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Abstract

Considering the vast biological diversity and high mortality rate in high-grade ovarian can-

cers, identification of novel biomarkers, enabling precise diagnosis and effective, less

aggravating treatment, is of paramount importance. Based on scientific literature data, we

selected 80 cancer-related genes and evaluated their mRNA expression in 70 high-grade

serous ovarian cancer (HGSOC) samples by Real-Time qPCR. The results were validated

in an independent Northern American cohort of 85 HGSOC patients with publicly available

NGS RNA-seq data. Detailed statistical analyses of our cohort with multivariate Cox and

logistic regression models considering clinico-pathological data and different TP53 mutation

statuses, revealed an altered expression of 49 genes to affect the prognosis and/or treat-

ment response. Next, these genes were investigated in the validation cohort, to confirm the

clinical significance of their expression alterations, and to identify genetic variants with an

expected high or moderate impact on their products. The expression changes of five genes,

PROM1, CXCL8, RUNX1, NAV1, TP73, were found to predict prognosis or response to

treatment in both cohorts, depending on the TP53 mutation status. In addition, we revealed

novel and confirmed known SNPs in these genes, and showed that SNPs in the PROM1

gene correlated with its elevated expression.
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Introduction

Ovarian carcinoma (OvCa) is the leading cause of death from gynecological malignancies

worldwide. The mortality in this disease is exceptionally high, because the early-stage disease is

usually asymptomatic while the symptoms in the late-stages are often nonspecific and there

are no efficient screening methods. Thus, the majority of patients are diagnosed at late stages,

which are characterized by poor prognosis. Despite nearly 70% remission rate after the first

line of treatment, the disease recurs in about 50% of the patients, mostly due to chemoresis-

tance [1]. Therefore, there is an urgent need to improve screening and therapeutic methods,

and to achieve this goal, identification of new prognostic, predictive and screening markers, as

well as novel therapeutic targets is essential. Considering the vast biological diversity of high-

grade ovarian cancers, resulting in many apparently discrepant results, as clearly demonstrated

herein in the discussion section, the discovery of universal, cohort-independent biomarkers is

of paramount importance. As we have shown in our previous research on the CEBPA [2] and

EMSY [3] genes, both expression changes and genetic alterations may affect ovarian cancer

prognosis and/or response to chemotherapy. The clinical impact of such changes can also be

mutually dependent, as observed for example in a nonsense-mediated mRNA decay (NMD), a

gene regulatory mechanism which results in low concentrations of mRNAs transcribed from

alleles carrying nonsense mutations [4]. Thus, in order to fully unravel the entire landscape of

molecular interactions related to carcinogenesis and influencing the treatment outcome, the

multifaceted approach needs to be applied. In the present study, the expression of a set of 80

cancer-related genes, nominated based on the scientific literature data, was evaluated by Real-

Time qPCR in surgical tumor samples obtained from a uniform experimental cohort of previ-

ously untreated, high-grade serous ovarian cancer (HGSOC) patients, who were subsequently

treated with the taxane/platinum (TP) chemotherapy. Expression alterations were analyzed in

the context of patient overall survival (OS) and disease-free survival (DFS), as well as tumor

sensitivity to chemical treatment (PS) or the chance of a complete remission (CR). Next, we

validated our results in an independent cohort of HGSOC patients for whom the NGS RNA-

seq data have been deposited in the public European Nucleotide Archive database (id:

PRJNA396544) [5]. Noteworthy, the p53 accumulation status was also taken into account,

since we have previously proved that it is a prominent confounding factor in the biomarker

discovery [6, 7]. Missense mutations in the TP53 gene result in the p53 protein accumulation

which creates a permissive environment for the activity of oncogenes. In the present study, we

found five genes, the changed expression of which concordantly affected patient outcomes in

both cohorts. Furthermore, by using bioinformatic and statistical tools, we identified novel

and known sequence variants in TP53 and in the other analyzed genes, and correlated them

with expression changes. This comprehensive study, summarizes the results obtained with two

different techniques, i.e., Real-Time qPCR and NGS RNA-seq, and reveals significant relation-

ships between genetic alterations, aberrant expression of the studied genes, and the clinical

outcomes in two independent cohorts of HGSOC patients.

Results

Gene expression and ontology analysis

A list of 80 genes nominated for a Real-Time qPCR-based evaluation of expression in the

experimental cohort is shown in the S1 Table. Forty nine of these genes were found differen-

tially expressed depending on prognosis (OS and DFS of the patients) and/or prediction of

treatment response (CR and PS of the tumors, see Table 1 and S2 for details). The genes with

altered expression were also annotated and subjected to gene ontology analysis using the
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Table 1. The selected significant results of the multivariate Cox and logistic regression analyses obtained for the experimental cohort of HGSOCs. The results con-

firmed in the validation cohort are emboldened and underlined. For all the significant results, refer to the S2 Table.

All samples TP53 missense mutation: no TP53 missense mutation: yes

Analysis HR/OR 95% CI p-value N Ev.

no.

HR/OR 95% CI p-value N Ev.

no.

HR/OR 95% CI p-value N Ev.

no.

DFS ~ PROM1 59.1797 [3.66–

956.967]

0.0041 35 32 - - - - - >1000 [45.57-

>1000]

0.0006 22 19

FIGO IIIA-IIIB vs

IIB-IIC

19.0412 [1.335–

271.549]

0.0298 35 32 - - - - - 221.4353 [4.088-

>1000]

0.0080 22 19

FIGO IIIC vs

IIB-IIC

- - - - - - - - - - 108.8040 [2.608-

>1000]

0.0138 22 19

FIGO IV vs IIB-IIC 28.6215 [1.711–

478.705]

0.0196 35 32 - - - - - >1000 [12.00-

>1000]

0.0033 22 19

RT <2 cm vs 0 cm 2.7335 [1.001–

7.462]

0.0497 35 32 - - - - - - - - - -

OS ~ PROM1 - - - - - 9.2416 [1.274–

67.005]

0.0278 21 21 - - - - -

OS ~ CXCL8 - - - - - 34.5639 [1.560–

765.542]

0.0250 21 21 - - - - -

DFS ~ RUNX1 - - - - - <0.001 [<0.001–

0.395]

0.0257 13 13 - - - - -

CR ~ NAV1 0.1461 [0.036–

0.591]

0.0070 50 34 - - - - - <0.001 [0–0.462] 0.0278 29 21

PS ~ NAV1 0.2614 [0.08–0.851] 0.0259 50 29 - - - - - <0.001 [0–0.524] 0.0310 29 19

OS ~ NAV1 - - - - - - - - - - >1000 [1.971-

>1000]

0.0371 29 23

RT <2 cm vs 0 cm - - - - - - - - - - 15.7298 [1.814–

136.36]

0.0124 29 23

RT >2 cm vs 0 cm - - - - - - - - - - 28.4444 [2.868–

282.08]

0.0042 29 23

PS ~ TP73 0.5878 [0.347–

0.996]

0.0482 69 45 - - - - - - - - - -

RT >2 cm vs 0 cm 0.0861 [0.011–0.66] 0.0183 69 45 - - - - - - - - - -

DFS ~ CD44 20.9970 [1.194–

369.375]

0.0374 35 32 <0.001 [<0.001–

0.261]

0.0385 13 13 283.0698 [5.55-

>1000]

0.0049 22 19

FIGO IV vs IIB-IIC - - - - - - - - - - 34.5188 [1.112-

>1000]

0.0433 22 19

RT <2 cm vs 0 cm 3.0909 [1.089–8.77] 0.0339 35 32 - - - - - 5.1171 [1.031–

25.407]

0.0458 22 19

DFS ~ MKI67 - - - - - <0.001 [<0.001–

0.185]

0.0239 13 13 484.7565 [4.687-

>1000]

0.0090 22 19

RT <2 cm vs 0 cm - - - - - - - - - - 6.3294 [1.188–

33.731]

0.0307 22 19

OS ~ MKI67 - - - - - <0.001 [<0.001–

0.008]

