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Abstract

Viral evolution remains to be a main obstacle in the effectiveness of antiviral treatments. The ability to predict this
evolution will help in the early detection of drug-resistant strains and will potentially facilitate the design of more
efficient antiviral treatments. Various tools has been utilized in genome studies to achieve this goal. One of these tools
is machine learning, which facilitates the study of structure-activity relationships, secondary and tertiary structure
evolution prediction, and sequence error correction. This work proposes a novel machine learning technique for the
prediction of the possible point mutations that appear on alignments of primary RNA sequence structure. It predicts
the genotype of each nucleotide in the RNA sequence, and proves that a nucleotide in an RNA sequence changes
based on the other nucleotides in the sequence. Neural networks technique is utilized in order to predict new strains,
then a rough set theory based algorithm is introduced to extract these point mutation patterns. This algorithm is
applied on a number of aligned RNA isolates time-series species of the Newcastle virus. Two different data sets from
two sources are used in the validation of these techniques. The results show that the accuracy of this technique in
predicting the nucleotides in the new generation is as high as 75 %. The mutation rules are visualized for the analysis
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of the correlation between different nucleotides in the same RNA sequence.

1 Introduction

The deoxyribonucleic acid (DNA) strands are composed
of units of nucleotides. Each nucleotide is composed of a
nitrogen-containing nucleobase, which is either guanine
(G), adenine (A), thymine (T), or cytosine (C). Most DNA
molecules consist of two strands coiled around each other
forming a double helix. These DNA strands are used as
a template to create the ribonucleic acid (RNA) in a pro-
cess known as transcription. However, unlike DNA, RNA
is often found as a single-strand. One type of RNA is
the messenger RNA (mRNA) which carries information
from the ribosome, which are where the protein is syn-
thesized. The sequence of mRNA is what specifies the
sequence of amino acids the formed protein. DNA and
RNA are also the main component of viruses. Some of
the viruses are DNA-based, while others are RNA-based
such as Newcastle, HIV, and flu [1]. RNA viruses are dif-
ferent than the DNA-based viruses in the sense that they
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have higher mutation rates, and hence, they have higher
adaptive capacity. This mutation causes a continuous evo-
lution that leads to host immunity, and hence, the virus
becomes even more virulent [2]. One of the RNA virus
mutations is the point mutation which is a small scale
mutations that affects the RNA sequence in only one or
few nucleotides, such as nucleotide substitution. This sub-
stitution refers to the replacement of one nucleobase (i.e.,
base) either through transition or transversion. This sub-
stitution refers to the replacement of one nucleobase (i.e.,
base) by another either through transition or transversion.
Transition is the exchange of two purines (A < — > Q)
or one pyrimidine (C < — > T), while transversion is the
exchange between a purine and pyrimidine [3, 4]. Another
type of point mutation is frame-shift which refers to the
insertion or deletion of a nucleotide in the RNA sequence.

