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Summary
Background Ocular diseases may exhibit common clinical symptoms and epidemiological comorbidity. However,
the extent of pleiotropic mechanisms across ocular diseases remains unclear. We aim to examine shared genetic eti-
ology in age-related macular degeneration (AMD), diabetic retinopathy (DR), glaucoma, retinal detachment (RD),
and myopia.

Methods We analyzed genome-wide association analyses for the five ocular diseases in 43,877 cases and 44,373 con-
trols of European ancestry from UK Biobank, estimated their genetic relationships (LDSC, GNOVA, and Genomic
SEM), and identified pleiotropic loci (ASSET and METASOFT).

Findings The genetic correlation of common SNPs revealed a meaningful genetic structure within these diseases,
identifying genetic correlations between AMD, DR, and glaucoma. Cross-trait meta-analysis identified 23 pleiotropic
loci associated with at least two ocular diseases and 14 loci unique to individual disorders (non-pleiotropic). We
found that the genes associated with these shared genetic loci are involved in neuron differentiation
(P = 8.80£ 10�6) and eye development systems (P = 3.86£ 10�5), and single cell RNA sequencing data reveals their
heightened gene expression from multipotent progenitors to other differentiated retinal cells during retina develop-
mental process.

Interpretation These results highlighted the potential common genetic architectures among these ocular diseases
and can deepen the understanding of the molecular mechanisms underlying the related diseases.
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Introduction
Approximately 295 million people with ocular diseases
suffer moderate or severe vision impairment world-
wide.1 Clinical and epidemiological data have suggested
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associations among several common ocular diseases.
Longitudinal and retrospective cohort studies provided
evidence that diabetic retinopathy (DR) is independently
related with an increased risk of subsequent dry
(HR = 1.24 » 3.89) and wet (HR = 1.68 » 3.42) age-
related macular degeneration (AMD),2,5 and both of wet
AMD and diabetes/DR also increase the risk of open-
angle glaucoma.6,7 Additionally, retinal detachment
(RD) refers to the separation of the neurosensory retina
from the retinal pigment epithelium (RPE), and often
occurs in AMD, DR and myopia patients.8 As the most
common ocular disorder, myopia with a global
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Research in context

Evidence before this study

Age-related macular degeneration (AMD), diabetic reti-
nopathy (DR), glaucoma, retinal detachment (RD), and
myopia are five common vision-threatening diseases,
with extensive clinical associations among them. The
substantial influence of genetic variation on risk for a
broad range of these ocular diseases has been estab-
lished by both twin and genome-wide association stud-
ies. In addition, the connection between RD and
myopia has been explained through a significant
genome-wide genetic correlation and the shared loci
associated with both diseases. However, the genetic
relationships and pleiotropic effects in these five ocular
diseases remain unclear.

Added value of this study

Our study has identified genetic correlations between
AMD, DR, and glaucoma, which are characterized by
neurodegeneration. All three diseases showed positive
genetic correlations with Type 2 diabetes and obesity.
Cross-trait meta-analysis of the five ocular disorders
detected 23 pleiotropic loci affecting at least two dis-
eases, including three loci positively associated with all
five diseases. Notably, we found the pleiotropic loci
were involved in eye development systems and showed
heightened expression during early retinal develop-
ment. Ou3r results also suggest the important roles of
Wnt signalling pathway and glucose metabolic process
in the shared molecular mechanisms of ocular diseases.

Implications of all the available evidence

The shared genetic structure and pleiotropic mecha-
nisms in ocular diseases interprets their clinical associa-
tions to some extent. Our results suggest that
abnormalities in retinal development, Wnt signalling,
and glucose metabolism may be the underlying mecha-
nisms leading to susceptibility to multiple ocular dis-
eases. These finds have important implications for risk
prediction, clinical prevention, and drug development.
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prevalence of 22.9%,9 appeared to have a protective
effect on AMD (odds ratio [OR], 0.45; 95% confidence
interval [CI], 0.25-0.79) and DR (OR = 0.68, 95% CI,
0.46-0.98).3 On the contrary, for every 1 dioptre (D)
increase in myopia, the risks of open-angle glaucoma
and RD increased by 20% and 30%, respectively.4 These
studies demonstrated that the coexistence of myopia
and other ocular diseases is frequent. Some phenotypic
and genetic overlap have been supported by recent evi-
dence of shared molecular risk factors,10,11 but the
extent of these relationships remains unclear, given the
small proportion of risk associated with individually
identified variants.

One hypothesis to account for the similarity in symp-
toms for these diseases is due to a shared common
genetic etiology. Genome-wide association studies
(GWASs) have demonstrated the important roles of
genetic factors in the pathogenesis of ocular diseases.
For examples, the International AMD Genomics Con-
sortium (IAMDGC) identified 52 common and rare var-
iants at 34 loci associated with advanced AMD on the
basis of 16,144 cases and 17,832 controls, accounting for
46.7% of variability.12 A multi-trait analysis of glaucoma
on UK Biobank (UKB) and International Glaucoma
Genetics Consortium (IGGC) identified 107 loci and
developed a powerful polygenic risk score for predic-
tion.13 In addition, a GWAS meta-analysis involving
542,934 European participants from UK Biobank,
23andMe, Genetic Epidemiology Research on Adult
Health and Aging (GERA) cohort, and the Consortium
for Refractive Error and Myopia (CREAM) found 438
loci associated with refractive error or myopia, explain-
ing 18.4% of the heritability.14 These GWASs show that
we can test for shared genetics by looking for correla-
tions in effect sizes across traits without measuring
multiple traits per individual. Based on the GWASs,
recent studies have found significant genetic correla-
tions between RD and high myopia (rg = 0.46,
P = 8.92£10�9),11 mean spherical equivalent (MSE;
rg = -0.45, P = 1.3£10�15) and intraocular pressure (IOP,
one of the major risk factors for glaucoma; rg = 0.28,
P = 1.6£10�16).15 To date, however, no studies have uti-
lized pleiotropic meta-analytic techniques to compre-
hensively parse variance from AMD, DR, glaucoma,
RD, and myopia focused GWASs that might pinpoint
shared and differential biological mechanisms.