0.0022 21 21 - - - - -

FIGO IIIA-IIIB vs

IIB-IIC

- - - - - 13.4236 [1.334–

135.012]

0.0274 21 21 - - - - -

DFS ~ RUNX2 - - - - - <0.001 [<0.001–

0.288]

0.0313 13 13 >1000 [38.66-

>1000]

0.0159 22 19

FIGO IIIA-IIIB vs

IIB-IIC

- - - - - - - - - - 569.4710 [3.926-

>1000]

0.0125 22 19

FIGO IIIC vs

IIB-IIC

- - - - - - - - - - 199.4673 [2.43-

>1000]

0.0185 22 19

(Continued)
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Database for Annotation, Visualization and Integrated Discovery (DAVID, v6.85) [8], which

enabled their clustering based either on the pathways they are involved in (according to the

Kyoto Encyclopedia of Genes and Genomes, KEGG [9]) or on UniProt keywords assigned to

the protein product of each gene in the UniProt Knowledgebase (UniProtKB [10]). The

detailed clustering results presented in the S3 Table showed that the genes with significantly

altered expression in the experimental group of HGSOCs were predominantly associated with

the p53 signaling pathway (p = 1.44e-13), cell cycle regulation (p = 2.19e-08), and conjugation

of ubiquitin-like modifier proteins, e.g., ubiquitin (p = 4.42e-06). Some of the genes were also

involved in the transcriptional misregulation observed in various cancers (p = 8.32E-05), the

Hippo signaling pathway (p = 0.0044) and apoptosis (p = 0.0080). Remarkably, the p53 signal-

ing pathway was characterized by the highest gene set enrichment among all categories

reported by DAVID. This was an important premise supporting our approach to analyze gene

expression in the context of p53 protein accumulation which results from missense mutations

in the TP53 gene [11]. In fact, the regression analyses performed in the subsets with and with-

out TP53 mutations revealed regularities undetectable when the entire group of patients was

analyzed as a whole. Furthermore, the expression of three genes (CD44, MKI67, RUNX2)

exerted opposing impact on DFS in the subgroups with different TP53 mutation statuses

(Table 1). In order to corroborate the gene expression results, the same regularities were

searched for in an independent set of 85 HGSOC samples collected by Ducie et al. [5]. The

expression changes have been successfully validated for five genes, PROM1, CXCL8, RUNX1,

NAV1, and TP73 (Table 2). Noteworthy, four other genes nominated for the expression valida-

tion (i.e., CDK2, SNRPD3, TP53INP1, ZBTB8A) had a number of reads too low to properly

assess their mRNA expression. For each of these genes, the number of normalized NGS RNA-

seq reads equaled 0 in over 90% of samples, which made the validation impossible (S4 Table).

Overexpression of the first validated gene, PROM1, was shown to increase the risk of recur-

rence of tumors with the TP53 missense mutations. This correlation was independent of a

high FIGO stage, another factor of poor prognosis in this multivariate Cox regression model

Table 1. (Continued)

All samples TP53 missense mutation: no TP53 missense mutation: yes

Analysis HR/OR 95% CI p-value N Ev.

no.

HR/OR 95% CI p-value N Ev.

no.

HR/OR 95% CI p-value N Ev.

no.

FIGO IV vs IIB-IIC - - - - - - - - - - >1000 [11.118-

>1000]

0.0036 22 19

Abbreviations used: CR–Complete Remission; DFS–Disease-Free Survival, FIGO–clinical stage; OS–Overall Survival; PS–Platinum Sensitivity; RT–Residual Tumor;

HGSOC–high-grade serous ovarian cancer; HR–Hazard Ratio; OR–Odds Ratio; CI–Confidence Interval; Ev. no.–number of events (deaths, recurrences, PSs, CRs)

https://doi.org/10.1371/journal.pone.0271539.t001

Table 2. Concordant DESeq2 results of the gene expression analysis in the validation HGSOC cohort.

Symbol Ensembl.ID Entrez Analysis Subset baseMean Log2FC lfcSE stat pvalue FC

PROM1 ENSG00000007062 8842 Recurrence: Yes vs No TP53 missense mut = = Yes 1200.3468 1.7814 0.4312 4.1311 0.00004 3.4376

CXCL8 ENSG00000169429 3576 Death: Yes vs No TP53 missense mut = = No 913.6175 1.9430 0.8468 2.2945 0.02176 3.8450

RUNX1 ENSG00000159216 861 Recurrence: Yes vs No TP53 missense mut = = No 8957.3244 -0.6968 0.3266 -2.1336 0.03287 0.6169

NAV1 ENSG00000134369 89796 PS: Yes vs No All samples 504.9143 -0.6922 0.2357 -2.9363 0.00332 0.6189

TP73 ENSG00000078900 7161 PS: Yes vs No All samples 360.8102 -0.8090 0.3638 -2.2236 0.02618 0.5708

Abbreviations used: PS–Platinum Sensitivity; FC–Fold Change; HGSOC–high-grade serous ovarian cancer

https://doi.org/10.1371/journal.pone.0271539.t002
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(Table 1). In Fig 1, the characteristics and comparison of the univariate and multivariate mod-

els is presented, with AUC plots for the original and bootstrap cross-validated models, and

ROC and Kaplan-Meier curves. Additionally, the elevated expression of PROM1 was a nega-

tive prognostic factor in the entire experimental cohort, and in the subgroup without missense

mutations in TP53, though these results were not confirmed in the validation cohort. Interest-

ingly, the PROM1 expression did not affect a tumor response to the TP therapy.

The elevated expression of CXCL8 was associated with the increased risk of death, but only

in patients with tumors lacking TP53 missense alterations. By contrast, overexpression of

RUNX1 diminished the risk of recurrence in the same group of patients. Neither of these two

genes was proved to influence ovarian cancer treatment response. For both genes, the charac-

teristics and comparison of the univariate and multivariate models is presented in Figs 2 and 3,

respectively, with AUC plots for the original and bootstrap cross-validated models, and ROC

and Kaplan-Meier curves.

As to the potential factors predictive of treatment response, elevated expression of the

NAV1 and TP73 genes was demonstrated to decrease the chance of PS in the entire experimen-

tal cohort. The characteristics and comparison of the univariate and multivariate models for

both genes is shown in Fig 4. Performances of the multivariate models before and after a

Fig 1. Characteristics and comparison of the Cox regression models (gene: PROM1). The models allowed for the assessment of the risk of recurrence,

depending on either a single independent variable (PROM1 mRNA expression (exp)–the univariate model or three independent variables (exp, FIGO and

RT)–the multivariate model. Fig A and B show how the AUC values (and thus also discriminating abilities of each model) change in time for original models

(A) and models obtained after a bootstrap-based cross-validation of the original data set (B). The bigger the AUC, the higher the performance of a model. A red

dashed line marks the same time point which was used to draw the time-dependent ROC curve (C) for both models. In Fig C, an optimal cut-off point was

calculated for the multivariate model based on the Youden index. Sensitivity and specificity for this cut-off point are also provided. In addition, AUC values [%]

are listed alongside the 95% CI values, shown in square brackets, if calculable. Fig D depicts the Kaplan-Meier survival curves obtained for the multivariate

model at the same time point as in the remaining plots. The risk was classified as either higher (high) or lower (low) than in the cut-off point. The Kaplan-

Meier curves are supplemented with the result of the log-rank test, as well. Abbreviations used: DFS–Disease-Free Survival, FIGO–clinical stage; RT–Residual

Tumor.

https://doi.org/10.1371/journal.pone.0271539.g001
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bootstrap-based cross-validation were also comparable, equaling 82.4% and 72.4% for NAV1
and 76.9% and 65.6% for TP73, respectively. In addition, the TP73-including model revealed

Residual Tumor (RT) >2 cm as an independent factor worsening drug response, while overex-

pression of the NAV1 gene was associated with the lower chance of CR in the same group of

patients. Consistently, NAV1 overexpression also increased the risk of death in the subgroup

with missense mutations in TP53, though this regularity was not confirmed in the validation

cohort of HGSOCs.