One of the important focuses in the field of human
disease genetics is the prediction of genetic mutation
[5]. Having information about the current virus gener-
ations and their past evolution could provide a general
understanding of the dynamics of virus evolution and the
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prediction of future viruses and diseases [6]. The evo-
lutionary relationship between species is determined by
phylogenetic analysis; additionally, it infers the ances-
tor sequence of these species. These phylogenetic rela-
tionships among RNA sequences can help in predicting
which sequence might have an equivalent function [7].
The analysis of the mutation data is very important, and
one of the tools used for this purpose is machine learn-
ing. Machine learning techniques help predict the effects
of non-synonymous single nucleotide polymorphisms on
protein stability, function and drug resistance [8]. Some
of these techniques that are used in prediction are sup-
port vector machine, neural networks and decision trees.
These techniques have been utilized to learn the rules
describing mutations that affect protein behavior, and use
them to infer new relevant mutations that will be resis-
tant to certain drugs [9]. Another use is to predict the
potential secondary structure formation based on primary
structure sequences [10-12]. A different direction is to
predict the discovery of single nucleotide variants in RNA
sequence. Another tool in machine learning is Markov
chains, which can describe the relative rates of differ-
ent nucleotide changes in the RNA sequence [13]. These
models consider the RNA sequence to be a string of four
discrete states, and hence, tracks the nucleotide replace-
ments during the evolution of the sequence. In these
models, it was assumed that the different nucleotides
in the sequence evolved independently and identically,
and justified that using the case of neutral evolution of
nucleotides. Following that, several researches developed
methods negated that assumption and identified the rele-
vant neighbor-dependent substitution processes [14].
The prediction of the mutated RNA gives a clear under-
standing of the mutation process, the future activity of
the RNA, and the help direct the development of the
drugs that should be designed for it [15, 16]. In this
work, we propose a machine learning technique that is
based on rough set theory. This technique predicts the
potential nucleotide substitutions that may occur in pri-
mary RNA sequences. In this technique, a training phase
is utilized in which each iteration the input is an RNA
sequence of one generation of the virus, while the out-
put is the RNA sequence of the next generation of the
virus. Every feature in the input is a nucleotide in the
RNA sequence corresponds to a feature in the output.
The training of the machine learning technique is fed
with aligned RNA sequences of successive generations of
the same RNA viruses that exhibited similar environmen-
tal conditions. The technique introduced in this paper
predicts the last RNA sequence based on the previous
RNA generation sequence. Following that, the predicted
RNA sequence is compared the actual RNA sequence in
order to validate the ability of the machine learning tech-
nique to predict the RNA evolution and this prediction
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accuracy. This comparison results in a percentage which
is calculated based on the number of matched nucleotides
between both the predicted and actual RNA sequence
versus the total number of nucleotides in the sequence.
One of the main important methods of this technique is
that it extracts the rules governing the past mutations,
and hence, is able to infer the possible future mutations.
These rules show the effect of a set of nucleotides on the
mutation of their neighboring nucleotide. This technique
visualizes these rules to allow an integrated analysis of the
mutations occurring in successive generations of the RNA
virus. Besides using the Rough set theory in our technique,
a traditional machine learning technique is utilized which
is neural networks in order to clarify the prediction pro-
cess and validate our results. Finally, we present a way to
reform the RNA alignments of a set of successive genera-
tions of the same virus. This reformation step is important
in order to fit the input requirements for any machine
learning technique.

This paper presents a proof of concept by applying this
technique on a set of successive generations of the New-
castle Disease Virus (NDV) from two different countries,
Korea and China [17, 18]. In these sets, the percentage
of nucleotides that exhibits variation from a generation to
another is 57-65 % for the two used sets of sequences.
The proposed techniques percentage accuracy in the pre-
diction of the varied nucleotides in the tested sequence
in the last generation are 68—76 %. Although these results
are not statistically significant at this point, it still how-
ever proves the applicability of the proposed technique. It
is worth noting that the learning and accuracy of predic-
tion of this technique increases as the number of instances
in the data set increases. The rest of the paper is organized
as follows. Section 2 presents the related work in applying
machine learning techniques in genetic problems, as well
as the proposed technique to solve these problems. The
experimental work and discussion appear in Sections 3
and 4, and finally, the conclusion is presented in Section 5.

