,571 for anxiety, depression, and sleep disturbance. A-Axial LBP,

B-Abdominal Pain, C-LBP Thigh, D-Upper and Lower Back Pain, E-Neck and Shoulder, F-LBP Below Knee, G-Neck

Shoulder and LBP, H-Widespread—Light, I-Widespread—Heavy.

https://doi.org/10.1371/journal.pone.0254862.g004

PLOS ONE Hierarchical clustering by pain distribution identifies distinct chronic pain subgroups

PLOS ONE | https://doi.org/10.1371/journal.pone.0254862 August 4, 2021 10 / 22

https://doi.org/10.1371/journal.pone.0254862.g004
https://doi.org/10.1371/journal.pone.0254862


membership and outcome variables, pain intensity and PainDetect score, are noted above

using 1-way ANOVA (S1 Table). In this same dataset, significant univariate associations were

identified between both outcome variables (pain intensity, PainDetect) and covariates, includ-

ing the sum of body regions selected, PROMIS measures, age, gender, BMI, global health mea-

sures, comorbidity, Medicaid status, and race, using Pearson’s correlations for continuous

variables, t-tests for binomial variables, and 1-way ANOVA for race.

All variables with significant univariate associations were included as covariates in linear

regression models, with the predictor of interest being cluster membership and the outcomes

being either pain intensity (Table 2) or PainDetect (Table 3). For pain intensity, the linear

regression model was statistically significant (F(22,6279) = 172.61, p< 0.0001, R2 = 0.38).

Table 2 shows the beta coefficients for each variable in the linear regression model and p-val-

ues for each coefficient. Post-estimation with a Wald test for cluster membership was signifi-

cant (F(8,6279) = 2.58, p = 0.0083), demonstrating that cluster membership significantly

improved the fit of the linear regression model. Older age, female gender, Medicaid insurance,

greater PainDetect, and greater scores on PROMIS measures were associated with greater pain

intensity. For neuropathic pain quality, the linear regression model was significant (F(21,

6280) = 194.84, p< 0.0001, R2 = 0.39). Beta coefficients and corresponding p-values for each

variable included in the linear regression model are listed in Table 3. Additionally, including

cluster membership in the model significantly improved the fit of the model, with a statistically

significant Wald test (F(8,6280) = 21.98, p< 0.0001). Younger age, Medicaid insurance,

greater pain intensity, worse physical function, and more depression, anxiety, and sleep

Fig 5. Cluster membership is associated with different neuropathic pain quality. Histograms reflect subgroup means

with error bars representing 95% confidence intervals. Total N = 12,950 unique patients completed the PainDetect

questionnaire, reflecting a neuropathic quality of pain. PainDetect scores 19 or greater (neuropathic),13–18 (unclear),

and 12 or less (not neuropathic) are highlighted with dashed lines. A-Axial LBP, B-Abdominal Pain, C-LBP Thigh,

D-Upper and Lower Back Pain, E-Neck and Shoulder, F-LBP Below Knee, G-Neck Shoulder and LBP, H-Widespread—

Light, I-Widespread—Heavy.

https://doi.org/10.1371/journal.pone.0254862.g005
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disturbance were associated with higher PainDetect scores. Of note, in both models, total

number of body regions selected was included as a covariate. This suggests that cluster mem-

bership independently predicts pain intensity and neuropathic pain quality when controlling

for total number of body regions selected.

Body map cluster assignment on the initial assessment is associated with

clinically-significant improvements in chronic pain

At the baseline assessment, Pain Medicine physicians consider multidisciplinary pain treat-

ments for all patients, as described in Methods and operationalized in all University of Pitts-

burgh pain clinics [47]. The majority of patients (64.7%) seen in this timeframe (N = 21,975)

were prescribed treatments from 2 or more out of 5 treatment domains: medications, interven-

tions, physical/occupational therapy, pain psychology, complementary and integrative medi-

cine. Patients (83.8%) were prescribed medications including anticonvulsants (47.6%),

antidepressants (27.7%), nonsteroidal anti-inflammatories (48.5%), muscle relaxants (35.1%),

and both strong and weak opioids (35.7% and 23.4% respectively). Interventions included

lumbar (32.7%) and cervical (7.8%) spine interventions, such as epidural steroid injections,

medial branch blocks, and rhizotomy. Physical and occupational therapy was prescribed in

35.8% of patients. Psychological services, including referral for pain cognitive-behavioral ther-

apy, were prescribed in 24.5% of patients. Complementary and integrative medicine, such as

acupuncture or medical cannabis, was prescribed for 3.0% of patients.