Time trend analysis

No time trends were found for the frequencies of death, recurrence, complete remission or

sensitivity to chemotherapy in the experimental cohort (S1 Fig). Information on time trends

for the validation cohort was not provided in the study by Ducie et al. [5]. Unfortunately, we

were unable to evaluate time trends for this cohort ourselves, since the dates of surgical cytore-

duction of tumor masses for the patients in the validation cohort were also missing in the

aforementioned study.

Fig 2. Characteristics and comparison of the Cox regression models (gene: CXCL8). The models allowed for the assessment of the risk of death, depending on

either a single independent variable (CXCL8 mRNA expression (exp)–the univariate model or three independent variables (exp, FIGO and RT)–the multivariate

model. Fig A and B show how the AUC values (and thus also discriminating abilities of each model) change in time for original models (A) and models obtained

after a bootstrap-based cross-validation of the original data set (B). The bigger the AUC, the higher the performance of a model. A red dashed line marks the

same time point which was used to draw the time-dependent ROC curve (C) for both models. In Fig C, an optimal cut-off point was calculated for the

multivariate model based on the Youden index. Sensitivity and specificity for this cut-off point are also provided. In addition, AUC values [%] are listed alongside

the 95% CI values, shown in square brackets, if calculable. Fig D depicts the Kaplan-Meier survival curves obtained for the multivariate model at the same time

point as in the remaining plots. The risk was classified as either higher (high) or lower (low) than in the cut-off point. The Kaplan-Meier curves are supplemented

with the result of the log-rank test, as well. Abbreviations used: OS–Overall Survival; RT–Residual Tumor.

https://doi.org/10.1371/journal.pone.0271539.g002
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Genetic variant effect predictions with Ensembl VEP

All the genes, the altered expression of which correlated with either cancer prognosis or treat-

ment response prediction in the experimental cohort, were also subjected to the analysis of

genetic variants with the Ensembl VEP app in the validation cohort. In summary, 716 high or

moderate SNP changes were identified in 31 of 49 genes analyzed, 186 of which were of a high

impact. Twenty eight of all these SNPs were unique, novel variants, previously not reported in

the Ensembl database. Considering non-SNP alterations in the same cohort and gene set, six

genetic changes were found in only two genes, MUC16 and TP53, all of a high impact. Two

unique, previously unreported variants were identified in this subset, both in the TP53 gene

(chr17:g.7676061dup and chr17:g.7675205del). As to the five genes characterized by concor-

dant expression profiles in both cohorts, PROM1, CXCL8, RUNX1, NAV1, and TP73, in total,

they harbored 24 SNP changes (including 4 unique, novel variants, i.e., chr4:g.15980539T>A

(gene: PROM1, impact: high); chr1:g.201780560G>C (gene: NAV1, impact: high); chr1:

g.201809166C>A (gene: NAV1, impact: moderate); chr1:g.201793831A>G, (gene: NAV1,

impact: moderate)), and 0 non-SNP alterations. The detailed results of the VEP analysis are

presented on heatmaps (S2 Fig), in Table 3, and in S4 and S5 Tables. We revealed no signifi-

cant changes in gene alteration frequencies in the context of patient death or tumor recurrence

Fig 3. Characteristics and comparison of the Cox regression models (gene: RUNX1). The models allowed for the assessment of the risk of tumor recurrence,

depending on either a single independent variable (RUNX1 mRNA expression (exp)–the univariate model or three independent variables (exp, FIGO and RT)–

the multivariate model. Fig A and B show how the AUC values (and thus also discriminating abilities of each model) change in time for original models (A)

and models obtained after a bootstrap-based cross-validation of the original data set (B). The bigger the AUC, the higher the performance of a model. A red

dashed line marks the same time point which was used to draw the time-dependent ROC curve (C) for both models. In Fig C, an optimal cut-off point was

calculated for the multivariate model based on the Youden index. Sensitivity and specificity for this cut-off point are also provided. In addition, AUC values [%]

are listed alongside the 95% CI values, shown in square brackets, if calculable. Fig D depicts the Kaplan-Meier survival curves obtained for the multivariate

model at the same time point as in the remaining plots. The risk was classified as either higher (high) or lower (low) than in the cut-off point. The Kaplan-

Meier curves are supplemented with the result of the log-rank test, as well. Abbreviations used: DFS–Disease-Free Survival, RT–Residual Tumor.

https://doi.org/10.1371/journal.pone.0271539.g003
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and PS for any of the five genes with concordant expression profiles in both examined cohorts.

Interestingly, by using the same method of statistical inference, we discovered that the tumors

from the experimental cohort were more frequently mutated in the TP53 locus than those

from the validation cohort, and that the experimental cohort was also characterized by a less

favorable outcome (a higher risk of patient death). The Pearson’s Chi-squared test with Yates’

continuity correction p-values equaled 0.0006 and 5.361e-15, respectively.

Relationships between genetic changes and expression alterations

Finally, we looked for the relationships between the presence of genetic changes in each of the

five aforementioned genes and alterations in their expression. The significant results were

obtained for the PROM1 gene only, revealing a positive correlation between the occurrence of

genetic variants and mRNA overexpression (Fig 5A). Noteworthy, nine of ten samples with

the PROM1 alterations harbored the same, previously undescribed SNP, classified by Ensembl

as a splice acceptor variant with the high expected impact on the protein sequence (chr4:

g.15980539T>A, ENST00000447510.7:c.2374-2A>T). Remarkably, this genetic change leads,

in fact, to alternative splicing of the PROM1 gene, resulting in the formation of an abnormal

transcript, detectable in the NGS RNA-seq analysis (Fig 5B).

Discussion

Based on the data available in the scientific literature, 80 genes were nominated for evaluation

of their mRNA expression in pre-treatment tumors from an experimental cohort of the TP-

Fig 4. Characteristics and comparison of the logistic regression models (genes: NAV1, TP73). The models allowed for the assessment of platinum

sensitivity (PS), depending on either a single independent variable (mRNA expression (exp)–the univariate model or three independent variables (exp, FIGO

and RT)–the multivariate model. In Fig A, ROC curves for both models for the NAV1 gene are presented. An optimal cut-off point was calculated for the

multivariate model based on the Youden index. Sensitivity and specificity for this cut-off point are also provided. In addition, AUC values [%] are listed

alongside the 95% CI values, shown in square brackets, if calculable. Fig B compares discriminating capabilities of both the univariate and multivariate models

for the NAV1 gene. Fig C and D depict the results of the same analyses as Fig A and B but for the TP73 gene. Abbreviations used: PS–Platinum Sensitivity;

FIGO–clinical stage; RT–Residual Tumor.

https://doi.org/10.1371/journal.pone.0271539.g004
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treated HGSOC patients. This step involved the Real-Time qPCR analysis and detailed statisti-

cal inference with multivariate Cox and logistic regression models in subgroups with different

TP53 mutation statuses. The analysis revealed 49 genes the altered expression of which affected

Fig 5. PROM1 gene analysis. The PROM1 gene alterations (denoted by “1”) and overexpression were found to be positively correlated

(A). In Fig B, the chr4:g.15980539T>A (ENST00000447510.7:c.2374-2A>T) genetic alteration is shown, being a novel, splice acceptor

variant, leading to the formation of an abnormal mRNA transcript (marked with red arrows). Since the PROM1 gene is encoded by the

minus DNA strand, the reference sequence of this strand is displayed.

https://doi.org/10.1371/journal.pone.0271539.g005
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prognosis and predicted treatment response. Next, the same genes were investigated in an

independent cohort of HGSOCs for alterations of their mRNA expression and identification

of known and novel genetic variants with an expected high or moderate impact on their pro-

tein products’ sequences and functions. This led to identification of five genes, PROM1,

CXCL8, RUNX1, NAV1, and TP73, with concordant expression profiles in both the experi-

mental and validation cohorts. In these genes, we not only found 24 SNP variants in total

(including four unique, novel changes) but also proved that SNPs in the PROM1 gene corre-

lated with its elevated expression which, in turn, was a negative prognostic factor in patients

with HGSOCs harboring missense mutations in TP53.