Here, we conducted a large-scale GWAS analysis for
these five ocular diseases, based on 43,877 cases and
44,373 controls of European ancestry from UKB which
is the largest and most complete European Biobank and
provided a sufficient sample size and comprehensive
eye health information. We then employed a pleiotropic
meta-analytic approach, association analysis based on
subsets (ASSET),16 to explore genetic correlations and
shared genetic components among these diseases. Sub-
sequently, we performed a series of pathway and tran-
scriptome-wide analyses to biologically characterize
differential mechanisms underlying loci associated with
risk for multiple disorders (pleiotropic loci) versus non-
pleiotropic loci.
Methods

Study populations and quality control
UKB is a large-scale biomedical database and research
resource, containing genetic and health information
from half a million individuals aged 40 to 69 years in
the United Kingdom.17 There were 488,000 partici-
pants genotyped for 805,426 markers on the UK
BiLEVE Axiom array and UK Biobank Axiom array.
After standard quality control, the dataset was phased
www.thelancet.com Vol 82 Month , 2022
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and »96M genotypes were imputed with the Haplotype
Reference Consortium and UK10K haplotype resources.
The imputed data has been aligned to the + strand of
the reference and SNP positions are in GRCh37 coordi-
nates.

We defined AMD, DR, glaucoma, and RD cases
according to (i) ICD-10 diagnosis codes (AMD: H353; DR:
H360; glaucoma: H401, H408, or H409; RD: H335);
(ii) touchscreen question “Eye problems/disorders”
(responded “macular degeneration” or “glaucoma”); and
(iii) self-reported non-cancer illness (responded “macular
degeneration”, “glaucoma”, or “retinal detachment”)
(Figure S1).17 We identified 7,329 AMD cases, 2,281 DR
cases, 10,154 glaucoma cases, and 4,192 RD cases and
82,473 controls without any ocular disease, history of eye
surgery, or current infection. UKB measured refractive
error of 130,494 participants by non-cycloplegic autore-
fraction using a TomeyRC - 5000 AutoRefractor Keratom-
eter. We excluded unreliable results and calculated the
spherical equivalent (SE) as spherical refractive error plus
half the cylindrical error. We identified 38,289 myopia
cases (participants with SE of both eyes � �0.50D) and
49,029 controls (participants with SE of both eyes
> �0.50D and didn’t have any ocular disease) (Figure S1).

We used the version 3 imputed genotypes data and
only retained high quality variants with missingness
< 0.05, Hardy-Weinberg equilibrium (HWE) test P-
value > 10�6, imputation quality (INFO) > 0.4, and
minor allele frequency (MAF) > 0.01 on the basis of the
combined case-control cohort. The Y chromosome and
mitochondrial DNA were excluded from this study. We
removed samples identified as outliers in heterozygosity
and missing rates, participants with sex discrepancy,
and individuals of non-Caucasian ancestry based on the
sample QC provided by UKB (Figure S1). We estimated
relatedness in each cohort by PLINK18 and only kept
one of any pair of individuals with relatedness (pˆ)
> 0.2. In total, 88,250 Caucasian participants and
8,935,901 variants were included in this study. The
sample overlap was showed in Table S1-S3.
Ethics
UK Biobank data has approval from the NorthWest Multi-
centre Research Ethics Committee (MREC) (REC refer-
ence: 16/NW/0274). This research has been conducted
with the UK Biobank Resource under project 45270.
Statistical analyses
Genome-wide association analyses. We performed
GWAS analyses for each individual disease adjusting
for age, sex and first ten principal components19,20

using PLINK2,21 SAIGE v0.44.5,22 and fastGWA-
GLMM v1.93.2,23 respectively, and identified LD-inde-
pendent loci using PLINK clumping function
www.thelancet.com Vol 82 Month , 2022
(parameters: -clump-p1 = 5 £ 10�8, -clump-p2 = 0.05,
-clump-r2 = 0.4, -clump-kb = 500). The data of
88,250 samples was used as the reference panel for
LD estimation. We searched each locus in the GWAS
catalog (https://www.ebi.ac.uk/gwas, search date:
March 15, 2022)24 and GWAS literatures to identify
which locus had been previously reported by other
GWAS studies.
Heritability and genetic correlation. We performed
linkage disequilibrium score regression (LDSC)25,26

and GNOVA (genetic covariance analyzer)27 analyses
using the summary statistics of individual disease to
estimate SNP-based heritability and genetic correlation.
To explore the common risk factors of ocular diseases,
we estimated genetic correlations between the five ocu-
lar diseases and 24 risk traits (Table S4).
Genomic structural equation modelling. To analyze
the joint genetic architecture of five diseases, we used
Genomic SEM28 to fit structural equation models based
on the GWAS summary statistics. An exploratory factor
analysis (EFA) was performed with promax rotation and
two factors using the factanal function (Table S5). We
specified following genomic confirmatory factor models
with two factors based on EFA results.
Cross-trait meta-analysis. To combine the association
evidence and identify genomic loci shared across multi-
ple ocular diseases, we performed a primary meta-analy-
sis using a subset-based approach ASSET.16 We used 2-
sided ASSET for five ocular diseases, which allows sub-
set search for positive and negative association and then
combines association signals from two directions by
chi-square test. Independent loci were determined via
PLINK clumping (parameters: -clump-p1 = 5 £ 10�8,
-clump-p2 = 0.05, -clump-r2 = 0.4, -clump-kb = 500),
using the data of all 88,250 samples as LD reference
panel. To confirm the independence of the index SNP
in each locus, we performed conditional and joint analy-
sis using GCTA-COJO.29

