
BEHAVIORAL NEUROSCIENCE

have been associated with schizophrenia and depression (Zeman 
and King, 1958; Averback, 1981; Brisch et al., 2011). Evidence sug-
gests that septal nuclei control emotional behavior and autonomic 
and hormonal functions by modulating hypothalamic and lower 
brainstem activity, based on higher cognitive and mnemonic infor-
mation received through reciprocally dense connections with other 
areas of the limbic system including the hippocampal formation.

Furthermore, the septal region was the first area where intrac-
ranial self-stimulation (ICSS) behavior was observed in rats (Olds 
and Milner, 1954). Septal nuclei have intimate connections to brain 
regions involved in goal-directed behaviors for various reward, such 
as the nucleus accumbens, medial prefrontal cortex, and ventral teg-
mental area (VTA) and are implicated in amphetamine, morphine, 
phencyclidine, and lysergic acid diethylamide abuse (Sheehan et al., 
2004). These craving behaviors may be mediated partly through an 
interaction between the septal nuclei and the dopaminergic system 
(Merrer et al., 2007). Additionally, nearly all antipsychotic antide-
pressant drugs affect septal neuron activity (Sheehan et al., 2004). 
Taken together, these results suggest that septal neuron activity 
is an important determinant of behavioral manifestations during 
various reinforcing and non-reinforcing situations.

In the present study, neuronal activity was recorded from rat 
septal nuclei while rats performed elemental and configural associa-
tion tasks to elucidate the information processing mechanisms in 
the septal nuclei that control motivated and emotional behaviors. 

INTRODUCTION
Septal nuclei receive afferents from various areas in the limbic sys-
tem not only from the hippocampal formation, but also from the 
amygdala, entorhinal, and cingulate cortex, which are all involved 
in various higher brain functions such as cognition and memory. 
In turn, the septal nuclei send efferents to the hypothalamus and 
brainstem, which play an important role in emotional expression 
or behavioral manifestations such as emotional behavior, hormone 
release, and autonomic reactions (see review by Risold and Swanson, 
1997b). Thus, the septal region acts as an interface between these 
higher cognitive and lower executive systems (Swanson et al., 1987).

Septal nuclei have a functionally strong relations to the hip-
pocampal formation and hypothalamus. Septal or fornical lesions 
impair spatial learning and memory (Thomas and Gash, 1986; 
Numan and Quaranta Jr., 1990; Gaffan et al., 1991), which is 
comparable to the effects of hippocampal lesions (Gray, 1987). 
Furthermore, septal lesions alter food and water intake, which is 
also observed after hypothalamic lesions (Harvey and Hunt, 1965; 
Lorens and Kondo, 1969; Stoller, 1972). Electrically stimulating 
septal nuclei results in lowered arousal, hypoactivity, reduced rates 
of response, and even sleep and induces autonomic responses such 
as decreased blood pressure, cardiac deceleration, and inhibition 
of pituitary–adrenal activity as well as somatomotor effects in rats 
and cats (Malmo, 1961, 1965; Covian et al., 1964; Holdstock, 1967; 
Baldino et al., 1988). Furthermore, abnormalities in the  septal region 
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During these tasks, conditioned sensory stimuli (CSs) included 
both elemental (auditory or visual) and configural (simultaneously 
presented auditory and visual) stimuli. In one case, each stimulus 
predicted reward when presented alone but predicted non-reward 
when presented together. In the other case, each stimulus predicted 
non-reward when presented alone but predicted reward when 
presented together. Previous anatomical and behavioral studies 
suggest that septal nuclei may integrate information from other 
brain regions to influence behavioral output, particularly during 
reinforcing situations. If the septal neurons are involved in behav-
ioral output during reinforcing situations, they would respond to 
the CSs in terms of reward availability regardless of the physical 
properties of the CSs.

MATERIALS AND METHODS
SUbjECTS
Twenty-six male albino Wistar rats, weighing 270–330 g (10–
16 weeks old; SLC, Hamamatsu, Japan), were used. The housing 
area was temperature controlled at 23°C and maintained on a 12-h 
light–dark cycle. Prior to surgery, rats were individually housed 
in clean cages with free access to water and laboratory chow. All 
efforts were made to minimize the number of animals used and 
their suffering.

SURgERy
Surgery was performed under aseptic conditions in two stages. 
First, a cranioplastic cap was attached to the skull. After a recov-
ery and training period, a permanent indifferent electrode was 
implanted. The rats were treated in strict compliance with the poli-
cies of the National Institutes of Health on the Care of Humans 
and Laboratory Animals and the Guidelines for the Care and Use 
of Laboratory Animals at the University of Toyama.

As described in our previous studies (Uwano et al., 1995; Nishijo 
et al., 1998), the head restraint system of Nishijo and Norgren (1990, 
1991, 1997), modified from a method described by Ono et al. (1985), 
was used. After being anesthetized (sodium pentobarbital, 40 mg/
kg, i.p.), the rats were mounted in a stereotaxic apparatus with the 
skull leveled between the bregma and lambda suture points. The 
cranium was exposed, and 2–3 mm of the temporal end of the bilat-
eral temporal muscle was removed, and seven small, sterile, stainless 
screws were threaded into holes in the skull to serve as anchors for 
cranioplastic acrylic. Stainless-steel wires were soldered onto two 
screws as a ground. Two bipolar electrodes were implanted into the 
lateral hypothalamic area (A, −4.3 from bregma; L, ± 1.2; V, 8.4) 
to intracranially stimulate the medial forebrain bundle, according 
to the atlas of Paxinos and Watson (1986). After covering the cut 
end of the temporal muscle with overlying skin, the cranioplastic 
acrylic was built up on the skull and molded around the conical 
ends of two sets of stainless-steel bars that had a single steel bar 
on one end and two bars on the other end. Once the cement had 
hardened, these bars were removed, leaving a negative impression 
of the double end on each side of the acrylic block. During subse-
quent surgery or during a recording session, the double end of these 
artificial earbars was pressed into the indentations in the acrylic 
block, while the single end was inserted into the normal earbar 
slots in the stereotaxic instrument and rigidly attached (Figure 1A). 
Hence, these artificial earbars served the same  function as  regular 

earbars but could be used in unanesthetized animals because they 
did not involve a painful insertion into the ear canal. A short length 
of 27-gage stainless-steel tubing was embedded into the cranio-
plastic acrylic near the bregma to serve as a reference pin during 
chronic recording. After surgery, an antibiotic (gentamicin sulfate, 
Gentacin® injection, Schering-Plough, Osaka, Japan) was adminis-
tered topically and systematically (2 mg, i.m.).