2 Methods

2.1 Related work

Predicting techniques have been utilized in the field of
genetics for many years, and have been geared towards
different directions. One of these directions is the detec-
tion of the resistance of the virus to drugs after its
mutation [19], in which, machine learning techniques are
focused on learning the rules characterizing the aligned
sequences that are resistant to drugs. The rules will be
later on used to detect the drug resistance gene sequences
amongst a set of testing sequences. The training phase of
these techniques works by having each protein sequence
represented as a feature vector and fed as the input to
this technique [20]. An example of these machine learn-
ing techniques are support vector machine (SVM) and
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neural networks, which can be trained on data sets of
drug-resistant and non-resistant DNA sequences of virus
population. In the training phase, these techniques learn
the rules of classifying new generations of the virus a
being drug-resistant or not [21]. However, these tech-
niques are black box techniques, that cannot be used to
infer any information about the rules used in this clas-
sification. Another disadvantage is that these techniques
utilize 20 bit binary numbers instead of characters as a
representation for 20 different amino acids condons. This
increases the size of the input to the used algorithm,
which in return increases the complexity of the classifi-
cation process. However, the authors in [22] introduced a
technique that uses characters instead of number as the
input, and they utilize a decision tree in order to pro-
vide direct evidence on the drug resistance genes through
a set of rules. Their technique trains and tests its effi-
ciency on 471 isolates against 14 antiviral drugs, creating
a decision tree for each drug. The input of this decision
tree is the isolates sequence in which, each position is
one of 20 naturally occurring amino acids represented
in characters. The results of this technique concludes
whether the virus is a drug-resgstenc virus or not. An
example of this generated decision tree is: if the codon
at position 184 is for methionine (M) and the codon at
position 75 for alanine (A), glutamic acid (E) or threo-
nine (T), then the virus carrying this gene is resistant to
(3TC) antivirus drug. Another example is the detection
of whether a point mutation in a cell is transmitted to
the offspring or not, i.e., gremlin mutation vs. somatic
mutation [23].

Another research direction is the prediction of the sec-
ondary structure of the RNA/DNA of the organism in
the generation post-mutation. The ribonucleic acid (RNA)
molecule consists of a sequence of ribo-nucleotides that
determines the amino acids’ sequence in the protein.
The primary structure of the RNA molecule is the lin-
ear form of the nucleotides’ sequence. The nucleotides
can be paired based on specific rules that is: adenine
(A) pairs with uracil (U) and cytosine (C) with guanine
(G). Base pairs can occur within single-stranded nucleic
acids. The RNA sequence is folded into secondary struc-
ture in which a pair of basis is bonded together. This
structure contains a set of canonical base pairs, whose
variation is considered as a form of mutation that can
be predicted. Several researches have been focused on
automating the RNA sequence folding [24] and predict-
ing the secondary structure form [25]. The probability
of the generation of any secondary structure is inversely
proportional to the energy of this structure. This energy
is modeled based on extensive thermodynamic measure-
ments [26]. Applications like “RNAMute” analyzes the
effects of point mutations on RNAs secondary structure
based on thermodynamic parameters [27].
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The third research direction is the prediction of single
nucleotide variants (SNV) at each locus, i.e., nucleotide
location. The SNV existence are identified from the
results of the Next Generation Sequencing (NGS) meth-
ods [6]. NSG is capable of typing SNP, which is the
mutation that produces a single base pair change in the
DNA sequence. For example, the two sequenced DNA
fragments from different generations are AAGCCTA and
AAGCTTA. Noticed that the fifth single nucleotide C in
the first fragment varied to a T in the second fragment.
This genotype variation change represents the mutation
in the child genomes of the next generation. The steps of
allocating the SN'Vs start with collecting a set of aligned
sequences from NGS readings analyzed against a refer-
ence sequence. At each position i in the genome data,
the number of reads a; that match the reference genome
and the number of reads b; that do not match the ref-
erence genome are counted. The total number of reads,
depth, is given by N; = a;+b;. A naive approach to
detect the SNV locations is to find the location i € [1, T]
whose fraction f; = a; / N; is less than a certain
threshold [28].

Although this approach is accurate for large number
of generations, usually this is not case due to low col-
lected number of sequences. Moreover, it only predicts
the existence of the SNV, however, it does not predict the
future sequence. A model is proposed in [29] to infer the
genotype at each location. The model characterizes each
column in the alignment to be one of three states, the first
Homozygous type is where all genotypes are the same as
the reference allele states, while the second types is where
all genotypes are the same as non-reference allele, the last
type is for mixture of reference and non-reference alleles.
This model calculates posterior probability P(g | x,z) of
the genotype at position u in the current sequence z, given
a reference sequence x and the sequence z. The geno-
type highest posterior probability (MAP) is selected. The
detection of the third state is based on SNVMix model
[30], which uses the Bayesian Theorem and MAP to calcu-
late the posterior probabilities for a mixed genotype gy,. In
this case, the P(gy,|a;) can be calculated as shown in Eq. 1
where g; is the number of reads that matches the reference
at location i.