Next, we estimated posterior probabilities for each of
the top loci identified from the meta-analysis to quantify
disorder-specific using METASOFT30�32 with random
effects model (RE2).
Functional annotation and gene mapping. The SNPs
in each locus that were in LD (r2 > 0.4) with the index
SNP and had P < 0.05 were defined as credible SNPs.
For the index and credible SNPs in all loci, functional
annotation and gene mapping were conducted using
FUMA.33
3
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Functional enrichment analysis. We conducted a gene-
set enrichment analysis using Metascape34 for Gene
Ontology biological processes among the genes impli-
cated in pleiotropic loci and non-pleiotropic loci sepa-
rately. The pathways containing at least three candidate
genes with P < 0.01 and enrichment score > 1.5 were
defined as significantly enriched pathways. This online
platform provided enrichment network using
Cytoscape.35
Tissue enrichment analysis. Tissue specific expres-
sion enrichment was performed using RNA-seq data
from Genotype-Tissue Expression v8 (GTEx, https://
gtexportal.org/home/datasets)36 and the Human Pro-
tein Atlas (HPA, https://www.proteinatlas.org/about/
download),37 respectively.
Expression analysis in human developing retina. To
confirm the role of pleiotropic loci in retinal develop-
ment, we plotted developmental expression trajecto-
ries for candidate genes using a gene expression data
of the developing human retina (GSE98370),38 which
contains 21 samples obtained from embryonic and
fetal retina, 3 samples of adult retina, and 8 whole
embryonic eyes.
Single-cell RNA-seq analysis. Single cell expression
profiles from the adult foveal retina, adult peripheral
retina, and retinal organoids39 were used to identify
cell-type specificity of candidate genes. Expression
values (transcripts per cell) were log-transformed and
centred to the mean expression level for each cell. 73
genes (47 pleiotropic and 24 non-pleiotropic) were
screened out with normalized expression � 0.25 in
at least one cell type of retinal organoids at 30 and
38 weeks. We compared the cell-type-specific expres-
sion of these candidate genes in foveal retina,
peripheral retina, and retinal organoids at 30- and
38-week time points. Then we visualized the expres-
sion of these genes in cell types during the develop-
ment of retinal organoids using scVis.40
Disease #Cases #Controls # of loci
(# of loci reported)

La

AMD 5,873 60,514 2 (2) 1.

DR 1,652 60,577 3 (2) 1.

Glaucoma 7,873 60,517 18 (17) 1.

RD 3,449 60,562 2 (2) 1.

Myopia 27,993 36,275 61 (60) 1.

Table 1: GWAS results of each ocular disease in UKB cohort.
The number of cases and controls used in the single-disease GWASs. LD score re

mary statistics using LDSC.
Role of funding source
The funding sources of the study had no role in study
design, data collection, data analysis, data interpreta-
tion, and writing of the report.
Results

Genome-wide association studies of individual ocular
diseases
The single-phenotype GWAS of five ocular diseases
were carried out on a total of 88,250 participants
and 8,935,901 variants from UK Biobank after qual-
ity control (see “Methods”). For the analyses by
PLINK, the quantile-quantile plot of the genome-
wide meta-analysis revealed no evidence of inflation
was found in AMD, DR, and RD, as their genomic
inflation factor (λ) are close to one (Figure S2).
Although the λ was 1.142 for glaucoma and 1.235 for
myopia, the intercept (s.e.) from LDSC for glaucoma
and myopia was 1.062 (0.008) and 1.065 (0.009),
respectively (Table 1). Additionally, we reported no
significant evidence for inflation of association statis-
tics that would be expected in a study of λ1000
(Table 1). These indicated that the observed inflation
of λ for glaucoma and myopia is mainly due to poly-
genic signals or asymmetric case/control sample
sizes rather than population stratification. The LDSC
SNP-based heritability (h2) for AMD, DR, glaucoma,
RD, and myopia were 0.073 (SE = 0.033), 0.173
(SE = 0.052), 0.167 (SE = 0.021), 0.071
(SE = 0.014), and 0.363 (SE = 0.024), respectively.
We identified two genome-wide significant
(P < 5 £ 10�8) independent loci for AMD, three for
DR, 18 for glaucoma, two for RD, and 61 for myopia
(Figure 1a; Table 1; Table S6). Out of the indepen-
dent loci reported here, we confirmed 83 loci that
were previously known, and found three previously
unreported loci, including rs139220415 for DR
(11q22.3, P = 2.10 £ 10�8), rs79807136 for glaucoma
(14q23.2, P = 3.88 £ 10�8), and rs58298352 for myo-
pia (11q14.3, P = 2.41 £ 10�8). The results of SAIGE
and fastGWA models are highly consistent with
PLINK (Pearson correlation coefficient � 0.99;
Figure 1a; Figure S3-S5).
mbda Lambda1000 Intercept (SE) Liability-based
heritability (SE)

073 1.007 1.059 (0.007) 0.062 (0.030)

051 1.016 1.027 (0.006) 0.173 (0.044)

142 1.010 1.062 (0.008) 0.172 (0.018)

079 1.012 1.031 (0.007) 0.071 (0.011)

235 1.007 1.065 (0.009) 0.366 (0.022)