After recovery from surgery (10–14 days) and training (2 weeks; 
see below), rats were anesthetized (sodium pentobarbital, 40 mg/
kg, i.p.) again and mounted with the artificial earbars. A hole 
(diameter, 2.8–3.0 mm) was drilled through the cranioplastic and 
the underlying skull (A, −1.5 to 1.5 from bregma; L, 0.2 to 3.0 
right) for chronic recording. The exposed dura was excised, and the 
hole was covered with hydrocortisone ointment (Rinderon-VG® 
ointment, Shionogi Co., Ltd., Tokyo, Japan), or one or two drops 
of chloramphenicol (Chloromycetin® succinate, Sankyo Co., Ltd., 
Tokyo, Japan) solution (0.1 g/ml) were dropped into the hole. The 
hole was covered with a sterile Teflon sheet and sealed with epoxy 
glue. A second small hole (diameter, 1.5 mm) was then drilled just 
contralateral to the recording hole. A stainless-steel wire (diameter, 
130 μm), which was insulated except at the cross section of the tip, 
was implanted near the lateral end of the left lateral septal nuclei 
through the hole to serve as an indifferent electrode. This hole was 
then filled with cranioplastic acrylic. After the animal recovered 
(5–7 days), it was placed back on the water-deprivation regimen 
(see Training and Task paradigms).

TRAININg AND TASk pARADIgMS
Before surgery, the rats were acclimated by handling and became 
accustomed to being placed into a small, plastic restraining cage 
for brief periods. The threshold level for ICSS was determined 
after recovery from the first stage of surgery (Ono et al., 1985), and 
three rats for which the threshold exceeded 300 μA were excluded. 
The remaining rats were reacclimated to the plastic enclosure and 
placed on a 22-h water-deprivation regimen. While in the enclo-
sure (1–2 h daily), they had access to a spout from which they 
learned to take fluid within 1–2 days, which was initially 0.3 M 
sucrose. Subsequently, their heads were rigidly and painlessly 
fixed by inserting the artificial earbars into the impressions in the 
cranioplastic cap. While restrained, the rats were trained to lick a 
spout, which was automatically extended close to their mouths 
for 2 s to obtain the sucrose solution or ICSS. The rats were then 
trained to discriminate between conditioned elemental (auditory 
or visual) or configural stimuli to obtain a reward. Sensory stimuli 
included auditory (1200, 2800, or 4300 Hz), visual (white light), and 
configural (simultaneous presentation of tone and light) stimuli 
(Table 1). A mid range speaker, located 1 m above the rat, delivered 
the auditory stimuli, and two white lights, 3 cm in front of each eye, 
delivered the visual stimuli. Licking was signaled by a photoelectric 
sensor triggered by the tongue. The rats were trained to lick the 
spout to obtain a reward (sucrose solution or ICSS; reward task; 
Figure 1B). A 1200-Hz tone (Tone 1), a white light in front of the 
right eye (Light 1), or the simultaneous presentation of a 2800-Hz 
tone (Tone 2) and a white light in front of the left eye (Light 2; Tone 
2 + Light 2: configural stimulus) signaled availability of the 0.3-M 
sucrose solution. A 4300-Hz tone (Tone 3) signaled the ICSS (0.5 s 
train of 100 Hz, 0.3 ms capacitor-coupled negative square wave 
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Training with or without a reward was conducted in one block of 
10 or 20 trials. The total number of trials per day was 400–500 in 4 h 
from 16:00 to 20:00. Throughout the training and recording period, a 
rat was permitted to ingest 20–30 ml of sucrose solution while in the 
restrainer. If the rat failed to consume 30 ml of the sucrose solution 
while restrained, it was given the remainder when it was returned to 
its home cage. Only sucrose solution was available during the task.

Our previous study using the same paradigm in rats reported 
that the latencies of licking after offset of the CS became shorter 
than 300 ms after learning the association between the CS and 
reward (Toyomitsu et al., 2002). After the rats had learned the tasks 
described above (i.e., when licking latencies became shorter than 
300 ms), septal neurons were recorded from during performance 
of these elemental and configural association tasks.

ELECTROpHySIOLOgICAL RECORDINg
An individual rat was usually tested every other day. After being 
placed in the enclosure, the ointment was removed, and a glass-
insulated tungsten microelectrode (Z = 1.0–1.5 MΩ at 1000 Hz) 

pulses). Tone 2, Light 2, or simultaneous presentation of Tone 1 
and Light 1 (Tone 1 + Light 1: configural stimulus) signaled that 
no reward was available.