The first question that needs to be discussed is the relatively low fraction of genes the altered

expression of which was successfully confirmed in the validation cohort (5/49 = 10.2%). This

might relate to several factors. First, the experimental and validation cohorts came from

completely distinct populations (European vs Northern American). The so-called genetic

background, being specific for each human population, is a well-known factor affecting sus-

ceptibility to ovarian cancer and other neoplasms [12, 13], as well as influencing the clinical

outcome, including the risk of death or recurrence [14]. Another issue is the amount of stro-

mal cell contamination (scc) in both cohorts. In the paper by Ducie et al. [5], the authors stated

that all samples in the validation cohort had at least 60% of cancer cells, while in our (experi-

mental) cohort all specimens had over 85% of cancer cells, and the majority of them had

almost no scc thanks to macrodissection. A higher content of scc in the validation cohort

might negatively affect reliability of the gene expression analysis, especially for the genes highly

over-expressed or downregulated in cancer cells compared to stromal cells. Furthermore,

despite both the mean and median NGS sequencing coverage in the validation cohort equaled

about 58 million read pairs per sample (which is generally acknowledged as the high coverage

for gene expression evaluation [15]), in four out of 49 analyzed genes, the number of reads was

too low to properly assess their mRNA expression. This outcome suggests that for some genes,

especially those of low expression, it would be better to further increase the NGS sequencing

coverage, as also proposed by Kukurba and Montgomery [16]. Finally, the relatively low num-

ber of validated genes is likely due to some subtle differences between both cohorts in patient

treatment, including surgical intervention, adjuvant chemotherapy, and collection and catego-

rization of clinico-pathological data. For example, in the validation cohort, there were no data

on CR. In addition, 15 tumors lacked the information on their treatment sensitivity, while in

11 other samples the FIGO stage was defined as “III”. In the experimental cohort, all these data

were available for each specimen, and the tumors with FIGO IIIC (as more aggressive) were

analyzed separately from those characterized by FIGO IIIA-B. Another important difference

between the two cohorts involved tumor recurrence which was assessed for all the patients in

the validation cohort. This seems to suggest that all patients in the Northern American cohort

achieved a complete remission, while in the Polish (experimental) cohort 19 of 70 tumors

(27.1%) did not respond positively to the TP therapy. Accordingly, the OS rate of the patients

from the validation cohort (77.4%) was also significantly higher than in the experimental

group (12.9%), despite the similar median OS time values. This unequivocally better response

to treatment and prognosis observed in the Northern American cohort of HGSOCs is in line

with the lower ovarian cancer mortality rate in the USA than in Poland [17], which may relate

to diagnostic and therapeutic methods used. In step with this assumption, the frequency of

cases with no residual disease in the experimental cohort (21.4%) was significantly lower than

in the validation cohort (83.5%).

There is, however, another interesting variation between the two cohorts investigated

herein, the prevalence of the TP53 mutations. The fraction of tumors harboring TP53 muta-

tions in the experimental and validation cohorts equaled 92.9% and 69.4%, respectively, and

PLOS ONE PROM1, CXCL8, RUNX1, NAV1 and TP73 genes as biomarkers in high-grade serous ovarian cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0271539 July 22, 2022 11 / 27

https://doi.org/10.1371/journal.pone.0271539


the difference was statistically significant. The lower frequency of the TP53 mutations in the

validation cohort may reflect the phenomenon known as a nonsense-mediated mRNA decay,

leading to low concentrations of mRNAs transcribed from alleles carrying nonsense mutations

[4]. Given the fact that the VEP analysis in the experimental and validation cohorts was per-

formed on either DNA or RNA, respectively, the number of nonsense mutations in TP53 and

in the other genes in the latter group can be underestimated. p53 is called the guardian of the

genome for its imperative role in cancer prevention. The normal p53 protein partakes in the

regulation of proliferation, apoptosis and DNA repair. It is also associated with the control of

cell metabolism, autophagy and cell senescence [18]. On the other hand, when altered, p53 can

acquire new capabilities (gain-of-function mutations) [19], and when it becomes nonfunc-

tional, an environment promoting the activity of oncogenes is created, as shown in our previ-

ous research [6, 7].The occurrence of TP53 mutations, especially of the missense type,

considerably speeds up tumorigenesis [20]. In line with these findings, three oncogenes ana-

lyzed in the experimental cohort, i.e., CD44, MKI67 and RUNX2, exerted opposed effects on

patient DFS depending on the TP53 mutation status. Interestingly, the three genes revealed

their adverse prognostic value in tumors harboring the TP53 missense mutations, thus sup-

porting the aforementioned superior role of p53 in carcinogenesis. By contrast, the positive

impact of CD44, MKI67 and RUNX2 overexpression on HGSOC patient survival is likely

caused by their proliferation-promoting function which, in turn, sensitizes cancer cells with

the normal p53 protein to cisplatin and other DNA-damaging agents [20]. In fact, the

p53-mediated inhibition of CD44 was shown to enable untransformed cells to respond to

stress-induced, p53-dependent cytostatic and apoptotic signals. By contrast, in transformed

cells with impaired p53, CD44 became a key tumor-promoting agent [21]. Similarly, MKI67
mRNA and Ki-67 protein expression were also found to be downregulated by the p53/p21

pathway upon DNA damage [22]. The expression of the mouse Runx2 gene was demonstrated

to be indirectly repressed by p53, leading to an inhibition of the osteogenic differentiation of

bone marrow stromal cells. Consistently, the p53 loss sped up the differentiation process [23].

In summary, the expression of CD44, MKI67 and RUNX2 has previously been demonstrated

to depend on the p53 protein function. This seems to provide a reasonable explanation of the

apparent discrepancies in the prognostic value of these genes in subgroups with different TP53
mutation statuses, found herein in the experimental HGSOC cohort. However, the prognostic

meaning of all three oncogenes discussed in this paragraph was not confirmed in the valida-

tion cohort. The inconsistency could relate to the fact that, unlike the experimental group of

HGSOC tumors, the validation series of samples comprised tumors obtained from patients

cured in three different hospitals. This might negatively affect the uniformity of the validation

cohort, and introduce some additional, hard-to-define variables, that ultimately could signifi-

cantly interfere with the statistical results. For example, the differences in patient outcomes are

likely to be influenced not only by the treating institution and the clinicians involved, but also

by the date of patient admittance to the hospital. As stated above, the time trend analysis could

not be performed for the validation cohort. Thereby, we were unable to determine whether

and how the date of tumor excision affected the risk of patient death and tumor recurrence or

the chance for a positive response to chemotherapy in this cohort. Considering the above, the

findings related to the superior role of p53 in carcinogenesis, demonstrated herein for the

CD44, MKI67 and RUNX2 genes, although supported by data available in the scientific litera-

ture, should be interpreted with caution.

The most prominent and interesting discovery of this study concerns five genes the altered

expression of which was found to be associated with the clinical outcome, what was success-

fully validated in an independent cohort of HGSOC patients. The first of these genes, TP73,

belongs to the evolutionarily oldest family of tumor suppressors, comprising also TP53 and
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TP63. Considering over 70% similarity of the DNA-binding domains in p53, p63 and p73 pro-

teins, many known p53 target genes (e.g., CDKN1A (p21), PUMA, NOXA, BAX and MDM2)

have been demonstrated to be regulated by the other members of this protein family, too. Nev-

ertheless, the full repertoire of common and private target genes for each suppressor still needs

to be unraveled [20]. Interestingly, the oligomerization domains in these proteins are much

less conserved. As a result, p63 and p73 can form functional heterodimers, while their dimer-

ization potential with p53 was proved to be limited [24]. Furthermore, in some p63 and p73

isoforms, an additional transactivation inhibitory domain (TID) was observed. This region,

missing in the p53 protein, is considered to interact with the transactivation domain of the sec-

ond protein partner of a dimer, thus inhibiting the transactivation properties of the entire

complex [25]. Unlike the TP53, the TP63 and TP73 genes are rarely mutated in neoplastic cells