P(gmla;) = P(ailgm) * P(Q) 1)

The prior probability P(a;|g) is calculated using the
binomial distribution dbinom in the case of mixed geno-
type [30] as shown in Egs. 2, 3, and 4. The parameter
Mg, of the dbinom is of value 0.5 where the probability of
the genotype, matching or not matching, is equal. And N;
represents the total number of generations.

P(ailgm) ~ dbinom(ai|iig,,, N;) (2)
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N; ) .
P(ailgm) = <a,>pc§’; (1 — g ) 3)
N\ 1
P(ailgiany) = (a‘) N (4)

These three research direction focus on predicting the
activity of the newly evolved viruses. A different direction
is the prediction of the rates of variation of the nucleotides
in the RNA sequences of successive generations of the
virus [31]. In this direction, models are introduced to ana-
lyze the historical patterns and variation mechanism of
the virus and detect the rates of variation of each point
substitution of its RNA sequence. These models are char-
acterized as either neighbor-dependent or non-dependent
variation.

The contribution in this paper focuses on the predic-
tion of the RNA sequence of newly evolved virus by
detecting the possible point mutations. The nucleotide
substitutions of the coding regions in this Newcastle virus
occurred frequently [32]. These substitutions and depen-
dency between nucleotides is captured to form a set of
rules that describes the evolution of the RNA virus.

2.2 The proposed algorithm and discussion

The focus of this paper is to analyze the changes and
mutations that occur after each generation of the virus.
This analysis is done through monitoring these changes
and detecting their patterns. The mutation of the RNA
viruses are characterized by high drug-resistance, how-
ever, these mutations can be predicted by applying
machine learning techniques in order to extract their rules
and patterns. The proposed algorithm here is applied on a
data set of aligned RNA sequences observed over a period
of time. This data was collected and presented in previous
research [17, 18], in which all animal procedures per-
formed were reviewed, approved, and supervised by the
Institutional Animal Care and Use Committee of Konkuk
University. This space of potential virus mutations pro-
vides a proper data set required for the computational
methods used in the algorithm. The preprocessing is
started by the alignment of RNA sequence for the purpose
of predicting the evolution of the virus based on the gath-
ered sequences. The steps performed are the mining and
learning the rules of the virus mutation, in order to pre-
dict the mutations to help creating new drugs. The input
data set is a set of aligned DNA sequences. The RNA iso-
lates are ordered from old to new according to the time
of getting the virus and isolating the RNA. The machine
learning techniques used in this step are neural networks,
and a proposed technique that is based on the rough set
theory. An important step in the proposed technique is
building the decision matrix required for rule extraction,
which is based on the idea that if the value of the attribute

Page 4 of 11

has no effect on describing the category of the object, then
this attribute can be excluded from the rule set [33]. An
important clarification is that every nucleotide in both the
neural networks and proposed technique act as the tar-
get class label required in the classification. These target
nucleotides will have one of four different genotype values
that will be predicted by the classifier.

The preprocessing step includes the feature selection
which is important in decreasing the processing cost by
the removal unnecessary nucleotides. These nucleotides
are those that do not change during the different genera-
tions of the virus, hence, they do not add any information
in the classification/prediction step. This is due to the fact
that not changing across RNA generations imply that they
have no effect on the mutated nucleotides. Hence, their
existence will have no effect, and will moreover deteri-
orate the net accuracy prediction result. Although this
step is important as a preprocessing step in the neu-
ral network methods, it can be avoided in the proposed
rough set based technique since the technique removes
the non-required nucleotides internally.