Lick

Reward

Sensory stimuli

(SucorICSS)

ICSS

Lick sensor

Spout

Speaker

Computer
Record

Suc
Light

A Experimental diagram

B Reward task

-2 0 2 4 6 8 s

Task
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Figure 1 | experimental diagram. (A) Rats were prepared for chronic 
recording by forming dental cement receptacles to accept fake earbars. 
Electrodes were implanted in the lateral hypothalamic area for intracranial 
self-stimulation (ICSS) of the medial forebrain bundle. Rats were trained to 
lick when the spout was automatically placed close to their mouth. Licking 
was signaled by a photoelectric sensor triggered by the tongue. Auditory and 
visual CSs were presented by a speaker above the rat’s head and by a light in 

front of each eye, respectively. A sucrose solution was delivered from a 
spout, and electric current for the ICSS was applied to the stimulating 
electrode. Suc, 0.3 M sucrose solution. (B) Time chart for the reward task. 
During this task, the conditioned sensory stimulus (tone, light, or 
tone + light: configural) associated with or without a reward stimulus 
(sucrose solution or ICSS) was presented for 2 s prior to placing the spout 
close to the rat’s mouth.

Table 1 | Summary of various conditioned sensory stimuli associated 

with or without reward.

 Conditioned stimulus reward

Auditory stimuli Tone 1 (1200 Hz) Sucrose solution

 Tone 2 (2800 Hz) No reward

Visual stimuli Tone 3 (4300 Hz) ICSS

 Light 1 (right) Sucrose solution

Configural stimuli Light 2 (left) No reward

 Tone 1 + Light 1 No reward

 Tone 2 + Light 2 Sucrose solution

Tones 1–3 correspond to pure tones of 1200, 2800, 4300 Hz, and Lights 1–2 to 
visual stimulation by white lights located in front of right and left eyes, respec-
tively.
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 transcardially with heparinized 0.9% saline followed by 10% buff-
ered formalin. The brain was removed, and cut into 50 μm frontal 
sections with a freezing microtome. Sections were stained with 
cresyl violet. All marking and stimulation sites were then carefully 
verified microscopically. Positions of neurons were stereotaxically 
located on the actual tissue sections and plotted on the correspond-
ing sections of the atlas of Paxinos and Watson (1986).

The rat septal region consists of medial (MS), lateral (LS), and 
posterior divisions (PS) based on topography, cytoarchitecture, 
and connections (Jakab and Leranth, 1995). The MS included the 
medial septal nucleus and diagonal band of Broca. The LS consisted 
of dorsal, intermediate, and ventral parts. The PS included the 
septofimbrial nucleus and triangular septal nucleus. The classifica-
tion and terminology of these septal subnuclei were based on the 
atlas of Paxinos and Watson (1986).

RESULTS
CLASSIfICATION Of THE NEURONS IN THE SEpTAL NUCLEI
Recording was performed over a period of 1–2 months for each rat. 
The activities of 307 neurons in and around the septal nuclei were 
recorded during the reward task. Of these, 284 neurons were located 
in septal nuclei. Table 2 summarizes the response patterns of these 
284 neurons resulting from statistical analyses by one-way ANOVA 
and post hoc comparisons. Seventy-two neurons (25.4%) responded 
during one or more phases of the task: 42 with excitation and 30 
with inhibition. These 72 responsive neurons were classified into 
two types based on response magnitudes during the CS and reward 
phases; CS-related and ingestion/ICSS-related. When the neurons 
responded during both the CS and reward phases, ingestion/ICSS-
related neurons were defined as neurons with responses during the 
reward phase that were more than twice as large as the responses 
during the CS phase. There were 46 CS-related and 26 ingestion/
ICSS-related neurons. The 46 conditioned stimulus-related neu-
rons were further subclassified based on their responsiveness to each 
CS. Eighteen CS-related neurons responded selectively to the CSs 
predicting reward (CS+-related), four to the CSs predicting non-
reward (CS0-related), and nine differentially to some CSs  predicting 

was stereotaxically inserted stepwise with a pulse motor-driven 
manipulator (SM-20, Narishige, Tokyo, Japan) into various parts 
of the right septal region. Extracellular neuronal and electromyo-
graphic (EMG) activity was passed through a dual channel dif-
ferential amplifier with a preamplifier (DPA-220, DIA Medical 
System Co., Tokyo, Japan), monitored on an oscilloscope, and 
recorded on a data recorder (RT-145T Dat Data Recorder, TEAC, 
Tokyo, Japan). Neuronal activity was quantified with a two-level 
voltage discriminator. The analog signal, the trigger levels, and 
the output of the discriminator were monitored continuously on 
an oscilloscope during analysis. The discriminator output pulses 
were accumulated and displayed as peri-stimulus histograms by an 
on-line minicomputer (ATAC-450, Nihon Kohden, Tokyo, Japan). 
Another computer (PC-98 21 Bp, NEC, Tokyo, Japan) stored the 
events and times of the trigger signals, output pulses from the 
discriminator, and lick signals for display of rasters and histo-
grams off-line.

DATA ANALySIS
Both neuronal and behavioral data of each trial were counted from 
the peri-stimulus histograms in successive 100-ms bins for three 
phases: a pre-trial control phase (2 s), a CS phase (2 s), and a reward 
(or non-reward) phase (2 s). Neuronal activities were compared 
among firing rates during these three phases. Neuronal excitation 
or inhibition was determined by the post hoc test (new multiple 
range test, p < 0.05) between the mean firing rate during the control 
phases (mean spontaneous firing rate) and that during each CS or 
reward phase after a one-way analysis of variance (ANOVA). The 
new multiple range test was selected because of its protection from 
Type II errors (Duncan, 1955). Each neuronal response to each CS 
was also compared with a one-way ANOVA and the post hoc test.

The mean firing rates among various neuronal types and record-
ing sites were also compared by one-way ANOVA and post hoc 
tests (p < 0.05).

Neuronal data were also treated with multidimensional scaling 
(MDS) to examine the relationships among seven CSs represented 
by the septal neurons. MDS is a method to simplify the relationships 
within a complex array of data; it constructs a geometric represen-
tation of the data to show the relationship between stimuli repre-
sented by the data matrix (see Young, 1987 for more details). MDS 
employs the metric ratio and Euclidean model (SYSTAT statisti-
cal package, Guttman scaling method). The similarities (Pearson’s 
correlation coefficients) between each possible pair of CSs were 
calculated. The MDS program computed the Pearson’s correlation 
coefficients between all possible pairs of two CSs to give inter-
stimulus relationships by plotting the relative positions of seven 
CSs in two-dimensional space. The statistical criteria, categories, 
and numerical analyses were identical to those used in two previous 
studies that used correlation coefficients for the MDS (Nishijo and 
Norgren, 1990, 1991).