[20]. Accordingly, in the validation cohort, we found one potentially harmful sequence variant

in TP73 (SNP with a moderate impact), no alterations in TP63 (data not shown) and as much

as 59 mutations in the TP53 gene (Table 3 and S4). In contrast to the TP53 gene, the mutations

of which are linked to the Li-Fraumeni syndrome [26], TP73 has not been associated with any

hereditary disease so far, likely due to its involvement in many developmental and homeostatic

processes, e.g., regulation of neural stem cell survival, self-renewal and differentiation in neu-

rogenesis, regulation of multiciliogenesis, male and female reproduction, angiogenesis and

immune response. TP73 was also shown to prevent reactive oxygen species (ROS) accumula-

tion [27]. The mechanism of p73 action in carcinogenesis still remains vague, as apparently

contradictory functions have been assigned to this protein by different research groups, espe-

cially to its non-mutated, transcriptionally-active isoform (TAp73). On the one hand, this iso-

form is considered to suppress tumor angiogenesis by repressing proangiogenic and

proinflammatory cytokines, as well as HIF1α [28]. On the other hand, the same isoform was

discovered to positively regulate tumor angiogenesis, which might explain the surprisingly

high prevalence of non-mutated, TAp73-overexpressing human tumors [29]. Our results sup-

port the latter study, portraying the TP73 gene overexpression as a predictive marker of worse

HGSOC response to the TP chemotherapy, independent of the TP53 mutation status. The

tumor-promoting role of TP73 in ovarian cancer was also reported in two other studies [30,

31], and high expression of this gene was associated with advanced ovarian carcinoma when

compared with the early-stage and borderline ovarian tumors. The involvement of TP73 in

chemotherapy response remains unclear, too. In some studies, TAp73 has been demonstrated

to be an anti-apoptotic agent, inhibiting drug- and p53-induced apoptosis in ovarian and

small-cell lung carcinomas [32, 33]. However, according to other reports, the TA-isoform of

p73 plays a completely antithetical role as a crucial, positive mediator of platinum-induced

apoptosis [34, 35]. The discrepancies as to the physiological function of TAp73 prove that fur-

ther studies on this interesting and still poorly-investigated protein are necessary, not only to

unravel the exact clinical meaning of p73 in carcinogenesis and chemotherapy resistance but

also to fully comprehend subtle interactions between the members of the ancient p53-family of

proteins.

NAV1 (neuron navigator 1) was another gene found in our research to adversely affect

HGSOC treatment response when overexpressed. Similarly to TP73, this impact was also inde-

pendent of the TP53 mutation status. Importantly, NAV1 must not be confused with Nav 1.1–

1.9 sodium channels proteins, which are encoded by SCN1A-SCN11A genes. So far, no scien-

tific reports on the NAV1 role in ovarian cancer have emerged. As to other cancer types, the

NAV1 promoter hypomethylation was observed in hormone receptor positive (expressing the

estrogen receptor, ER+ and/or progesterone receptor, PR+) breast cancers [36] which seems

to be consistent with our results. Studies on other genes belonging to the same family (NAV2
and NAV3) showed their opposed roles in colon cancer development [37, 38]. The NAV1 gene
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seems to exert pleiotropic effects. In mice, it was shown to be involved in the directional neu-

ron migration process [39]. In humans, it was linked to the susceptibility to calcific aortic valve

stenosis [40], and diabetes mellitus [41]. Given scarce scientific data on NAV1 associations

with cancer, we referred to the Pan-Cancer Analysis of Whole Genomes (PCAWG) study,

based on an international collaboration to identify common patterns of mutations in more

than 2,600 whole cancer genomes from the International Cancer Genome Consortium [42].

This study revealed that NAV1 expression was elevated in ovarian carcinomas (N = 110) com-

pared to normal ovaries (N = 39) (medians of transcripts per million (TPM) equaled 7 and 4,

respectively). Thus, this outcome seems to be concordant with the negative predictive value of

NAV1 overexpression demonstrated herein. The NAV1 protein’s association with microtu-

bules, reported by Martı́nez-López et al. [39], provides another suggestion that the HGSOC

response to taxane (a microtubule depolymerization-inhibiting agent) may, indeed, depend on

the NAV1 gene expression levels.

The next validated gene, CXCL8, encodes Interleukin-8 (IL-8), a well-known chemotactic

factor, a key mediator protein associated with inflammation, where it plays a pivotal role in

neutrophil recruitment and degranulation [43]. Despite its generally acknowledged immuno-

logical function, the role of IL-8 in ovarian cancer is still obscure. Studies on cell lines showed

the paclitaxel-induced IL-8 expression to retard the growth of ovarian cancer cells [44]. By

contrast, some more recent research demonstrated that IL-8 promoted epithelial to mesenchy-

mal transition (EMT) by increasing the MMP-2, MMP-9 and EpCAM expression, and stimu-

lated the anchorage-independent growth, proliferation, angiogenic potential, adhesion and

invasion in ovarian cancer cells [45–47]. In addition, the IL-8 knockdown was also shown to

increase the HGSOC cells’ sensitivity to cisplatin [48]. Concordantly, the present study points

to the oncogenic function of CXCL8 overexpression in cells with no TP53 missense mutations

by showing its negative impact on overall survival of HGSOC patients. Other studies involving

clinical material also corroborated our findings, by presenting a negative correlation between

the survival time of ovarian cancer patients and the expression levels of IL-8 and IL-10 [49].

Moreover, IL-8 and its receptors (CXCR1 and CXCR2) are upregulated in advanced serous

ovarian cancers [50].

The RUNX1 gene, found herein to present significantly altered expression in both the

experimental and validation cohorts, is involved in the generation of hematopoietic stem cells

[51]. It has also been extensively investigated as a tumor suppressor in hematological cancers,

where its locus is known for numerous chromosomal translocations [52]. However, genetic

alterations in RUNX1 also occur in many solid tumors. In gastric [53], hepatocellular [54], and

esophageal [55] carcinomas, its tumor suppressor functions were revealed. Nevertheless, the

role of RUNX1 in breast cancer appears to be more ambiguous and hormone-dependent. On

the one hand, tumor suppressor capabilities of RUNX1 have been observed at the mRNA and

protein levels in ER+ and/or PR+ breast cancers [56–58]. On the other hand, an increasing

amount of evidence points to a pro-oncogenic role played by the RUNX1 gene in breast cancer,

intriguingly associated with the ER negative and triple negative (TN, i.e., ER-, PR-, HER2-)

subtypes [59]. Accordingly, transcriptome studies have reported RUNX1 mRNA upregulation

in the TN breast carcinomas [60, 61]. The expression of the RUNX1 protein also increased

with disease progression both in the TN tumor samples [62], and in a mouse model of breast

cancer [63]. In ovarian cancer, in vitro studies showed that RUNX1 inhibition in cell lines pro-

moted cisplatin-induced apoptosis [64]. Moreover, the RUNX1 knockdown significantly atten-

uated proliferative, migratory and invasive abilities of SKOV3 cells [65]. In line with these

findings, hypomethylation of the RUNX1 promoter was observed in HGSOC patients with

chemoresistant tumors, suggesting its adverse, oncogenic role in cancer progression [66]. In

addition, immunohistochemical analyses revealed that in tumors with high and low malignant
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potential, as well as in omental metastases, RUNX1 expression was significantly elevated, in

contrast to normal ovaries [67]. Interestingly, our results in both, the experimental and valida-

tion cohorts suggest a tumor-suppressive role of RUNX1 in HGSOCs, but only in the subgroup

without missense mutations in TP53, where its elevated expression correlated with the

decreased risk of tumor recurrence. The reasons for these seemingly antithetical outcomes can

relate to hormone-dependence of ovarian neoplasms, just like in breast cancers. In line with this

assumption, RUNX1 alterations reported in the cBioPortal database (www.cbioportal.org) for

ovarian cancers comprised both amplifications and deletions, thus highlighting the ambiguous

and context-dependent role of the gene in this neoplasm [59]. One of the two genetic RUNX1
changes identified herein in the VEP analysis of the HGSOC validation cohort was classified as

a high-impact SNP (rs200431130), resulting in the loss of the RUNX1 start codon in the recently

predicted RUNX1 transcript (XM_017028487.1). This discovery provides another supporting

evidence for RUNX1 to conceivably play a tumor suppressor role in ovarian cancers.