2.2.1 Neural network technique

Neural networks technique can be used to predict dif-
ferent mutations in RNA sequences. The first step of this
technique is to specify the structure of both the input and
output. The number of nodes in the input and in the out-
put of the neural networks is the four times the number of
nucleotides in the RNA sequence. Hence, each nucleotide
will be scaled to 4 binary bits, i.e., if the nucleotide is “A’,
then the corresponding bit will be 1. However, it is not
correct to transform the letters to numerals, for example
the nucleotide values of [A, C, G, T] to [0, 1, 2, 3]. The rea-
son being is that the distance between each nucleotide is
the same, while the distance between [0—3] is not the same
as that between [0—1]. The effect of this can be demon-
strated by the following example: when applying neural
networks to the numerically transformed sequence, the
results show unsuccessful results. This is because the
neural networks technique changes the values of the out-
put based on the nucleotide values. Hence, the backward
propagation in the case of moving from the value T to the
value A will not be the same as moving from T to G. This
is considered a mistake in the learning phase of the neural
network, and it will lead to incorrect classification and
prediction. The same case occurs when applying support
vector machine and Bayesian belief networks. The train-
ing of the neural network will occur first by considering
every scaled RNA segment s one training input to the
neural network. The desired output corresponding to the
input DNA segment is the next successive scaled RNA
segment from the next generation of the training data set.
As shown in Fig. 1, for every input/output sequence, the
weights are continuously updated until accuracy exceeds
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Fig. 1 The learning of the neural network from the input data set
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70 %. This accuracy is calculated according to the number
of correct predicted nucleotides to the total number of
nucleotides in the sequence. After the accuracy exceeds
70 %, the next input is the output DNA sequence in the
current step. The last RNA segment is left for testing.

The disadvantage in using a neural network tech-
nique or support vector machine is the scaling of each
nucleotide in the DNA sequence to four input states. This
scaling process increase the computational complexity of
the technique. On the other hand, the limited number of
input instances could negatively affect the accuracy of the
prediction process. Finally, the extraction of the rules in
this technique is not possible, and hence, the prediction
process is not feasible.

2.2.2 Rough set gene evolution (RSGE) proposed technique
This paper proposed a new algorithm for solving the evo-
lution prediction problem that is based on the input time
series data set. Each RNA sequence is mutated, i.e., evo-
lution passage, to the next RNA sequence in the data set,
as these sequences are sorted from old to recent dates.
For each iteration in this learning phase of this algorithm,
the input is an RNA sequence and the output is the next
RNA sequence in the data set. The learned output is not
the classification of the RNA virus; however, it is the
RNA virus after mutation. Because, techniques like sup-
port vector machine, neural networks, and Bayesian belief
networks have to deal with data in a numerical form, the
proposed technique deals with alphabetical and numerical
data in the same fashion.

The purpose of this technique is to infer the rules that
governs certain value [A, C, GorT] for each nucleotide.
At this point, the training applied will consider each
nucleotide as a target class of four values. The input
that leads to one of the values of the target class is
the sequence before the sequence containing the current

value of the target class. The machine learning algo-
rithm will learn what input will produce which output
accordingly. The rules learned from the used machine
learning algorithm will be used to predict the generated
nucleotide corresponding to the input. The rule will be
in the form of short sequences of nucleotides genotype
and location that govern the mutation of a nucleotide
from certain genotype to another. The number of iter-
ations will be the number of nucleotides in the RNA
sequence. After each iteration, the required rule for the
nucleotide x corresponding to the current iteration will be
extracted.