HISTOLOgy
After the last recording session, rats were anesthetized again with 
sodium pentobarbital (50 mg/kg, i.p.) and several small electro-
lytic lesions (20 μA for 20 s) were made stereotaxically around 
the recorded sites with a glass-insulated tungsten microelectrode. 
Rats were then given an overdose of anesthetic and perfused 

Table 2 | Classification of the neurons recorded in the septal nuclei.

Classification Number of neurons (e/i)

 LS MS PS Total

Conditioned stimulus-related 41 (25/16) 2 (0/2) 3 (2/1) 46 (27/19)

Differential 26 (18/8) 2 (0/2) 3 (2/1) 31 (20/11)

CS+-related 15 (11/4) 2 (0/2) 1 (1/0) 18 (12/6)

CS0-related 4 (3/1) 0 0 4 (3/1)

Miscellaneous 7 (4/3) 0 2 (1/1) 9 (5/4)

Non-differential 15 (7/8) 0 0 15 (7/8)

Ingestion/ICSS-related 23 (14/9) 3 (1/2) 0 26 (15/11)

Total responded 64 (39/25) 5 (1/4) 3 (2/1) 72 (42/30)

No response 185 19 8 212

Total 249 24 11 284

E, excitation; I, inhibition; LS, lateral septal nucleus; MS, medial septal nucleus; PS, 
posterior septal nucleus. Numbers in parentheses indicate numbers of neurons.
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1 + Light 1 or Tone 2) were significantly larger than those during 
presentation of the CSs predicting reward (Tone 1, Light 1, or Tone 
2 + Light 2, Tone 3; p < 0.05).

Among four CS0-related neurons, three showed the same respon-
siveness as that of the neuron shown in Figure 3. The remaining 
neuron responded to all of the CSs predicting non-reward (Tone 
2, Light 2, or Tone 1 + Light 1).

MISCELLANEOUS NEURONS
Of 31 differential CS-related neurons, nine showed different 
responses from those of CS+- and CS0-related neurons (Table 2). 
Among these nine neurons, one responded to the CSs if they 
included auditory stimuli regardless of reward contingency (Tone 
1, Tone 2, Tone 3, Tone 1 + Light 1, or Tone 2 + Light 2), one only 
to the configural stimuli (Tone 1 + Light 1, Tone 2 + Light 2), and 
one to all CSs but it showed significantly different responses to the 
CSs (p < 0.05). The remaining six neurons responded to various 
CSs, but their responsiveness was unable to be classified.

Figure 4 shows the activity of a neuron that displayed excitatory 
responses to the CSs if the CS included auditory stimuli. Neuronal 
activity increased during presentation of Tone 1 (Figure 4A), Tone 
1 + Light 1 (Figure 4C), Tone 3 (Figure 4D), Tone 2 (Figure 4E), and 
Tone 2 + Light 2 (Figure 4G) but not during presentation of Light 
1 (Figure 4B) or Light 2 (Figure 4F). The mean firing rates during 
presentation of the CSs, including the auditory stimuli (Tone 1, 
Tone 1 + Light 1, Tone 2, Tone 2 + Light 2, or Tone 3), were signifi-
cantly larger than those during the control phase (p < 0.05). The 
mean response magnitudes of the neuron during the CS phase are 
presented in Figure 4H. Statistical comparison by one-way ANOVA 
indicated a significant difference in the response magnitudes among 
the CSs [F(6, 21) = 10.007, p < 0.01].

NON-DIffERENTIAL CS-RELATED NEURONS
Fifteen neurons responded non-differentially to all CSs with or 
without reward (Table 2): the activity of seven and eight neurons 
increased and decreased, respectively. during the CS phase. A typi-
cal example of a non-differential neuron is shown in Figure 5. The 
activity of this neuron increased in response to all CSs regardless 
of reward contingency, and the responses continued after the CS 
phase (Figures 5A–G). The mean firing rates during the CSs were 
significantly larger than those during the control phase (p < 0.05). 
The mean response magnitudes of the neuron during the CS 
phase are indicated in Figure 5H. However, no significant differ-
ences among these responses during the CS phase were observed  
[F(6, 21) = 1.500, p > 0.05].

MDS ANALySIS
The responses of 31 differential CS-related neurons to each CS were 
analyzed by MDS using Pearson’s correlation coefficients between 
all possible CS pairs to elucidate the inter-stimulus relationship 
among the seven CSs. In the MDS analysis, if response patterns 
of all differential septal neurons to a given pair of CSs are similar 
(i.e., Pearson’s correlation coefficient between the CSs is nearly 
1.0), those CSs are located close to one another in two-dimensional 
space. In Figure 6, the seven CSs were classified into the following 
three groups in a two-dimensional space based on the distance 
between the CSs: (i) CSs predicting the sucrose  solution (Tone 1, 

reward or non-reward (miscellaneous). The remaining 15 neurons 
responded non-differentially to all CSs (non- differential) regardless 
of reward contingency.