gression intercept and SNP heritability was estimated from the GWAS sum-
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Figure 1. Genetic relationships across five ocular diseases. (a) Manhattan plots of GWAS results among five ocular diseases. The
X-axis is the base-pair position, and the Y-axis is the -log10-transformed P-value for each SNP. The red line indicates genome-wide
significance (P< 5 £ 10�8), and the blue line represents a suggestive significance (P< 1£ 10�5). (b) SNP-based genetic correlations
(rg) were estimated between pairs of ocular diseases by GNOVA. The colour and size of each circle indicate the magnitude of the rg.
Asterisks indicate nominal significance (P < 0.05), and double asterisks represent statistical significance after Bonferroni correction
(P < 0.05/10). (c) An exploratory factor analysis (EFA) and a confirmatory factor analysis (CFA) were conducted on the GWAS sum-
mary statistics using Genomic SEM. Here we showed the standardized estimates. F1g represents a shared genetic factor among
AMD, DR, and glaucoma, while F2g represents a common genetic factor between RD and myopia. Arrows connecting the factors to
the individual diseases represent regression coefficients of the genetic liability for the diseases on the common factor. The arrow
connecting the two factors represents their correlation. Two-headed arrows linking the genetic components of the individual ocular
diseases to themselves represent residual genetic variances, which can be interpreted as the proportion of heritable variation unex-
plained by the factors. SEs are shown in parentheses.
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Genetic correlation among five ocular diseases
Based on the GWAS results, we first estimated pairwise
genetic correlations among the five ocular diseases
using LDSC.25,26 In LDSC analysis, RD and myopia
(rg = 0.47, P = 1.15 £ 10�13) were genetically correlated
at a Bonferroni corrected significance threshold of
P < 5 £ 10�3 (Figure S6; Table S7), which was concor-
dant with previous studies.11,15 At a nominal threshold
www.thelancet.com Vol 82 Month , 2022
of P < 0.05, we observed glaucoma was correlated with
AMD (rg = 0.37, P = 0.015), DR (rg = 0.26, P = 0.022),
and RD (rg = 0.19, P = 0.010). The highest degree of
genetic correlation was observed for AMD and DR
(rg = 0.61, P = 0.053), though the correlation were not
significant. Next, we applied GNOVA,27 which is more
powerful when genetic correlation is moderate, to dis-
sect the genetic covariance among these diseases. We
5
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found the relationships between four pairs of ocular dis-
eases passed the Bonferroni correction threshold,
including highest correlation between RD and myopia
(rg = 0.31, P = 4.29 £ 10�15), followed by AMD and DR
(rg = 0.25, P = 2.46 £ 10�4), glaucoma and DR
(rg = 0.18, P = 8.26 £ 10�4), and glaucoma and AMD
(rg = 0.17, P = 2.68 £ 10�4) (Figure 1b; Table S8).

We modelled the joint genetic architecture of the five
ocular diseases using an exploratory factor analysis
(EFA) and a confirmatory factor analysis (CFA) by
Genomic SEM.28 Genomic SEM identified two corre-
lated factors, which together explained 52.6% of the
genetic variation in the five ocular diseases (Table S5).
The first factor consisted of three age-related neurode-
generative diseases of the retina41�43: AMD, DR, and
glaucoma. The second factor was characterized by axial
elongation,44,45 specifically RD and myopia (Figure 1c;
Figure S7a; Table S9). Similar to the Genomic SEM
results, hierarchical clustering analyses also identified
two groups among the five diseases (Figure S7b). To
examine the genetic correlational pattern between F1
group (AMD, DR, and glaucoma) and F2 group (RD
and myopia), we extended our genetic correlation analy-
sis to other traits and confirmed two clusters among
these diseases (Figure S8; Table S10). The rg values of
AMD and DR strongly mirrored each other (the Pearson
correlation coefficient between their rg values was
r = 0.80; P = 2.94 £ 10�6; Table S11). As F1-grouped
diseases, AMD, DR, and glaucoma were both positively
correlated with hypertension, type 2 diabetes, BMI,
insomnia, smoking behaviour, and time spent in watch-
ing television, while negatively correlated with educa-
tion years and several physical activities. However, the
correlational patterns for F1-grouped and F2-grouped
diseases were markedly different and sometimes in
opposite directions. For example, myopia was positively
associated with intelligence and education attainment,
while negatively correlated with BMI, smoking behav-
iour, and television time. Together, these findings con-
firmed the strong genetic correlation between RD and
myopia, and identified genetic relationships between
AMD, DR, and glaucoma.
Cross-trait meta-analysis
Given the strong genetic relationships, we performed a
primary cross-trait meta-analysis to detect the loci
shared by at least two ocular diseases using ASSET.16

Although the genomic inflation factor λ was 1.226, the
λ1000 was close to one, suggesting no inflation of test
statistics due to confounding (λ1000 = 1.005; Figure 2a).
We identified 1,667 genome-wide significant associa-
tion (PASSET < 5 £ 10�8) variants map to 37 indepen-
dent loci (Figure 2b; Figure S9; Table S12). All the 37
index SNPs were confirmed to be independent by condi-
tional analysis using GCTA-COJO.29 Of all the index
SNPs, four were in exonic regions, 21 were intronic, and
12 were in inter-genic regions (Table S13). Among these
index SNPs, rs5442 (PASSET = 8.51 £ 10�11) on 12p13.31
was a missense variant of GNB3 with the highest com-
bined annotation-dependent depletion (CADD)46 score
(26.5), leading to a glycine-to-serine change.47 The prod-
uct of GNB3 modulates cone transducin function and
bipolar cell signalling, associated with congenital sta-
tionary night blindness.48 This SNP shows a significant
association with myopia in single-trait GWAS model
(Table S6). Of all the 3,718 index and credible SNPs
(SNPs with PASSET < 0.05 and in high linkage disequi-
librium with the independent index SNPs, see
“Methods”), 32 were in exonic regions (0.9%), 2,093
were in intronic regions (56.3%), 1,234 were in inter-
genic regions (33.2%), and 49.9% were annotated as
potentially having a regulatory function (Figure 2c). Par-
titioned heritability analysis49 of meta-analysis results
using LDSC showed significant enrichment for h2 of
SNP located in conserved regions (enrichment = 16.66,
P = 2.10 £ 10�6), super-enhancer (enrichment = 1.96,
P = 5.61 £ 10�5), intron (enrichment = 1.40, P =
1.85 £ 10�3), and acetylated lysine 27 on histone H3
(H3K27ac; enrichment = 1.78, P = 3.28 £ 10�5)
(Figure 2d). Our results suggest evolutionarily con-
served and regulatory regions may harbour variants
with pleiotropic effects on many ocular diseases.
Decoding cross-trait pleiotropic associations
To quantify the best-fit model of cross-disorder geno-
type-phenotype relationships, we used METASOFT30,31

to estimate the posterior probability (m-value) of associ-
ation with each disease. M-value > 0.9 indicated that a
particular variant was associated with a given disease,
while m-value < 0.1 was predicted that there is no effect
between genotype and phenotype. The plots of the P-
value, beta, and m-value for each index SNP are shown
in Figure S10. We finally identified 23 pleiotropic loci (i.
e., associated with more than one ocular disease) and 14
non-pleiotropic loci (Table 2; Table S12). Of these 23
pleiotropic loci, 4 had not been identified in our GWAS of
individual disorders, and their lead SNPs are located in
the genomic regions of 10q26.3 (rs12570944, PASSET =
1.00 £ 10�8), 11q14.2 (rs9667489, PASSET = 2.01 £ 10�8),
5q13.2 (rs10036789, PASSET = 4.43 £ 10�10), and 2q31.1
(rs62181740, PASSET = 4.79 £ 10�8) (Table S12). In addi-
tion, all pleiotropic loci had same directional effects on
their associated ocular diseases, including 14 susceptible
loci and nine protective loci (Figure S10).