In each iteration, the algorithm detects the value of
nucleotide x in the sequence in the data set, as well as
the value of this same nucleotide in the next sequence x'.
The following step in the algorithm is the detection of
the values of all nucleotides in the preceding sequences
to the ones that include nucleotides x and «’. This step is
applied to detect the sequence of the previous nucleotide
values and leads to the value of the nucleotide under inves-
tigation. This is illustrated in Figs. 2 and 3. In Fig. 2,
the sequence [CGGGAT] precedes nucleotide x at posi-
tion i of value A, and the sequence [CTGAAC] precedes
nucleotide x’ at position i of value A. The nucleotide
x in the position i corresponding to the current itera-
tion does not change from sequence j + 1 to sequence
j + 2. In this case, if the nucleotides in the sequence pre-
ceding to the one corresponding to the nucleotide x do
not change, then these nucleotide values will be included
in the rule of nucleotide x, otherwise they will be com-
pletely excluded. Hence, for Fig. 2, the extracted rule
for the value A of the nucleotide at position i will be
[A:i,C:i+1,G:i+3,A:i+5]. Adifferent case is pre-
sented in Fig. 3, where the value of the nucleotide at
position i is changed from value A to value C. In this
case, if the nucleotides in the sequence preceding the one
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Fig. 2 Nucleotide i for iteration i in the proposed algorithm, nucleotide as position i is the same, not changed
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Fig. 3 Nucleotide i for iteration i in the proposed algorithm, nucleotide as position i is the not the same, changed
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Input: Data set of N RNA sequences ascending
ordered by time, each of K nucleotides, each
nucleotide is of the genotype values A, C, T or G

Output: Each nucleotide has four of rules, each rule is

an array of positions Pj, Py, .., P. If this rule

exists in a generation, then this implies what

is the genotype value of this nucleotide in the
next generation

forVx e K do

j €l[1.N]

i e[1.K]

x; is the genotype value of the nucleotide x at time i

Initialize the rule of the nucleotide x by the

genotype values in first RNA sequence, where j = 0

i.e. The rule of nucleotide « is initially as follows:

position 1 P, has genotype A, Pj,=A, P;;=C, P;, =T,

o Py =T

forj=2to N do

ifx; = xjy; then

fori=0to K do

if i # x then

if P, # Pj_1, then
Exclude the position P; from
the rule of the genotype x; of
the nucleotide x

end

end
end
end
if x; # xj11 then
fori=0to K do
if i # x then
iiji = Pj—l,' then
Exclude the position P; from
the rule of the genotype x; and
genotype x;;1 of the nucleotide
x
end

end
end

end

end

Nucleotide x has four arrays, each array contains a
set of positioned genotypes

end

return Maxg

Algorithm 1: The Rough Set Gene Evolution (RSGE)
training algorithm

corresponding to the nucleotide x changes, then these
nucleotide values will be included in the rule of nucleotide
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x, otherwise they will be completely excluded. Hence, for
Fig. 3, the extracted rule for the value C of the nucleotide
at positioniwillbe [A: i, T:i4+2,A:i+4,C:i+6].

The reason behind using this methodology in extract-
ing the rule is that for each iteration in this algorithm
is that two main cases are considered. The first case is
that the value of the iterated nucleotide corresponding to
this iteration does not change. In this case, if the neigh-
bor nucleotides to this iterated nucleotide do not change,
this will indicate that the values of the nucleotides are
attached and leads to the value of the iterated nucleotide.
If the neighbor nucleotides did change, then the varia-
tion of these values do not affect the iterated nucleotide,
and hence they can simply be removed from the extracted
rule. The second case is considered the opposite of the
previous one where the existed nucleotides in the RNA
sequence will cause the change of the genotype of a spe-
cific nucleotide in the following generation. In this case,
the extracted rule of the genotype at this nucleotide loca-
tion will include the set of neighbor nucleotides. While
the unchanged behavior of some nucleotides means their
unimportance or non-effect of changing the value of the of
iterated nucleotide. As shown in Algorithm 1, if the num-
ber of sequences is N, and the number of nucleotides is
K, the computational complexity of the calculations is as
follows:

AlgorithmComplexity = O(K*N*(2xK)) = O(N*K?)
(5)