CS+-RELATED NEURONS
Eighteen CS+-related neurons responded selectively during pres-
entation of the CSs predicting reward (Table 2): the activity of 12 
and 6 neurons increased and decreased, respectively, during the 
CS phase. A typical example of this type of neuron is shown in 
Figure 2. Raster displays and each dot below a raster line indicate 
neuronal activity and one lick. Upper and lower histograms show 
accumulated neuronal activity and licks (Figures 2A–G). This neu-
ron displayed excitatory responses to Tone 1 (Figure 2A), Light 1 
(Figure 2B), Tone 3 (Figure 2D), and Tone 2 + Light 2 (Figure 2G), 
predicting sucrose solution or ICSS, but not to Tone 1 + Light 1 
(Figure 2C), Tone 2 (Figure 2E), or Light 2 (Figure 2F) predict-
ing non-reward. The mean firing rates during presentation of the 
CSs predicting reward (Tone 1, Light 1, Tone 2 + Light 2, or Tone 
3) were significantly larger than those during the control phase 
(p < 0.05). The mean response magnitudes of the neuron to vari-
ous CSs are indicated in Figure 2H. Statistical comparison using a 
one-way ANOVA indicated a significant difference in the response 
magnitudes among the CSs [F(6, 21) = 20.534, p < 0.01]. Post hoc 
comparisons indicated that the mean firing rates during presenta-
tion of the CSs predicting reward (Tone 1, Light 1, Tone 2 + Light 2, 
or Tone 3) were significantly larger than those during presentation 
of the CSs predicting non-reward (Tone 1 + Light 1, Tone 2, or Light 
2; p < 0.05). Thus, the neuron responded only to the CSs associ-
ated with reward, but not to the CSs associated with non-reward.

Among the 18 CS+-related neurons, 12 showed similar respon-
siveness to that of the neuron shown in Figure 2. Of the remain-
ing six neurons, one responded to the CSs including the auditory 
stimulus predicting reward (Tone 1, Tone 3, Tone 2 + Light 2), two 
to the CSs predicting the sucrose solution (Tone 1, Light 1, Tone 
2 + Light 2), and three to the CS predicting ICSS (Tone 3).

CS0-RELATED NEURONS
Four CS0-related neurons responded selectively during presenta-
tion of CSs, including the visual stimulus predicting non-reward 
(Table 2): the activity of three neurons increased and one decreased 
during the CS phase. A typical example of this type of neuron is 
shown in Figure 3. The activity of this neuron increased in response 
to Tone 1 + Light 1 (Figure 3C) and Tone 2 (Figure 3E), predicting 
non-reward, but not to Tone 1 (Figure 3A), Light 1 (Figure 3B), 
Tone 3 (Figure 3D), or Tone 2 + Light 2 (Figure 3G), predict-
ing reward, nor to the visual stimulus (Light 2) predicting non-
reward. This pattern of responsiveness indicated that the neuron 
responded to the CSs if the CSs predicted non-reward and included 
auditory stimuli. The mean firing rates during presentation of the 
CSs, including the auditory stimuli predicting non-reward (Tone 
1 + Light 1 or Tone 2), were significantly larger than those during 
the control phase (p < 0.05). The mean response magnitudes of the 
neuron during the CS phase are presented in Figure 3H. A statistical 
comparison using a one-way ANOVA indicated a significant differ-
ence in the response magnitudes among the CSs [F(6, 21) = 5.770, 
p < 0.01]. Post hoc comparisons indicated that the mean firing 
rates during presentation of the CSs predicting non-reward (Tone 
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Figure 2 | Activity of a conditioned stimulus predicting reward (CS)+-related 
neuron that responded differently to the conditioned sensory stimuli 
predicting reward. (A–g) Raster displays and histograms of neuronal responses 
to Tone 1 predicting the sucrose solution (A), Light 1 predicting the sucrose solution 
(B), Tone 1 + Light 1 predicting non-reward (C), Tone 3 predicting intracranial 
self-stimulation (ICSS) (D), Tone 2 predicting non-reward (e), Light 2 predicting 
non-reward (F), and Tone 2 + Light 2 predicting the sucrose solution (g). Note that 
neuronal activity increased during presentation of the CS+. White and hatched 
rectangles at the top indicate CS duration and time of reward, respectively. Each 

dot below the raster line indicates one lick; each upper histogram shows 
accumulated neuronal responses; and each lower histogram shows accumulated 
licks. Time scale, seconds; onset of conditioned stimulus at time 0; minus is a 
pre-trial control. Each histogram bin, 100 ms. Suc, 0.3 M sucrose solution. (H) 
Histogram of neuronal responses during presentation of each CS (mean firing 
rate ± SEM). A broken line with error bars indicates the mean spontaneous firing 
rate and the SEM during the pre-trial control phase. Shaded column, significant 
difference between the activity during presentation of a given CS and the 
spontaneous firing rate (new multiple range test after one-way ANOVA, p < 0.05).
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Figure 3 | Activity of a conditioned stimulus predicting non-reward 
(CS0)-related neuron that responded differently to the conditioned sensory 
stimuli predicting non-reward. (A–g) Raster displays and histograms of 
neuronal responses to Tone 1 predicting sucrose solution (A), Light 1 predicting 
sucrose solution (B), Tone 1 + Light 1 predicting non-reward (C), Tone 3 predicting 
intracranial self-stimulation (ICSS) (D), Tone 2 predicting non-reward (e), Light 2 

predicting non-reward (F), and Tone 2 + Light 2 predicting the sucrose solution 
(g). Note that neuronal activity increased during presentation of a CS0 that 
included the auditory stimulus (i.e., Tone 2 and Tone 1 + Light 1) but not during 
presentation of a visual CS0 (Light 2) nor the CS+ (Tone 1, Light 1, Tone 3, and Tone 
2 + Light 2). (H) Histogram of neuronal responses during presentation of each CS 
(mean firing rate ± SEM). Other descriptions as in Figure 2.
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Figure 4 | Activity of a miscellaneous differential neuron that responded 
differently to the conditioned auditory stimuli. (A–g) Raster displays and 
histograms of neuronal responses to Tone 1 predicting the sucrose solution (A), 
Light 1 predicting the sucrose solution (B), Tone 1 + Light 1 predicting 
non-reward (C), Tone 3 predicting intracranial self-stimulation (ICSS) (D), Tone 2 
predicting non-reward (e), Light 2 predicting non-reward (F), and Tone 2 + Light 2 