The last of the validated genes, PROM1, encodes Prominin-1 (also known as CD133).

CD133 is a glycoprotein frequently expressed in cancer stem cells [68]. The expression differs

between different types of cancers. In pro-B acute lymphoblastic leukemia, and brain, esoph-

ageal, liver, testis, ovarian, and gastric cancers, CD133 is overexpressed while in other cancer

types, including kidney cancer, CD133 is down-regulated [69]. Transcription of the human

PROM1 gene is driven by five alternative promoters, three of which are located on CpG islands

and are partially regulated by methylation. The occurrence of several promoter regions leads

to alternative splicing, resulting in CD133 structural variants with potentially unique roles

[68]. In ovarian cancer, CD133 is a marker of poor prognosis and worse response to treatment.

Studies on cell lines, animal models as well as on a clinical material have shown, that elevated

levels of CD133 correlated with shorter DFS and OS, advanced disease stage, ascites accumula-

tion, increased platinum resistance and higher risk of metastasis to peritoneum and the central

nervous system [70–72]. Additionally, the CD133 expression was shown to correlate with

ovarian tumor aggressiveness–the highest expression of CD133 was observed in malignant epi-

thelial ovarian tumors when compared to borderline (with moderate expression) and benign

tumors (low expression), as well as with a histological type–serous ovarian carcinomas showed

the highest immunohistochemical expression score of CD133 [73]. Our results are fully consis-

tent with the oncogenic potential of Prominin-1 demonstrated by other research groups,

revealing the negative impact of PROM1 gene overexpression on patient DFS in the subgroup

of tumors with missense TP53 mutations, found in both the experimental and validation

cohorts. We also discovered a positive correlation between the elevated expression of PROM1
and its SNPs. It is worth to note that nine out of ten samples with genetic changes within the

PROM1 gene harbored the same high-impact alteration: chr4:g.15980539T>A

(ENST00000447510.7:c.2374-2A>T), being a novel, splice acceptor variant, resulting in the

formation of an abnormal PROM1 mRNA transcript. Splice site mutations have been exten-

sively studied in recent years in various human disorders, including cancers. Abnormalities in

alternative splicing were linked to tumorigenesis, as they induced a plethora of physiological

alterations in neoplastic cells, including the imbalance between proliferation and apoptosis,

increased invasiveness, angiogenic and metastatic potential as well as an elevated rate of

metabolism, all of which belong to the well-known cancer hallmarks [74]. Splice site SNPs may

contribute to the above-mentioned physiological changes by affecting the activity of cryptic

sites, leading to the altered frequency of exon inclusion/exclusion, and promoting the alternate

exon usage. As a result, the amounts of particular splice forms in the cell may either increase

or diminish, as demonstrated for, e.g., EMID1 and IL19, respectively, by Mucaki et al. [75].

Such a mechanism may also explain the correlation between the occurrence of splice site muta-

tions and overexpression, reported herein for the PROM1 gene.
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In summary, in two independent cohorts of HGSOC patients, we identified five genes,

PROM1, CXCL8, RUNX1, NAV1 and TP73, as potential biomarkers to predict prognosis or

response to treatment. This was achieved by combining the results of Real-Time qPCR analy-

ses performed in our Polish cohort and the NGS RNA-seq studies carried out by Ducie et al.

[5] in the American cohort (validation). This approach let us find cohort-independent factors

affecting the clinical course of ovarian cancer. Moreover, our study further confirms the

importance of the TP53 mutation status for ovarian cancer biology and biomarker discoveries.

Conclusions

The altered expression of five genes, PROM1, CXCL8, RUNX1, NAV1 and TP73, affects patient

prognosis or predicts treatment response. Remarkably, the context of the TP53 missense muta-

tions in the tumors is crucial to unravel these associations, which confirms our previous

results, pointing to p53 as an important confounding determinant in the biomarker discovery.

In addition, hundreds of genetic alterations with the expected high or moderate impact on the

encoded proteins’ sequence and function were identified, including thirty unique changes so

far unknown. Noteworthy, some of these variants are likely to affect the expression of the

altered genes, as shown herein for the PROM1 oncogene. Our results add to a better under-

standing of ovarian cancer-driving mechanisms, thus provide the grounds for the develop-

ment of novel, targeted, less aggravating and, hopefully, more effective methods of treatment.

Materials and methods

Ethics statement

The study was conducted according to the guidelines of the Declaration of Helsinki, and

approved in writing by the Institutional Review Board of the Maria Sklodowska-Curie

National Research Institute of Oncology (nos. 49/2003 and 39/2007). Informed consent in

writing was obtained from all subjects involved in the study.

Patients and tumors

The Real-Time qPCR analysis was performed in a uniform series of 70 high-grade, serous,

ovarian cancer samples from previously untreated patients (herein, the corresponding cohort

of patients is named “experimental”). All patients were treated at a single institution, the Maria

Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland in the years

1995–2006 and received TP chemotherapy after surgery. Medical records of all the patients

were critically reviewed by at least two clinicians. The material was carefully selected to meet

the following criteria: no chemotherapy before staging laparotomy, adequate staging proce-

dure according to the recommendations by the International Federation of Gynecologists and

Obstetricians (FIGO) [76], tumor tissue from the first laparotomy available, poor tumor differ-

entiation, availability of clinical data including residual tumor size and follow-up. All tumors

in the experimental cohort were uniformly histopathologically reviewed, classified according

to the criteria of the World Health Organization [77] and graded according to the standards

given by Barber et al. [78] in a four-grade scale which, although outdated, is more detailed

(only tumors with grades 3 and 4 were included in this study). We decided not to use the up-

to-date three-grade scale, since our previous research showed differences between grade 3 and

4 tumors with respect to patient overall survival [79]. Additionally, a complete evaluation of

p53 status was performed using the PAb1801 mouse monoclonal antibody (1:500, Sigma-

Genosys, Cambridge, UK), as described previously [6]. Accumulation of the p53 protein

results predominantly from missense TP53 mutations. Other mutations do not cause the p53
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protein accumulation, just like in case of the wild-type TP53 gene [80]. In the experimental

cohort, there was approximately 91% correlation between the TP53 missense mutations and

the p53 protein accumulation. Out of 70 specimens that we examined, 46 (65.7%) exhibited

the p53 accumulation, while the TP53 missense mutations were found in 43 tumors (61.4%).

For the evaluation of clinical endpoints in the experimental group, CR was defined as disap-

pearance of all clinical and biochemical symptoms of ovarian cancer assessed after completion

of the first-line chemotherapy and confirmed four weeks later [81]. DFS was assessed only for

the patients who achieved a CR. All surviving patients had at least a 6-month follow-up.

In order to validate the gene expression results in an independent cohort of 85 HGSOC

samples, we have examined the publicly available NGS RNA-seq data set (id: PRJNA396544)

from the European Nucleotide Archive (ENA), deposited there by Ducie et al. [5]. Noteworthy,

the study by Ducie et al. was performed on the biggest number of high-grade serous ovarian

cancer samples (286 in total, including 85 samples used in the NGS RNA-seq experiments)

from among the data sets available in the Gene Expression Omnibus (a database administered

by the National Center for Biotechnology Information (NCBI), USA). Moreover, all these sam-

ples came from patients who did not undergo a chemical treatment before tumor excision, and

were treated postoperatively with taxanes. Thus, this cohort was very similar to our (experi-

mental) cohort of patients. Furthermore, Ducie et al. provided a detailed clinico-pathological

characteristics of patients and tumors used in their study which let us compare the prognostic

and predictive value of gene expression changes in both cohorts to identify cohort-indepen-

dent biomarkers. Moreover, in the study by Ducie et al., the median and mean values of the

number of NGS read clusters for the entire validation cohort both exceeded 50 millions, while

modes of Phred sequencing quality scores ranged from 37 to 39. Thus, these data were good

enough with respect to both the transcriptome coverage and sequencing quality. Last but not

least, Ducie et al. have published their research in a high-ranked journal (Nature Communica-

tions). This should guarantee the rigorousness and thoroughness of the peer-review process,

thereby ensuring the reliability of the paper itself and of all supplementary materials.