Table 2. Linear regression model for pain intensity.

Beta p-value

Cluster membership (ref: A-aLBP)

B-AbdP -0.026 0.102

C-LBPt -0.061 0.013

D-ULBP 0.002 0.887

E-Neck and Shoulder -0.042 0.029

F-LBPbk -0.077 0.008

G-NShLB -0.019 0.289

H-Widespread–Light -0.058 0.011

I-Widespread–Heavy -0.04 0.098

Body regions selected -0.043 0.007

Age 0.08 <0.001

Gender -0.056 <0.001

BMI -0.015 0.155

Medicaid status 0.094 <0.001

CCI 0.021 0.035

PainDetect 0.158 <0.001

PROMIS Physical Function 0.088 <0.001

PROMIS Depression 0.017 0.351

PROMIS Anxiety 0.086 <0.001

PROMIS Sleep Disturbance 0.07 <0.001

PROMIS Pain Interference 0.305 <0.001

Global Mental Health 0.311 <0.001

Global Physical Health -0.37 <0.001

constant <0.001

F(22,6279) = 172.61, R2 = 0.375

https://doi.org/10.1371/journal.pone.0254862.t002
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A subset of patients (N = 7,138) completed pain assessments 3 months after the initial

assessment. Interestingly, cluster groups (established with only baseline data) reported signifi-

cantly different pain intensity, physical function, pain interference, depression, anxiety, sleep

disturbance, and global mental and physical health at follow-up (S2 Table). Importantly,

changes in pain and changes in body area selection were also different across clusters

(Table 4). Using a validated composite outcome, which included clinically significant changes

Table 3. Linear regression model for neuropathic pain quality.

Beta p-value

Cluster membership (ref: A-aLBP)

B-AbdP 0.049 0.002

C-LBPt 0.121 <0.001

D-ULBP 0.035 0.016

E-Neck and Shoulder 0.106 <0.001

F-LBPbk 0.255 <0.001

G-NShLB 0.104 <0.001

H-Widespread–Light 0.182 <0.001

I-Widespread–Heavy 0.131 <0.001

Body regions selected 0.206 <0.001

Age -0.077 <0.001

Gender 0.019 0.054

BMI 0.012 0.23

Medicaid status 0.066 <0.001

Pain Intensity 0.153 <0.001

PROMIS Physical Function -0.07 <0.001

PROMIS Depression 0 0.987

PROMIS Anxiety 0.125 <0.001

PROMIS Sleep Disturbance 0.16 <0.001

PROMIS Pain Interference 0.117 <0.001

Global Mental Health 0.008 0.591

Global Physical Health 0.008 0.593

constant <0.001

F(21, 6280) = 194.84, R2 = 0.393

https://doi.org/10.1371/journal.pone.0254862.t003

Table 4. Clinically relevant outcomes differ by cluster membership.

ALL A B C D E F G H I p-

valuea

Change in

pain

intensity,

mean ± SD

(n)

-0.34 ± 1.93

(7138)

-0.22 ± 2.08

(216)

-0.48 ± 2.03

(358)

-0.36 ± 1.99

(1384)

-0.16 ± 2.02

(248)

-0.39 ± 1.78

(585)

-0.38 ± 2.05

(2177)

-0.06 ± 1.66

(485)

-0.4 ± 1.88

(980)

-0.24 ± 1.65

(705)

<0.001

Change in

body

regions

selected,

mean ± SD

(n)

-0.56 ± 7.38

(7010)

1.34 ± 2.33

(209)

0.9 ± 4.49

(345)

0.61 ± 4.36

(1352)

0.4 ± 3.31

(246)

0.19 ± 6.53

(575)

-0.41 ± 6.29

(2137)

0.67 ± 6.84

(481)

-0.74 ± 8.71

(963)

-6.09 ± 12.79

(702)

<0.001

a P-values result from 1-way ANOVA (continuous) or Chi2 (categorical) tests comparing the row variable over cluster membership. Abbreviations: A-Axial LBP,