predicting sucrose solution (g). Note that neuronal activity increased during 
presentation of the CSs that included an auditory stimulus (i.e., Tone 1, Tone 
1 + Light 1, Tone 3, Tone 2, and Tone 2 + Light 2) but not during presentation of a 
visual CS (Light 1 or Light 2). (H) Histogram of neuronal responses during 
presentation of each CS (mean firing rate ± SEM). Other descriptions as 
in Figure 2.
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Figure 5 | Activity of a non-differential neuron that responded 
indiscriminately to the conditioned sensory stimuli. (A–g) Raster displays 
and histograms of neuronal responses to Tone 1 predicting the sucrose solution 
(A), Light 1 predicting the sucrose solution (B), Tone 1 + Light 1 predicting 
non-reward (C), Tone 3 predicting intracranial self-stimulation (ICSS) (D), Tone 2 

predicting non-reward (e), Light 2 predicting non-reward (F), and Tone 2 + Light 2 
predicting the sucrose solution (g). Note that neuronal activity increased during 
presentation of all CSs. (H) Histogram of neuronal responses during 
presentation of each CS (mean firing rate ± SEM). Other descriptions as 
in Figure 2.
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by one-way ANOVA indicated that no significant differences in 
mean spontaneous firing rates were observed among these four 
types of neurons [F(3, 280) = 0.970, p > 0.05].

Significant differences were found for the mean spontaneous 
firing rates in septal neuron locations. Spontaneous firing rates 
of the LS, MS, and PS neurons ranged from 0.26 to 85.6 spikes/s 
(10.64 ± 0.84 spikes/s, n = 249), from 3.02 to 82.50 spikes/s 
(25.93 ± 3.75 spikes/s, n = 24), and from 2.22 to 9.49 spikes/s 
(5.95 ± 0.81 spikes/s, n = 11), respectively (Figure 8B). Statistical 
comparison by one-way ANOVA indicated a significant differ-
ence in mean spontaneous firing rates among the three regions  
[F(2, 281) = 14.96, p < 0.01]. The mean spontaneous firing rate of 
the MS neurons was significantly larger than that of the LS and PS 
neurons (p < 0.01).

DISTRIbUTIONS Of SEpTAL NEURON RECORDINg SITES
The recording sites of all septal neurons are shown in Figure 9. 
Of 284 septal neurons recorded, 249 were located in the LS, 24 
in the MS, and 11 in the PS. The distributions of each type of 
responsive neurons are shown in Figure 10. Differential CS-related 
neurons were located mainly in the LS (n = 26; excitation/inhibi-
tion: 18/8), and a few in the MS (n = 2; 0/2) and PS (n = 3; 2/1). 
Non-differential CS-related neurons were located only in the LS 
(n = 15; 7/8). Ingestion/ICSS-related neurons were located mainly 
in the LS (n = 23; 14/9) and a few in the MS (n = 3; 1/2). The 
responsive neurons in the LS tended to be located more densely in 
the intermediate and dorsal part of the LS.

DISCUSSION
Notably, most of the septal neurons were recorded from the LS, and 
only a few neurons were recorded from the MS and PS. Therefore, 
the following discussion is based largely on data from the LS.

DIffERENTIAL CS-RELATED NEURONS
Previous unit recording studies in the MS and LS during clas-
sical conditioning reported that MS neurons display excitatory 
responses to a CS that predicts an aversive stimulus but display 
inhibitory responses to the CS predicting an appetitive stimulus 
(Yadin, 1989; Thomas et al., 1991). In contrast, LS neurons dis-
play inhibitory responses to the CS predicting an aversive stimu-
lus and excitatory responses to the CS predicting an appetitive 
stimulus (Thomas et al., 1991). The present study was partially 
consistent with these results. Of 15 CS+-related neurons in the 
LS, 11 showed excitatory responses, and two CS+-related neurons 
in the MS showed inhibitory responses. These results are consist-
ent with the idea that reciprocal relationships exist between LS 
and MS neurons. Neuroanatomical studies have reported that 
LS neurons receive excitatory glutamatergic afferents and send 
inhibitory gamma-aminobutyric acid (GABA)ergic efferents to 
the MS and lateral hypothalamic area (Panula et al., 1984; Risold 
and Swanson, 1997b), where inhibitory responses to the CS+ 
have been reported (Ono et al., 1986; Yadin, 1989; Thomas et al., 
1991; present results). This neurophysiological evidence along 
with neuroanatomical results indicating direct and indirect con-
nections between the LS and MS (Risold and Swanson, 1997b) 
suggests that the LS and MS work as a functional unit during 

Light 1, or Tone 2 + Light 2), (ii) CS predicting ICSS (Tone 3), 
and (iii) CSs predicting non-reward (Tone 2, Light 2, or Tone 
1 + Light 1).

INgESTION/ICSS-RELATED NEURONS
Twenty-six neurons responded mainly during the reward 
phase (Table 2). A typical example of this type of neuron is 
shown in Figure 7. This neuron displayed excitatory responses 
during ingestion of a reward (sucrose solution and ICSS; 
Figures 7A,B,D,G). The activity of this neuron also increased in 
response to all CSs, except Light 2 (Figures 7A–G). The mean fir-
ing rates during presentation of all CSs except Light 2 and those 
during reward phases were significantly larger than those during 
the control phase (p < 0.05). The mean response magnitudes 
of the neuron during the CS and reward phases are presented 
in Figure 7H. Statistical comparisons indicated that signifi-
cant differences occurred in the response magnitudes among 
the CSs [F(6, 21) = 5.982, p < 0.01], and in the response mag-
nitudes among the reward phases [F(3, 12) = 7.031, p < 0.01]. 
Furthermore, the responses to the sucrose solution were signifi-
cantly larger than those to ICSS (p < 0.05).