We found three pleiotropic loci that were positively
associated with all five diseases (Figure 3). The first
locus covered FGF5, C4orf22, BMP3, and PRKG2 on
4q21.21(index SNP rs7678123, PASSET = 3.99 £ 10�13),
which has been previously reported in RD and myopia
GWASs.11,50 The same eQTL in multiple GTEx tissues
for BMP3 (bone morphogenetic protein 3) and PRKG2
(protein kinase cGMP-dependent 2) also colocalized
www.thelancet.com Vol 82 Month , 2022



Figure 2. Results of cross-traits meta-analysis by ASSET based on 88,250 individuals. (a) Quantile-quantile (QQ) plot of the
meta-analysis displaying the observed significance versus the expected significance for each variant. (b) Manhattan plot of the
meta-analysis with the X-axis showing genomic position and the Y-axis showing the significance on a -log10 scale for each SNP. The
red and blue lines represent the thresholds for genome-wide significance (PASSET = 5 £ 10�8) and suggestive associations
(PASSET = 1 £ 10�5), respectively. (c) Distribution of index SNPs and credible SNPs in functional consequences, minimum chromatin
state across 127 tissue and cell types, and RegulomeDB score (The lower the score, the more likely the SNP is to have a regulatory
function). (d) Heritability enrichment of 22 functional SNP annotations by stratified LDSC. The X-axis shows the proportion of SNPs
in each region, and the Y-axis displays the enrichment, estimated as the proportion of heritability / the proportion of SNPs. The
dashed line represents enrichment of 1. Error bars show 95% confidence intervals. TSS, transcription start site; CTCF, CCCTC binding
factor; DHS, DNase I hypersensitivity site; TFBS, transcription factor binding site; DGF, digital genomic footprint.
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with this signal (eQTL association FDR < 0.05), sup-
porting them as plausible candidate genes (Figure S11;
Table S14). Gene expression data revealed that PRKG2
is highly expressed in embryonic retina from 4.7 to 7
post-conception weeks (PCW), and then lowly expressed
in retina from 7.8 PCW to adult, while BMP3 is mainly
expressed from 9 to 17 PCW (Figure S14a). We found
www.thelancet.com Vol 82 Month , 2022
this pattern was not in brain development (Figure
S14b). The second pleiotropic locus associated with all
five diseases was on 10q26.3 (index SNP rs12570944,
PASSET = 1.00 £ 10�8), which has been previously
reported in glaucoma.51 This locus has mapped to
DPYSL4 (dihydropyrimidinase like 4) with significant
cis-eQTL associations in multiple GTEx tissues (Figure
7



SNP CHR POS Locus (hg19) AMD DR Glaucoma RD Myopia m>0.9

rs7678123 4 81372405 chr4:81209680-

82037207

0.998 0.981 0.94 1 1 5

rs12570944 10 134139057 chr10:134116354-

134216014

0.975 0.961 0.995 0.976 1 5

rs9667489 11 86314579 chr11:86297189-

86403375

0.996 0.971 1 0.987 0.998 5

rs10036789 5 71695918 chr5:71683885-

71743322

0.998 0.908 1 0.886 1 4

rs138650617 10 60335073 chr10:60229260-

60374898

1 0.617 1 0.994 1 4

rs2738265 14 54422399 chr14:54411057-

54431575

0.924 0.916 0.003 0.999 1 4

rs12950511 17 47320938 chr17:47260130-

47461433

0.832 0.977 0.998 0.966 1 4

1:164194417:TA:T 1 164194417 chr1:164073168-

164250081

0.306 0.958 0.948 0.512 1 3

rs62181740 2 172540401 chr2:172527238-

172932333

0.907 0.746 0.742 0.997 1 3

rs13118211 4 82400811 chr4:82390465-

82423807

0.729 0.879 0.984 0.994 1 3

rs7744813 6 73643289 chr6:73569159-

73648822

0.998 0.064 0 0.998 1 3

rs10887262 10 86009171 chr10:86004238-

86016892

0.903 0.329 0.376 0.982 1 3

rs36090025 10 114774433 chr10:114746580-

114818754

0.08 1 0.949 0.897 0.964 3

rs112115087 14 60807865 chr14:60789176-

61186263

0.069 0.469 1 0.983 1 3

rs9330814 22 46364191 chr22:46362822-

46394928

0.075 0.974 1 0.225 1 3

rs41393947 2 56011517 chr2:55991004-

56116193

0.023 0.603 0.632 0.993 1 2

2:146913702:CCTCT:C 2 146913702 chr2:146664218-

147026854

0.811 0.282 0.089 0.969 1 2

rs12193446 6 129820038 chr6:129732674-

129858150

0 0 0 0.993 1 2

rs10824539 10 79157133 chr10:79030744-

79162267

0.028 0.575 0.738 0.985 1 2

rs3138142 12 56115585 chr12:56115585-

56213297

0 0.072 0 1 1 2

rs7184522 16 7460699 chr16:7457972-

7462074

0 0.019 0 1 1 2

rs113941606 17 11437291 chr17:11395143-

11487165

0.818 0.8 0.897 0.954 1 2

rs7405453 17 79615572 chr17:79526821-

79686552

0.079 0.252 0.046 0.998 1 2

Table 2: Summary of 23 pleiotropic loci.
SNP ID, location, locus, disorder-specific m-values for 23 pleiotropic loci. The number of disorders with high confidence association (m-values > 0.9) is shown

in the last column.
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S12; Table S14). DPYSL4 has high expression in all
stages of retinal development (Figure S14a) and is
highly expressed in multiple cell types of mature retina,
including ganglion cells (GC), cones, amacrine cell
(AC), OFF bipolar cells (HBC), and horizontal cell (HC)
(Figure S15). The third locus is located in an intron of
ME3 (malic enzyme 3) on 11q14.2 (index SNP
rs9667489, PASSET = 2.01 £ 10�8). ME3 was also a
www.thelancet.com Vol 82 Month , 2022