B-Abdominal Pain, C-LBP Thigh, D-Upper and Lower Back Pain, E-Neck and Shoulder, F-LBP Below Knee, G-Neck Shoulder and LBP, H-Widespread—Light,

I-Widespread—Heavy, and Y (yes).

https://doi.org/10.1371/journal.pone.0254862.t004
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in pain intensity, physical function, or impression of change, there were significant differences

in response rates between cluster groups (Fig 6). Using responder rate as the outcome of inter-

est, cluster group as the primary predictor, and baseline covariates showing a univariate associ-

ation with response rate (total number of body regions, age, gender, BMI, Medicaid status,

physical function, depression, anxiety, sleep disturbance, pain interference, and global physical

and mental health), a multivariate logistic regression was significant (F(20,4718) = 274.41,

p< 0.0001, R2 = 0.042). A Wald test for cluster group was significant (w2
8

= 25.96, p = 0.0011),

suggesting that body map cluster assignment at initial clinic visit independently predicts

3-month response rate. Due to limitations of the current dataset, it is not clear which multidis-

ciplinary treatments were prescribed or the degree of patient compliance.

Discussion

The distribution of pain in the body is a vital component of pain assessment. Apart from its

utility in diagnosis, recent work has demonstrated that the extent of pain distribution affects

outcomes. However, it remains unclear how patterns of pain distribution affect the pain expe-

rience. Using a hierarchical clustering approach with only a patient’s reported pain areas on a

digital body map, we found multiple distinct subgroups of patients. These clusters have signifi-

cantly different pain intensity, quality, and impact. Multivariate modeling suggests that cluster

membership independently predicts pain intensity and neuropathic pain quality measured at

the initial visit. Cluster membership based solely on body map data at the initial visit to the

pain clinic significantly predicted patient-reported outcomes at 3-month follow-up, although

this should be interpreted cautiously since it is unclear which specific treatments were

Fig 6. Baseline cluster membership predicts improvement in chronic pain at follow-up. Percentage of patients at

3-month follow-up who self-reported clinically significant improvements, as determined by a composite outcome

consisting of improved pain, function, or a positive impression of change, are plotted by cluster membership.

Proportions of patients classified as responders (n) over the total number of patients in the cluster group (N) are

displayed at the base of the bars (n/N).

https://doi.org/10.1371/journal.pone.0254862.g006
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prescribed and whether patients were compliant with recommendations. Overall, this study

demonstrates that patterns of pain distribution provide information beyond a simple tally of

the number of pain body regions. Given its associations with pain intensity, quality, and

patient-reported outcomes, hierarchical cluster assignment based on the body map may help

identify patients at risk of poor outcomes. The current study confirms the clinical relevance of

pain distribution using an algorithmic approach and supports a new classification of chronic

pain, termed nociplastic pain [1]. Both represent an advance towards personalized pain medi-

cine, which shows promise in improving the treatment of chronic pain.

Subgroups of patients identified with hierarchical clustering based on body map data alone

were found to be significantly different in multiple key domains, including pain intensity, pain

quality, pain impact, physical function, mood, and sleep. Although the total number of body

regions selected varied by cluster, cluster membership independently predicted differences in

pain intensity and neuropathic pain quality. Examples of differences between clusters that

might otherwise be considered a single group support this observation. Although the E-Neck

and Shoulder, G-Neck Shoulder and LBP, and F-LBP below knee groups all had a similar total

number of body regions selected, there were significant differences in several domains.

E-Neck and Shoulder had the lowest pain intensity, highest function, and lowest pain interfer-

ence among the three, and yet E-Neck and Shoulder patients reported greater anxiety than

F-LBP below knee with lower depression and sleep disturbance than G-Neck Shoulder and

LBP. The F-LBP below knee group had the worst physical function of the three groups but

reported less anxiety, depression, and sleep disturbance than E-Neck and Shoulder and

G-Neck Shoulder and LBP. This example demonstrates that cluster membership provides

additional information relevant to multiple pain assessment domains.