Remarkably, the clinico-pathological data available for the validation cohort differ, with

respect to some variables, from the data we gathered for the experimental cohort, e.g., in the

experimental cohort treatment response prediction was assessed based on two parameters: CR

and PS, whereas for the validation cohort the information on complete tumor remission was

missing. To overcome this limitation, the PS and CR variables in the experimental group were

both compared with the PS in the validation cohort. Additionally, in the experimental cohort,

OS and DFS times were calculated for each patient. By contrast, in the validation cohort OS

was available but the DFS variable was missing, and the authors provided Progression-Free-

Survival (PFS) data instead. As DFS and PFS variables cannot be treated interchangeably, we

decided to compare the DFS in the experimental cohort with the recurrence status in the vali-

dation group. As to the validation procedure, in either prognosis or treatment response predic-

tion, the results were considered as confirmed when HR/OR values in the experimental group

and Fold Change (FC) values in the validation cohort were both either above or below 1 for

the same gene, the same dependent variable (OS, DFS, CR, PS) and the same TP53 mutation

status. A detailed clinico-pathological characteristics of the patients and tumors in both the

experimental and validation cohorts is presented in Table 4.

Real-Time qPCR-based studies of gene expression

RNA was isolated from frozen tumor sections with over 85% of cancer cells, using the RNeasy

Plus Mini Kit (Qiagen, Hilden, Germany). RNA quantity was measured with NanoDrop spec-

trophotometer (Thermo Fisher Scientific, Waltham, MA, USA), and its quality was assessed
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Table 4. Clinico-pathological characteristics of patients and tumors.

Experimental cohort (N = 70) Validation cohort (N = 85)

Variable N Freq. N Freq.

Age: Min. 29 - 42 -

Age: Max. 79 - 79 -

Age: Mean 53 - 59 -

Age: Median 54 - 59 -

CR: No 19 0.271 - -

CR: Yes 51 0.729 - -

Death: No 9 0.129 65 0.765

Death: Yes 61 0.871 19 0.224

Death: NA’s - - 1 0.012

DFS (days): Min. 0 - - -

DFS (days): Max. 1989 - - -

DFS (days): Mean 432 - - -

DFS (days): Median 260 - - -

FIGO: IA-IIC 2 0.029 4 0.048

FIGO: IIIA-IIIB 6 0.086 2 0.024

FIGO: IIIC 56 0.8 43 0.506

FIGO: III - - 11 0.129

FIGO: IV 6 0.086 25 0.294

OS (days): Min. 296 - 132 -

OS (days): Max. 5002 - 2601 -

OS (days): Mean 1404 - 1080 -

OS (days): Median 1080 - 1072 -

OS (days): NA’s - - 1 -

PFS (days): Min. - - 120 -

PFS (days): Max. - - 2238 -

PFS (days): Mean - - 730 -

PFS (days): Median - - 633 -

PS: No 24 0.343 11 0.129

PS: Yes 46 0.657 59 0.694

PS: NA’s - - 15 0.176

Recurrence: No 6 0.086 28 0.329

Recurrence: Yes 45 0.643 57 0.671

Recurrence: NA’s 19 0.271 - -

RT: 0 cm 15 0.214 71 0.835

RT: < 2 cm 40 0.571 - -

RT: > = 2 cm 14 0.2 - -

RT: Suboptimal - - 12 0.141

RT: NA’s 1 0.014 2 0.024

p53 protein accumulation: No 24 0.343 - -

p53 protein accumulation: Yes 46 0.657 - -

TP53 missense mutation: No 27 0.386 36 0.424

TP53 missense mutation: Yes 43 0.614 49 0.576

TP53 mutation: No 5 0.071 26 0.306

TP53 mutation: Yes (missense) 43 0.614 49 0.576

(Continued)
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on Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA integrity numbers

(RINs) of the samples ranged from 6.5 to 9.4.

Based on data available in the scientific literature, 80 genes were nominated for their expres-

sion verification by Real-Time qPCR. The majority of the genes was analyzed in the entire

experimental series of 70 samples, but some genes were assessed in a subset of the experimental

series (51 samples or 50 samples). For the list of genes, their descriptions and series sizes, see

the S1 Table. All Real-Time qPCR experiments described here were run in triplicates on either

the 7500 Fast or the 7900HT Real-Time PCR Systems (both manufactured by Thermo Fisher

Scientific). Gene expression was evaluated with TaqMan assays (Thermo Fisher Scientific) (for

the list of assays, see the S1 Table). The expression of each gene analyzed herein was normal-

ized to the geometric mean of expression of three reference genes, HPRT1 (hypoxanthine

phosphoribosyltransferase 1), PPIA (peptidylprolyl isomerase A), and GUSB (glucuronidase

beta)) [82]. These three genes were nominated experimentally to be the most stably expressed

among 11 house-keeping genes available on the TaqMan Human Endogenous Control Plates

(Thermo Fisher Scientific), as assessed in 8 randomly selected ovarian tumors. The stability

was calculated with the qBasePLUS app (Biogazelle NV, Zwijnaarde, Belgium), utilizing an

improved version of the geNorm algorithm [82, 83]. In every reaction, TaqMan Universal

PCR Master Mix II with uracil-N-glycosylase (Thermo Fisher Scientific) was used to reduce

the risk of cross-contamination with the products of previous PCRs. Each Real-Time qPCR

reaction was performed according to the manufacturer’s recommendations, using 10–12 ng of

total RNA (earlier reverse transcribed to cDNA with the High-Capacity cDNA Reverse Tran-

scription Kit (Thermo Fisher Scientific)). The expression of all the analyzed genes was calcu-

lated with the ΔΔCt method for relative quantification of gene expression [84]. The calibrator

was always the sample with the highest expression level, thus it was different for each gene.

This approach ensured that the calibrated expression values ranged from 0 to 1 for all the

genes.

NGS RNA-seq studies of gene expression

The quality of the FASTQ files acquired for 85 HGSOC samples from the validation cohort

was analyzed with the Fastqc app (version: 0.11.9) followed by adapter clipping and removal of

poor-quality fragments of reads with the Trimmomatic app (version: 0.39). NGS reads were

then mapped to a reference sequence of the human genome (assembly: GRCh38 (hg38)) using

the HISAT2 sequence aligner (version: 2.2.1). After mapping, the PCR and optical duplicates

were removed with the MarkDuplicates app, a part of the Genome Analysis Toolkit (GATK,

version: 4.1.7.0). The assessment of mapping quality was carried out using Samtools (version:

1.12) and Qualimap (version: 2.2.2-dev) apps, while Integrative Genomics Viewer (IGV, ver-

sion: 2.10.0) served for visualization of the mapping results. The DESeq2 package for R (ver-

sion: 1.26.0) was employed for identification of differentially expressed genes. Importantly,

due to the relatively low depth of sequencing coverage in the acquired NGS RNA-Seq data

Table 4. (Continued)

Experimental cohort (N = 70) Validation cohort (N = 85)

Variable N Freq. N Freq.

TP53 mutation: Yes (non-missense) 22 0.314 10 0.118

Abbreviations used: CR–Complete Remission; DFS–Disease-Free Survival, FIGO–clinical stage; OS–Overall Survival;

PFS–Progression-Free Survival; PS–Platinum Sensitivity; RT–Residual Tumor

https://doi.org/10.1371/journal.pone.0271539.t004
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(median and average values of mean coverage depths calculated with the Qualimap app for the

entire cohort equaled 9.4 and 9.3, respectively), the DESeq2 analysis had to be performed on

unfiltered data. Otherwise, about two thirds of the genes (including some being significant in

our Real-Time qPCR studies) would be filtered out and thus excluded from further analyses.