Figure 3. Three most pleiotropic loci associated with all five ocular diseases. (a) Regional association plots of the three loci:
4q21.21 (index SNP rs7678123), 10q26.3 (index SNP rs12570944), and 11q14.2 (index SNP rs9667489). (b) Forest plots with PM-plots
show disease-specific effects of the index SNP in each locus. Forest plots display the P-value in METASOFT meta-analysis (Meta P)
and the P-value, log(OR) and its standard error of the SNP in the GWAS of individual diseases. PM-plots visualize the posterior proba-
bility (m-value, X-axis) of the SNP in each study with disease-specific association significance as -log10(P) (Y-axis). M-values> 0.9 (col-
oured in red) suggests that the SNP does have an effect on the disease. The dot size represents the GWAS sample size estimated
from summary statistics.

Articles
significant retina eQTL target gene of this locus (eQTL
association FDR = 1.07£ 10�6; Figure S13), with a high
expression during retinal development (Figure S14).
PRSS23 (serine protease 23), another target gene
detected by eQTL colocalization in multiple GTEx tis-
sues (Figure S13), may also be involved in retinal devel-
opment. Its expression in retina is highest in 4.7 PCW,
rapidly decreases after 16 PCW, and is lowest in adult-
hood (Figure S14a), when it is mainly expressed in
endothelial cells (END) (Figure S15).
www.thelancet.com Vol 82 Month , 2022
Functional dissection of pleiotropic and non-
pleiotropic loci
To investigate characteristic features between pleiotro-
pic loci and non-pleiotropic loc, we first used three strat-
egies to link our SNP results to genes by FUMA33:
positional mapping, expression quantitative trait locus
(eQTL) mapping, and chromatin interaction mapping
(Figure 4a; Figure S16; Methods). Finally, a total of 163
genes were mapped from the 37 loci, including 84 genes
implicated through positional mapping, 78 implicated
9



Figure 4. Gene mapping of meta-analysis results. (a) Three gene mapping strategies for the index SNP and credible SNPs of each
locus. We mapped these SNPs to the protein-coding genes within 10 kb, mapped cis-eQTL markers to their target genes, and
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through eQTL mapping, and 95 implicated through
chromatin interaction mapping (Figure S17; Table S14).
Of these, 23 were implicated by all three methods, of
which seven had chromatin interaction and eQTL asso-
ciations in the same tissue. Gene overlap between the
three strategies was significant in hypergeometric tests
(P < 1.67 £ 10�2; Figure S17). 113 genes were mapped
from the pleiotropic loci and the other 50 genes were
implicated in the non-pleiotropic loci.

We tested several characteristics related to genomic
function between pleiotropic and non-pleiotropic loci.
More than 22% and 26% of the genes associated with
pleiotropic and non-pleiotropic were intolerant of loss
of function mutations (pLI score � 0.9), but 12% and
8% of the genes associated with pleiotropic and non-
pleiotropic were intolerant of missense changes (mis-
sense z-score, mis_z � 3.09). These overlap between
pleiotropic and constrained genes is unlikely to occur by
chance. When considering subsets of genes at increas-
ing thresholds of gene constraint using the probability
of pLI and mis_z, we found the relationship of increas-
ing odds ratio in pleiotropic genes with increasing gene
constraint (Figure S18).

Gene Ontology (GO) pathway enrichment analysis
revealed functional differences between pleiotropic and
non-pleiotropic loci. The pleiotropic loci showed the
most significant enrichment of genes involved in regu-
lation of neuron differentiation (P = 8.80 £ 10�6), eye
development (P = 3.86 £ 10�5), and visual perception
(P = 1.59 £ 10�4; Figure 4b; Table S15), as well as
enriched in canonical Wnt signalling pathway
(P = 9.26 £ 10�4) and glucose metabolic process
(P = 7.28 £ 10�4). Enrichment of these gene-sets was
not seen for the non-pleiotropic loci, however, they were
significantly enriched in immune response
(P = 2.26 £ 10�3) and synaptic signalling pathway
(P = 5.57 £ 10�3).
Spatiotemporal gene expression of pleiotropic and
non-pleiotropic loci
To understand whether the 37 identified loci are
enriched for expression in retina, we performed a
mapped the SNPs in the genomic regions interacting with gene pro
ment for pleiotropic versus non-pleiotropic loci. This network show
enrichment factor > 1.5. The nodes sizes are scaled with P-value.
enriched in eye development and neuron differentiation. (c) GTEx
least one ocular disease. 55 GTEx tissues were classified as 10 categ
line represents the P-value threshold after Bonferroni correction (P
enrichment in genes specifically expressed in retina. (d) Retinal dev
the normalized expression of 34 genes of pleiotropic loci and 18 ge
during development. (e) Left: cell classes marked on scVis map. Arro
plays the expression trajectories of candidate genes during the dev
pic loci highly expressed in multipotent progenitors, GCs, HCs, cone
to non-pleiotropic loci only had high expression in cones and rods.

www.thelancet.com Vol 82 Month , 2022
tissue-specific expression analysis using the Genotype
Tissue Expression (GTEx) pilot data.36 GTEx tissue-spe-
cific enrichment analysis showed that the genes
mapped from all 37 loci were significantly enriched in
the retina (OR = 3.45, Padjust = 0.02), but not in the other
tissues (Figure 4c; Table S16), and the enrichment score
was significantly higher than that obtained under ran-
dom simulations (Figure S19). We repeated the analysis
using Human Protein Atlas (HPA)37 data and observed
a similar enrichment for the genes in retina-specific cat-
egories (Padjust = 2.10 £ 10�5; Figure S20; Table S17).