SpONTANEOUS fIRINg RATE
The spontaneous firing rates of differential CS-related neu-
rons ranged from 1.57 to 55.94 spikes/s (8.33 ± 2.07 spikes/s, 
mean ± SEM, n = 31); those of non-differential CS-related neu-
rons ranged from 1.62 to 83.61 spikes/s (15.21 ± 6.10 spikes/s, 
n = 15); those of ingestion/ICSS-related neurons ranged from 
1.05 to 85.61 spikes/s (13.02 ± 3.43 spikes/s, n = 26); and those 
of non-responsive neurons ranged from 0.26 to 78.07 spikes/s 
(11.86 ± 0.91 spikes/s, n = 212; Figure 8A). A statistical  comparison 
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Figure 7 | Activity of an ingestion/ intracranial self-stimulation (iCSS)-
related neuron that responded mainly during the reward phase. (A–g) Raster 
displays and histograms of neuronal responses to Tone 1 predicting sucrose 
solution (A), Light 1 predicting sucrose solution (B), Tone 1 + Light 1 predicting 
non-reward (C), Tone 3 predicting ICSS (D), Tone 2 predicting non-reward (e), Light 
2 predicting non-reward (F), and Tone 2 + Light 2 predicting sucrose solution (g). 

Note that neuronal activity increased during ingestion of a reward (i.e., sucrose 
solution or ICSS) and also during presentation of some CSs (Tone 1, Light 1, Tone 
1 + Light 1, Tone 3, Tone 2, and Tone 2 + Light 2), but not Light 2. (H) Histogram of 
neuronal responses during presentation of each CS and ingestion of reward (mean 
firing rate ± SEM). *significant difference from other responses (new multiple 
range test after one-way ANOVA, p < 0.05). Other descriptions as in Figure 2.
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et al., 1995), mediodorsal thalamic nucleus (Oyoshi et al., 1996), 
lateral hypothalamic area (Ono et al., 1986), and basal ganglia 
(Nishino et al., 1984, 1985a,b) in rats and monkeys. However, 
more recent studies in other laboratories have reported that 
some prefrontal cortical neurons predict the absence of reward 
(Kobayashi et al., 2002; Watanabe et al., 2002). Consistent with 
these results, the LS is positioned at an essential node point for 
integrating cognitive information from the various brain regions, 
including the prefrontal cortex, and relaying it to diencephalic and 
mesencephalic regions to directly control behavioral responses 
(Sheehan et al., 2004). Furthermore, the LS and MS have recipro-
cal connections with the nucleus of basalis of Meynert (substantia 
innominata; Lamour et al., 1984), which is involved in negative 
patterning similar to that (Tone1 + Light1) in the present study 
(Butt et al., 2002). Taken together, the existence of CS0-related 
neurons in the LS suggests that cognitive information from the 
prefrontal cortex and the nucleus of basalis of Meynert may 
exert inhibitory control on emotional and motivational behav-
iors through the LS. Previous behavioral studies have consist-
ently reported that electrically stimulating the septal area inhibits 
drinking (Wishart and Mogenson, 1970; Gordon and Johnson, 
1981) and bar pressing for a food reward (Altman and Wishart, 
1971) under a deprived condition.

In the present study, 18 CS+-related and four CS0-related neu-
rons responded differently to the CSs in terms of reward contin-
gency. For example, CS+-related neurons responded to Tone 1 and 
Light 1 presented alone, which predicted reward, but not to these 
stimuli presented together, which predicted non-reward. On the 
contrary, CS0-related neurons responded to Tone 1 and Light 1 
presented together, but not to Tone 1 and Light 1 presented alone. 
It should be noted that, in the configural situation, the reward 
contingency of the stimuli presented together was opposite to 
that of the elemental stimuli presented alone, although the same 
sensory stimuli were involved. Therefore, these patterns strongly 
suggest that these responses to the CSs were related to the reward 
contingency of the CSs rather than to the physical properties of 
the stimuli. The results of the MDS support this idea. In two-
dimensional space, seven CSs were categorized into the follow-
ing three groups: (i) CSs predicting the sucrose solution (Tone 1, 
Light 1, or Tone 2 + Light 2), (ii) the CS predicting ICSS (Tone 
3), and (iii) CSs predicting non-reward (Tone 2, Light 2, or Tone 
1 + Light 1). Furthermore, the arrangement of these three groups of 
conditioned stimuli suggests that dimension 1 may reflect reward 
availability, whereas dimension 2 may reflect reward content (i.e., 
difference between sucrose and ICSS). This grouping of CSs based 
on reward contingency regardless of physical properties of the 
stimuli strongly suggests that reward contingency is a main deter-
minant of LS neuronal responsiveness. This flexible encoding of 
reward contingency regardless of the physical properties of the 
CSs in the LS is reminiscent of the functions of both orbital and 
medial prefrontal cortices (flexible stimulus–reward associations; 
Jones and Mishkin, 1972; Ferry et al., 2000; McAlonan and Brown, 
2003; Baxter et al., 2007; Tait and Brown, 2007; Hsu and Packard, 
2008), from which the LS receives afferent inputs (Johnson et al., 
1968; Sesack et al., 1989; Buchanan et al., 1994). These finding also 
suggest that the LS might be a key relay station for the prefrontal 
cortex to exert control over behavior.

conditioned associative learning. In contrast, four LS neurons 
showed inhibitory responses to the CS+. A neuroanatomical study 
reported that LS neurons send their collaterals for intrinsic con-
nections (Staiger and Nürnberger, 1991), which could induce 
inhibitory responses to CS+ in the LS.