Ensembl Variant Effect Predictor (VEP) for identification of sequence

variants

In the present study, the aforementioned NGS RNAseq data set generated for the validation

cohort was used not only to find significant alterations in gene expression, but also to deter-

mine sequence variants. The Variant Call Format (VCF) files were generated (with the Allele

Depth tag, AD) using the bcftools (version: 1.12) and the GRCh38 (hg38) assembly of the

human genome. Next, the variants were subjected to a two-step filtering. First, the variants less

frequent than 10% were filtered out based on the AD tag, using the VAF checker app (version:

1.0) (a program developed by our team, and available for download at GitHub: https://github.

com/lukszafron/VAF.checker). Then, the vcf-annotate app from the VCFtools package (ver-

sion: 0.1.16) was employed to filter out the variants that do not meet the following criteria: all

filters with default values applied except for: MinAB = 2 (a minimum number of alternate

bases of 2), Qual = 20 (a minimum sequence quality of 20), and MinMQ = 20 (a minimum

mapping quality of 20). Subsequently, the obtained VCF files were divided with bcftools into

two subsets (SNP, and non-SNP), containing snp variants vs all other sequence alterations, i.e.,

indels (insertions or deletions), mnps (multi-nucleotide polymorphisms), bnd (breakpoints),

and others, respectively. Next, the variant identification and effect prediction analysis was car-

ried out using the Ensembl Variant Effect Predictor (VEP) app (version: 104.0, released in

May 2021) and the merged Ensembl and RefSeq databases [85]. The obtained tab-delimited

CSV files (VEP output tables) were further analyzed consecutively with two R programs devel-

oped by LMS, vep.r (version: 1.1), and vep.comparison.r (version: 1.0), both available for

download at https://github.com/lukszafron. Ensembl VEP divides sequence variants into four

categories: high, moderate, low and modifier, based on their expected impact on the transcript

and protein sequences. For details, please refer to the web page [86]. The two aforementioned

R apps were utilized first to filter out all variants characterized by low or modifier impacts, and

then to exclude all variants except those which either had a known adverse clinical significance

or negatively affected the protein structure and function (as assessed by either the SIFT or

PolyPhen algorithms). The new, previously unidentified sequence variants (with an empty

"Existing_variation" field in the VEP output table), variants with empty “CLIN_SIG”, “SIFT”

and “PolyPhen” fields, or those with the maximum allele frequency (MAX_AF) lower than

0.01 were also included in the final report generated by the vep.r app. The analyses were car-

ried out independently for SNP and non-SNP variants. Subsequently, these results were com-

bined together with binarization of sequence alterations for every gene (sequence variants with

a high or moderate impact present (1) vs absent (0)). Afterwards, statistical analyses were car-

ried out, followed by the data visualization to identify genes with the frequency of sequence

alterations significantly different between the investigated subgroups (characterized by distinct

death, recurrence and PS statuses). This final step of the analysis was performed with the vep.

comparison.r script.

To assess the TP53 mutation status in the experimental cohort, we prepared NGS DNA-seq

libraries, comprising exonic regions of 41 oncogenes and tumor suppressors (including TP53)

involved in the development of hereditary ovarian cancer (the Ion AmpliSeq Comprehensive

Ovarian Cancer Research Panel, Thermo Fisher Scientific). In those libraries, the gene set

enrichment was carried out using the sequence capture technology and the SeqCap EZ Prime
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Choice Probes, both offered by Roche (Basel, Switzerland). The obtained NGS data were sub-

sequently analyzed using the methods described above to find genetic variants with a high or

moderate expected impact on the encoded proteins’ sequence and function.

Statistical analysis

All statistical analyses were carried in the R environment (version: 3.6.1). The survival analysis

in the experimental group of patients was performed using the multivariate Cox proportional

hazards models (the survival package for R, version: 3.2–11). All Cox models were also checked

with respect to proportionality of hazards for each variable used. The prediction of treatment

response in the experimental group of patients was carried by generating multivariate logistic

regression models (R packages: stats (version: 3.6.1) and rms (version: 6.2–0)). In order to ver-

ify the discriminating capabilities of the Cox and logistic regression models, we performed

their cross-validation in new data sets, generated from the original data by bootstrapping (with

replacement) and subsequent comparison of areas under curves (AUCs) between the original

and bootstrapped data sets, using the riskRegression package for R (version: 2020.12.8) [87].

All the analyses were performed not only in the entire group of tumors, but also in the sub-

groups with and without missense mutations in the TP53 gene, and were adjusted for the

FIGO stage and RT. Noteworthy, for all the analyzed genes, the expression was treated as a

continuous variable to avoid arbitrary categorization of data, which could potentially lead to

unreliable statistical results. In case of continuous variables, contrary to categorical variables,

HRs/ORs cannot be treated as the ratio of the hazard/odds rates, corresponding to the condi-

tions described by two sets of explanatory variables. For continuous variables, the same inter-

pretation applies to a unit difference [88]. As mentioned above, a tumor exhibiting the highest

expression of a gene was used as a calibrator for this gene. Thus, all the expression values ran-

ged from 0 to 1. This approach allowed the approximate estimation of the risks in a similar

way as for categorical variables. However, it has to be underlined that the real HR/OR will

always be lower from what is shown in this paper, because only one tumor (calibrator) has the

gene expression of 1, and none–equaling 0. Time trends of OS, DFS, CR and PS were evaluated

with the Mann-Kendall homogeneity test, and supported with the autocorrelation function

(ACF) plots. In the validation cohort of 85 HGSOCs, the correlation between the mutation sta-

tus of each gene and its expression level was assessed with the Wilcoxon rank sum test, while

the changes in gene mutations’ distribution in the subgroups with different clinical outcomes

were analyzed with either the Chi-squared or Fisher’s exact test depending on the subgroups’

sizes. The same method of statistical inference was employed to compare the frequencies of

either TP53 mutations or patient deaths in the experimental and validation cohorts. All p-val-

ues shown herein were considered significant at the statistical significance level (alpha) of 0.05.

Given the use of two independent HGSOC cohorts to study the impact of altered gene expres-

sion on ovarian cancer prognosis and prediction of treatment response, we decided not to

apply the Benjamini-Hochberg correction controlling the false discovery rate. Otherwise, the

rate of the statistical type II error (beta) would increase with concurrent, unintended decrease

of the statistical power (1-beta) [89].

Supporting information

S1 Fig. The analysis of prognostic and predictive time trends in the experimental cohort of

ovarian cancer patients. The patients underwent their first surgical treatment in the years

1995–2006. Time trends concerned overall survival (OS) (A,B); disease-free survival (DFS) (C,

D); sensitivity to chemotherapy (PS) (E,F) and complete remission (CR) (G,H). The trends are

shown as a trend line of death, relapse, PS and CR frequencies, respectively, supplemented
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with the results of the Mann-Kendall homogeneity test, and supported with autocorrelation

function (ACF) plots.

(TIF)

S2 Fig. VEP analysis heatmaps. The results of the VEP analysis in the validation cohort of

HGSOCs for 49 genes with significantly changed mRNA expression in the experimental

cohort (only the genes with at least one sequence alteration in at least one sample are

included). Abbreviations used: VEP–Variant Effect Prediction; HGSOCs–high-grade serous

ovarian cancers.

(TIF)

S1 Table. Eighty genes analyzed by Real-Time qPCR in the experimental cohort with corre-

sponding TaqMan assay IDs.

(XLSX)

S2 Table. The significant results of the multivariate Cox and logistic regression analyses

obtained for the experimental cohort of HGSOCs.

(PDF)

S3 Table. DAVID KEGG Pathways&UP Keywords analysis for 49 genes with altered

expression in the experimental cohort.

(XLS)

S4 Table. Summary of the VEP analysis in the validation cohort for 49 genes differentially

expressed in the experimental cohort.

(PDF)

S5 Table. New and known SNP and non-SNP variants of high or moderate impact in the

validation cohort, found in 49 genes with altered expression in the experimental cohort.

(XLSX)
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