The results of retina enrichment and eye develop-
ment pathway enrichment prompted our hypothesis
that the pleiotropic loci may play a role in early develop-
ment of retinogenesis. Therefore, we compared the
gene expression patterns of the pleiotropic risk loci and
the non-pleiotropic loci during human retinal develop-
ment38 and preformed a t-statistic that assesses the rela-
tive prenatal versus postnatal expression bias for each
gene. Of all the 163 genes, 52 genes (34 pleiotropic and
18 non-pleiotropic) with significant dynamic expression
during human retinal development were screened by
linear regression. The pleiotropic genes display a
marked embryo (< 8 PCW) bias (P = 1.50 £ 10�5, Wil-
coxon test; Figure S21a), reaching peak expression in
the retina at early embryo development (Figure 4d),
whereas the non-pleiotropic genes show fetus bias
(P = 5.00 £ 10�10, Wilcoxon test; Figure S21a), having
their highest expression in early midfetal (13�Age� 18
PCW; Figure 4d). Additionally, to enhance temporal
gene expression resolution, we selected genes that were
expressed in embryo at a significantly higher level than
fetus and adult; specifically, log2 fold change of 0.5 or
more and FDR of less than 0.05 (t-test). The gene
expression heatmap also showed that most pleiotropic
gene were expressed in embryo development stage
(Figure S21b).

Next, we compared the gene expression of pleiotro-
pic and non-pleiotropic loci in the single-cell data of
adult foveal retina, peripheral retina, and retinal organo-
ids.39 We selected 71 genes (47 pleiotropic and 24 non-
pleiotropic) with normalized expression values greater
than 0.25 in at least one cell type of mature retinal
moter regions to corresponding genes. (b) GO pathway enrich-
s the terms with P < 0.01, a minimum gene count of 3, and an
The genes implicated in pleiotropic loci are most significantly
tissue-specific enrichment results for 37 loci associated with at
ories, and the retina were coloured in dark blue. The red dotted
= 0.05/55 = 9.09 £ 10�4). Genomic risk loci show significant

elopment RNA-seq data from 4.7 PCW to adult was used to plot
nes of non-pleiotropic loci with significant expression variation
ws represents developmental trajectories. Right: ScVis map dis-
elopment of retinal organoids. The genes implicated in pleiotro-
s, rods, MCs, and RPEs, successively, whereas the genes mapped
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organoids (week 30 and 38). In the adult retina and
mature retinal organoids, the genes implicated in pleio-
tropic loci were expressed in most cell types, including
RPE, MC, GC, cones, and rods, while the non-pleiotro-
pic loci showed the highest gene expression in cones
and rods (Figure S22). During the development of reti-
nal organoids, we found genes mapped from pleiotropic
loci were expressed as retinal development progressed,
expressed in retinal progenitor cells (RPCs) by 6 week
and involved in photoreceptors and RPE/MC fate deter-
mination by 12 and 18 week (Figure 4e).
Discussion
In the large cross-trait GWAS meta-analysis of ocular
diseases, comprising 88,250 individuals, we have
shown robust genetic relationships between five clini-
cally related ocular diseases, as well as identified 23
loci that affected at least two diseases. Furthermore,
we found that the pleiotropic loci played important
roles in the development and differentiation process of
various cell types in the retina. Our study provided
multiple lines of evidence for a shared genetic basis of
ocular diseases and generated new insights into ocular
diseases susceptibility.

We conducted GWAS for five ocular diseases respec-
tively and identified three previously unknown loci:
11q22.3 (nearest genes: GRIA4, CASP1, and CARD16)
for DR, 14q23.2 (nearest genes: KCNH5) for glaucoma,
and 11q14.3 (nearest genes: CCDC91) for myopia. The
activity of caspase-1 (product of CASP1) is increased in
retinas of diabetic patients, and inhibiting hyperglyce-
mia-induced caspase-1 activity can prevent retinal capil-
lary degeneration.52 KCNH5 encodes a member of
voltage-gated potassium channels, which regulate neu-
rotransmitter release and neuronal excitability.53

CCDC91 is involved in Golgi to lysosome transport and
lysosomal enzyme maturation.54

Our results show molecular evidence of the sharing of
genetic risk factors across key ocular disorders, especially
across AMD, DR, and glaucoma. Modelling of genetic cor-
relations using Genomic SEM and hierarchical clustering
identified two groups of diseases with shared genetic fac-
tors. The first group comprised three diseases character-
ized by age-related retinal degenerative changes,41�43

including AMD, DR, and glaucoma. These three diseases
were both positively associated with type 2 diabetes. Close
genetic relationship between AMD and DR is also reflected
in their similar genetic correlations with several risk factors
such as fat, insomnia, and lack of physical activity. The sec-
ond group contained RD and myopia, with the highest
genetic correlation estimate, have characterized by axial
elongation.44,45 Overall, these results suggest significant
pairwise genetic correlations among multiple ocular disor-
ders and a higher level of genetic architecture that points
to broader domains that underlie genetic risk for ocular
pathology.
The cross-trait meta-analysis supported the existence
of pleiotropy in variant level. We identified 23 pleiotro-
pic loci and 14 non-pleiotropic (disease-specific) loci by
using a fixed-effects-based method for these ocular dis-
eases. Of these pleiotropic loci, three with particularly
extensive pleiotropy were associated with all five ocular
diseases. The potential candidate genes mapped in
these pleiotropic regions plays an important role in reti-
nal development. DPYSL4 has high expression during
retinal development (Figure S14a) and in adult retina,55

involved in cell migration, neuronal growth cone col-
lapse, and axon guidance,56 and participates in nervous
system development and neuron death pathway.57