The hierarchical clustering approach mirrors several clinically relevant scenarios. In clinical

practice, distinguishing lumbar radicular pain radiating below the knee from non-radicular

low back pain is important for treatment decisions, such as starting medications for neuro-

pathic pain or considering epidural steroid injections [50]. On clinician review, three clusters

seemed to reflect this common diagnostic problem for clinicians: A-Axial LBP, C-LBP thigh,

and F-LBP below knee. As one might predict based on clinical assessment, these three groups

varied significantly in neuropathic pain quality, measured by PainDetect. The mean PainDe-

tect score for A-Axial LBP was 10, which signifies non-neuropathic pain [42]. For F-LBP

below knee patients, the mean PainDetect was 17, which is near a cutoff of 19 for neuropathic

pain. C-LBP thigh patients had an intermediate mean PainDetect score of 13, which is rated as

“unclear” when differentiating neuropathic and non-neuropathic pain. This observation vali-

dates the hierarchical clustering approach by recapitulating a common clinical scenario. Of

note, PainDetect scores were actually highest for the widespread pain groups (H and I). This

highlights a limitation of using PainDetect, which is a screening tool. High values of PainDe-

tect should prompt a clinical evaluation including a history probing for a neurological lesion

resulting in neuroanatomically plausible symptom distribution, an examination with findings

supporting the history, and confirmatory testing for a formal diagnosis of definite neuropathic

pain [51]. High PainDetect scores alone should not be equated with a diagnosis of neuropathic

pain.

Widespread pain was also identified by hierarchical clustering. Interestingly, two distinct

groups with widespread pain emerged, I-Widespread–Heavy and H-Widespread–Light.

I-Widespread–Heavy patients reported greater pain intensity, worse physical function, more

pain interference, and greater anxiety, depression, and sleep disturbance than H-Widespread–

Light patients. I-Widespread–Heavy also reported more painful body regions than H-Wide-

spread–Light. Odds of a positive treatment response were also lower for the I-Widespread–

Heavy compared with the H-Widespread–Light cluster. This is consistent with prior work
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demonstrating that a greater extent of pain is associated with worse pain and clinically mean-

ingful treatment outcomes (e.g. [18]). Since the odds of an improvement in patient-reported

outcomes at follow-up were low for both Widespread clusters compared to other clusters, this

points to the utility of the body map in identifying widespread pain. Assigning cluster mem-

bership may provide additional information, allowing a quick identification of patients at

highest risk (I-Widespread–Heavy) in busy clinical practice settings, such as in primary care

or orthopedic practices.

An important subgroup of patients is the G-Neck Shoulder and LBP group, which has the

worst odds of improvement in patient-reported outcomes at follow-up. This group has a simi-

lar total number of body regions selected as the E-Neck and Shoulder and F-LBP below knee

groups but has characteristics in other domains more similar to the H-Widespread–Light

group. Specifically, pain intensity, physical function, pain interference, anxiety, depression,

and sleep disturbance are more similar between the G-Neck Shoulder and LBP and H-Wide-

spread–Light groups than the E-Neck and Shoulder and F-LBP below knee groups. Since our

hierarchical clustering technique identified common chronic pain syndromes, such as lumbar

radiculopathy and abdominal pain, it is possible that group G represents a clinically important

entity. Given similarities with H-Widespread—Light, G-Neck Shoulder and LBP may be an

early stage of generalization of chronic pain that would progress into more widespread pain.

Future work examining pain duration, the stability of cluster membership over time, and dif-

ferent pain diagnoses made for patients in G-Neck Shoulder and LBP will help test this

hypothesis. If group G is an early stage of generalization, then earlier identification may lead to

more appropriate treatment, such as that prescribed to patients with widespread pain. We

speculate that the poor patient-reported outcomes in G-Neck Shoulder and LBP group may be

due to a failure in identifying this early stage of generalization or a partially generalized pheno-

type, despite being evaluated by a highly trained pain physician at a university pain clinic.

Group G-Neck Shoulder and LBP highlights the need for improvement in pain classification,

for which body map cluster assignment may play a role in the future.