In the present study, four CS0-related neurons were recorded 
from the LS. Similar CS0-related neurons were previously reported 
only in monkey septal nuclei (Kita et al., 1995). Our previous 
studies indicated that no such neurons occur in the prefrontal 
area (Yamatani et al., 1990), cingulate cortex (Nishijo et al., 1997b; 
Takenouchi et al., 1999), amygdala (Nishijo et al., 1988a,b; Uwano 
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Figure 8 | Mean firing rates of neurons recorded in the septal nuclei. (A) 
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(ICSS)-related and non-responsive neurons. No significant differences in mean 
spontaneous firing rates were found among the three groups (one-way 
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to reward ingestion or licking behavior, because EMGs were not 
monitored during recording of these neurons. However, activity 
of these neurons was not correlated to individual licks (data not 
shown). Furthermore, no neuronal activity changes were observed 
when spontaneous licking occurred during intertrial intervals. 
Additionally, about half of these neurons responded to both the 
sucrose solution and ICSS during the reward phases. These results 
suggest that the responses of ingestion/ICSS-related neurons are 
related to reward recognition. Similar ingestion-related neurons 
have been reported in monkey septal nuclei (Nishijo et al., 1997a). 
Activity of these neurons is modulated by satiation and correlated 
to the motivational level of the animal (Nishijo et al., 1997a) sug-
gesting that septal nuclei play an important role in motivational 
aspects of ingestive behavior.

fUNCTIONAL CONSIDERATION Of THE SEpTAL NUCLEI
The LS consists of dorsal, intermediate, and ventral parts based on 
cytoarchitectonic parcelation (Swanson and Cowan, 1979). The LS 
receives major inputs from the hippocampal formation (Raisman, 
1966a,b, 1969; Meibach and Siegel, 1977; Swanson and Cowan, 

NON-DIffERENTIAL CS-RELATED NEURONS
The 15 non-differential CS-related neurons in the LS responded 
indiscriminately to all CSs regardless of reward contingency, sug-
gesting that activity of non-differential CS-related neurons may 
reflect non-specific inputs such as arousal. The LS receives strong 
projections from brainstem nuclei such as the laterodorsal tegmen-
tal nucleus, locus coeruleus, raphe nucleus, and VTA, which are 
associated with modulating arousal level (Saper, 1987; Risold and 
Swanson, 1997b). Furthermore, the LS shares intimate connections 
with the lateral hypothalamic area (Jakab and Leranth, 1995), which 
composes a rostral portion of the ascending reticular formation 
(Nieuwenhuys et al., 1982). This evidence is consistent with a pre-
vious suggestion that septal nuclei are important for modulating 
hippocampal θ-rhythm, which is associated with behavioral arousal 
(Stewart and Vanderwolf, 1987a,b; Stewart and Steven, 1990).

INgESTION/ICSS-RELATED NEURONS
Fifteen ingestion/ICSS-related neurons responded mainly dur-
ing ingestion of the reward. However, it is unclear whether the 
responses of these ingestion/ICSS-related neurons were related 
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medial and orbital prefrontal cortex also project to both the LS and 
MS (Johnson et al., 1968; Sesack et al., 1989; Buchanan et al., 1994). 
These anatomical studies suggest that different information from 
the other limbic system noted above converges on the septal nuclei.

The major target of output fibers from the LS is the hypotha-
lamus (Raisman, 1966a; Meibach and Siegel, 1977; Garris, 1979; 
Swanson and Cowan, 1979; Berk and Finkelstein, 1981; Sawchenko 
and Swanson, 1983; Wouterlood et al., 1988; Ferris et al., 1990; 
Staiger and Wouterlood, 1990; Staiger and Nürnberger, 1991; Risold 
and Swanson, 1996, 1997b). Electrically stimulating the septal nuclei 
may modulate motivated behaviors in which the hypothalamus 
plays an important role (Wishart and Mogenson, 1970; Altman and 
Wishart, 1971; Gordon and Johnson, 1981). Furthermore, lesions 
in the dorsal and intermediate parts of the septal nuclei, where 
most responsive neurons were located in the present study, induce 
anxiety and abnormal emotional behaviors in rats (Menard and 
Treit, 1995), and the antidepressant-like effects of allopregnanolone 
(GABAA receptor agonist) are mediated through its effects on the 
dorsal or intermediate part of the LS (Rodríguez-Landa et al., 2009). 
These behavioral changes after septal lesions and pharmacological 
stimulation may be related to a disconnection between the LS and 
the hypothalamus, and enhance LS control on the hypothalamus, 

1977, 1979), and the intermediate part of the LS receives most of the 
inputs (Staiger and Nürnberger, 1989). In the present study, most of 
the responsive neurons were located in the dorsal and intermediate 
part of the LS, and fewer neurons were located in the ventral part. 
The LS can also be divided into three parts based on chemoarchi-
tecture (i.e., rostral, caudal, and ventral parts; Risold and Swanson, 
1996, 1997a). The areas where responsive neurons were located 
(i.e., the dorsal and intermediate part of the LS by Swanson and 
Cowan, 1979) roughly corresponded to the caudal part of the LS 
and dorsolateral zone of the rostral part of the LS by Risold and 
Swanson (1996, 1997b), which receive afferents from the CA1 and 
CA3 subfields of the hippocampus as well as the subiculum. These 
results were consistent with a previous neurophysiological study in 
monkeys in which responsive septal neurons were located mainly 
in the same areas as those in the present study (Kita et al., 1995). 
Afferent fibers from the entorhinal cortex also terminate in the 
intermediate part of the LS (Alonso and Köhler, 1984). The bed 
nucleus of the stria terminalis projects to the intermediate and 
ventral part of the LS, and the medial amygdaloid nucleus projects 
to the ventral part of the LS (DeVries and Buijs, 1983; VanLeeuwen 
and Caffé, 1983; DeVries et al., 1985; Caffé et al., 1987; Mathieson 
et al., 1989; Staiger and Nürnberger, 1989; DeVries, 1990). The 
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