PRKG2 (also named cGKII), PRSS23, ME3, and BMP3
are highly expressed at specific time points in retinal
development (Figure S14a). A prior study found that
nitric oxide-mediated PRKG2 signalling may control the
neuronal cell viability during early retinal develop-
ment.58 PRKG2 knockdown prevented nitric oxide-
induced cell death in six-day-old chick retina and cell
survival in eight-day-old chick retina.58 Bmp3 is involved
in Zebrafish ocular development by regulating Smad3
phosphorylation in neural crest cells.59 Some candidate
genes have been reported in the pathogenesis of multi-
ple ocular diseases. The product of FGF5 plays a role in
the angiogenesis in AMD60 and ganglion cell injury in
DR.61 ME3 encodes the mitochondrial NADP(+)-depen-
dent isoform of malic enzyme, which catalyzes the oxi-
dative decarboxylation of malate to pyruvate,62

supporting the contribution of mitochondrial dysfunc-
tion to the pathology of AMD, DR, and glaucoma.63,64

Genetic correlations have been estimated across five
ocular diseases, functional analyses for pleiotropic loci
can be constructed that could improve power to describe
the shared biological etiology of five ocular diseases.
Compared to non-pleiotropic loci, we found extensive
evidence that involvement of pleiotropic loci in eye
development underlies the cross-diseases genetics of
ocular diseases. The gene-set enrichment analysis of
GO pathway indicated that pleiotropic loci were distin-
guished from non-pleiotropic loci in biological function.
The genes implicated in pleiotropic loci are significantly
enriched in neuron differentiation and eye develop-
ment. In addition, the retinal developmental expression
trajectory showed the genes mapped from pleiotropic
loci are on average expressed at higher levels in the early
stages of retinal development, while the expression of
genes related to disease-specific (mainly myopia) loci
peaked in adulthood (Figure 4d). During development,
the genes of pleiotropic loci were highly expressed in
multipotent progenitors, GC, HC, RPE, MC, cones, and
rods successively (Figure 4e). In contrast, the genes
implicated in single-disorder loci only had high expres-
sion in photoreceptors (cones and rods) and their pre-
cursors in mid-late stage of development. As we know,
pleiotropy occurs when a single mutation or one gene
influences more than one trait, contributing to genetic
www.thelancet.com Vol 82 Month , 2022
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correlations among traits,65 quite simply, pleiotropy
sometimes refer to the breadth of expression across tis-
sues and time points.66 Pleiotropic gene have multiple
roles in distinct cell types67; thus, any genetic change
that alters expression or function of pleiotropic gene
can potentially have wide-ranging effects in a variety of
tissues.

The functional enrichment analysis also suggested
canonical Wnt signalling pathway is related to multiple
ocular diseases. Wnt signalling pathway is divided into
two types: the canonical Wnt/b-catenin signalling path-
way which acts through b-catenin as a transcriptional
coactivator and the non-canonical Wnt signalling path-
way that does not depend on b-catenin.68 The candidate
genes we identified by meta-GWAS analysis are mainly
enriched in the canonical Wnt signalling pathway,
which is a key regulatory system that coordinates the
behaviour of endothelial cells to control vascular mor-
phogenesis.69 Aberrantly activated Wnt signalling have
been reported as one of the pathogenic factors in AMD
and DR,70 and suppression of canonical Wnt signalling
can prevent neovascularization in murine choroidal
neovascularization models71 and diabetic models.72

Wnt/b-catenin pathway also regulates the RPE response
to oxidative stress, which suggests its pathogenic role in
dry AMD.73 In addition to vascular ocular diseases,
canonical Wnt signalling can regulate the outflow of
aqueous humor and IOP,74 associated with glaucoma
pathogenesis. In the murine myopia model, the inhibi-
tion of canonical Wnt signalling by niclosamide signifi-
cantly reduced the growth of lens thickness, vitreous
chamber depth and axial length, thereby inhibiting
myopia.75

These results should be interpreted in consideration
of several limitations. First, we used summary statistics
from GWAS of large cohorts, which we screened for
overlapping samples. However, some overlap may per-
sist across the five ocular diseases owing to the comor-
bidity of these phenotypes. In addition, GNOVA and
LDSC are robust approaches for the estimation of
genetic correlation that are not biased by sample
overlap26,27 and we controlled for sample overlap
applied ASSET in meta-analysis. Second, our sample
size of single-trait GWAS is not as large as the pub-
lished studies, which may lead to some missing genetic
correlation. The genetic correlation between glaucoma
and myopia is little in our analysis, but significant when
use public glaucoma GWAS76 (LDSC: rg = 0.16,
P = 8.86 £ 10�6; GNOVA: rg = 0.12, P = 3.12 £ 10�7).
Third, there is an imbalance in sample size among indi-
vidual diseases, which may limit our detection of pleio-
tropic loci for diseases with small sample sizes,
especially a minimum of 1,652 cases for DR. The
availability of more samples in the future will
improve power for detection of shared risk effects.
Fourth, due to the limited number of cases, we only
focused on the five ocular diseases with relatively
www.thelancet.com Vol 82 Month , 2022
large samples. Thus, non-pleiotropic loci we identi-
fied may have additional effects on other ocular dis-
eases that were not included in this study. Lastly, we
restricted our analyses to individuals of European
ancestry to avoid potential confounding due to ances-
tral heterogeneity across distinct disorder studies.
Further analyses are needed to explore the pleiotro-
pic mechanism in other populations.

In summary, we report SNP-based heritabilities that
are significantly greater than zero for all five disorders
studied. We have used the currently available large-scale
ocular genome-wide association studies in the UKB
data sets, and our results provide evidence of substantial
sharing of the genetic risk variants tagged by SNPs
between AMD, DR, and glaucoma; RD and myopia. All
of the 23 genomic loci with pleiotropic effects showed
same directional effects on two or more ocular diseases.
These results highlight further GWAS and rare variant
studies will be needed to account more completely for
shared genetic contributions across disorders. In partic-
ular, alterations in eye development, Wnt signalling
pathway and glucose metabolic process could represent
a fundamental mechanism contributing to a broad vul-
nerability to ocular pathology. Our results can also pro-
vide theoretical support for the occurrence of
comorbidity of ocular diseases in clinical practice and
remind doctors and patients to prevent it. Furthermore,
they will encourage investigations into shared biological
etiology across disorders, including potential clarifica-
tion of common therapeutic mechanisms.
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