Our findings are also consistent with recent neuroscience investigations by one of our co-

authors (ADW, in Ellingsen, et., al. [52]). Using functional brain MRI, this study found that a

greater extent and severity of widespread pain reported on digital pain body maps (n = 79) is

associated with greater disruption of resting functional connectivity between the salience net-

work (a key brain processing network for pain) and the default mode network, even after

adjusting for the effects of pain catastrophizing. The concordance in findings between these

two studies is remarkable and links the neurobiology of widespread pain elucidated by func-

tional MRI of the brain to clinical phenomenology and treatment outcomes. Thus, a case can

be made that reports of widespread pain collected with digital pain body maps are diagnostic
of pathophysiological changes in pain processing, now termed the disease of “nociplastic pain”

by ICD– 11 criteria [1]. Indeed, widespread pain complaints are a central feature of nociplastic

pain.

Algorithmic approaches have previously been used to identify subgroupings within identi-

fied chronic pain diagnoses. For example, hierarchical clustering analysis was used to identify

quantitative sensory testing profiles that seem to cut across neuropathic pain diagnoses [53].

In fibromyalgia, clinically-important subgroupings have been identified with cluster analysis

[54–56]. In a large cohort study, Backryd and colleagues used hierarchical clustering analysis

in a heterogenous group of patients that included all multidimensional pain assessments [57].

The identified four subgroups did differ significantly by total body regions selected and by

clinically important outcomes, although different patterns of pain distribution were not

directly examined. The current study took the unique approach of applying hierarchical clus-

tering to a very limited set of variables, i.e. the response to a single body map question at
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baseline. This approach allowed identification of unique patterns of pain distribution in the

sample population and the important observation that these patterns impact multiple pain

domains and outcomes. Moreover, identifying subgroups with the use of only one pain assess-

ment indicates that clinically-meaningful subgroupings can be obtained quickly and easily,

raising the possibility of using body map cluster membership as a screening tool to identify

patients at risk of poor outcomes, even without a comprehensive psychometric assessment.

While promising, the definitive relationship of body map cluster assignment and pain patho-

physiology remains to be seen. Future work will seek to identify diagnoses that fall within each

body map cluster. Although this will certainly be informative, even within accepted diagnoses

lies significant heterogeneity in patient characteristics. For example, in neuropathic pain, sen-

sory profiles vary considerably within neuropathic pain diagnoses, such as lumbar radiculopa-

thy [58]. Moreover, specific sensory profiles not commonly used to establish a diagnosis may

strongly affect treatment response [59]. Recent work posits that biosignatures, combining

patient-reported aspects of pain with genetics, sensory profiling, functional neuroimaging, and

other measures, will allow personalization of pain diagnosis and treatment [60, 61]. Future

work will explore the potential relationship of body map cluster membership assignment to sen-

sory profiles using tools that can be feasibly incorporated into clinical practice, such as bedside

quantitative sensory testing [41], to relate pain body map cluster membership to pathophysio-

logical processes. Given its speed and ease of use for patients, we predict that body map cluster

assignment will be a useful component of chronic pain biosignature development.

The current study benefits from several strengths, including a large dataset which captures

patients from a large health system referred for evaluation and treatment at the only pain med-

icine practice in this health system. Due to the study design and nature of the dataset, causative

associations cannot be established between baseline patient characteristics and follow-up out-

comes. Additionally, not all patients completed pain assessments, with only a subset complet-

ing follow-up assessments. Generalizability may be limited by patient factors, including the

demographics represented in the database and an outpatient Pain Medicine clinic patient sam-

ple. Outcome data do not address specific therapies, and therefore, it remains unclear which

specific treatment may be helpful for a particular body map cluster. Finally, the current study

focused on the use of the body map for presence of pain but did not use the body map for

report of other aspects of the pain experience, such as pain quality, or accompanying symp-

toms, such as numbness.

Conclusion

The current study sought to determine whether a pattern of chronic pain distribution was clin-

ically important. Based solely on patients’ reported areas of pain on the body map, we identify

distinct subgroups of patients using hierarchical clustering. Body map cluster membership

determined at initial evaluation is associated with significant differences in pain intensity, pain

quality, pain impact, and clinically-relevant 3-month outcomes. Certain subgroups recapitu-

late previously identified, clinically relevant entities (e.g. widespread pain, lumbar radiculopa-

thy) and are related to recent findings regarding disrupted pain processing in the brain,

validating the clustering approach. Prospective body map cluster assignment may be inte-

grated in future work identifying biosignatures of chronic pain to allow for personalized pain

medicine.
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