3 Results

The analysis of RNA mutations requires the gathering
and preparing a set of aligned RNA sequences that go
through different mutations over a long period of time. A
set of time-series successive isolates of the Newcastle virus
RNA are collected from two different countries, China
and South Korea [17, 18]. The GenBank accession num-
bers of NDVs isolates recovered from live chicken markets
in Korea in year 2000 are AY630409.1-AY630436.1, and
from healthy domestic ducks on farms are EU547752.1-
EU547764.1. The total number of isolates for this data
set is 22, each isolate is of 200 nucleotide. While the
accession numbers of sequenced isolates extracted from
chicken in China in years from 2011 to 2012 are KJ184574-
KJ184600 [34]. The total number of isolates for this data
set is 45, each isolate is of 240 nucleotide. Each set of
isolates is listed and sorted according to the date of
extraction for time series analysis of the evolution of the
NDV virus. The experimental is applied only a partial F
gene sequence of NDV from the GenBank record. The
virus RNA sequences were monitored and collected ret-
rospectively at regular intervals from similar animal type.
The intervals between successive RNA sequences in the
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gi|285020447AGGAATTGTGGTHR
gi|255709963AGGRATTGTGGTHR
gi|354334674AGGAATTGTGGT]
gi| 409188140

gi|409188138
9i|411169868AGGAATTGTAGTH
gi|397870251RGGRATTGTGGTHR
9i|39787024SAGGAATTGTGGT]
gi|397870247RGGAATTGTGGT A
gi|397870243AGGAATTGTGGT]
gi| 587759630 AGGAATTGTAGTH
9i|599206547(GGGGATTGTAGTHA
gi|397B70241AGGA;TTGTGGT'* A
gi| 397870245 TGGRAATTGTGGT YA

gi| 62288835 | AGGGTCTGTGCGY

G.
gi| 397870238 AGGRAATTGTGGTY 1CAGG:—GACAAAGCCG"CP—ACH

CACCTCATCCCAGACAGGATCAAT
TACACCTCATCCCAGACAGGATC
TACACCTCATCCCAGACAGGATCA

GCTCCTCCCGAATCTGC
GCTCCTCCCGAACCTGC
GCTCCTCCCGAACCTGC
GCTCCTCCCAAACCTGC

GTTGCTCCCGAATATGC
GCTCCTCCCGAATCTGC

C
TACACCTCATCCCAGACAGGATC.
TA ‘CCTCGTCTCEG;CAGGGTCH GTTGCTCCCGAATATGC
GTTGCTCCCGAATATGC
GCTCCTCCCGAATCTGC
CCTCCTCCCGAATCCGC
GCTCCTTGGGGTCGCAR

TACGCCTCCGCCCAGAAAGGAACAATTATAGTTAAGCTCCTCCCGAATCTGC

Fig. 4 Aligned gene sequence of nucleotides

Chinese dataset is short relative to the Korean data set.
The difference between both types of intervals does not
affect neither the analysis process nor the accuracy of the
prediction. The extracted data examined for the Korean
and Chinese datasets are represented by two different
regions of viral genome with the different lengths (200 and
240). It is important to clarify that the two input data sets
can not be merged because each input set of segments are
aligned separately. So it is impossible here to apply predic-
tion performance of the proposed models on the Chinese
dataset using the Korean dataset for training.

Figure 4 shows a segment of these aligned RNA
sequence, in which, we select only the columns that
contain missing values. It is clear in this figure that
some nucleotides columns are passing through mutation
along the time period under examination, while the other
nucleotides do not witness any change during it. Apply-
ing any machine learning technique is composed of two
main steps, the first is the training of the first part of
the input data set, while the second step is using the
rest of the data for testing. The classification accuracy
percentage is the ration of correctly predicted nucleotide
divided to the total number of nucleotides in the
sequence.

The Chinese data set shows 33 % of the total number of
nucleotides have been mutated, and this percentage in the
Korean is 43 %. The rate of genome mutations over the
time period applied shows variable number mutations.

3.1 Neural network (NN) results

In order to apply NN to the aligned time series RNA
sequences, only a part of the sequence will be consid-
ered. The partial training of the RNA sequence is applied
to ensure a reasonable training execution time. Applying
neural networks to this number of target class labels will
lead to a very high processing complexity. The training
phase contains only 20 nucleotides, where each nucleotide
will be scaled to only four input nodes. This will lead to
a data set of 80 input nodes and 80 output nodes. For the
Korean input data set, the in-out for the training is the first
20 out of 22 instances. The target 20 output instances for
these 20 input instances started from the second instance
in the input data set and ends at the 21% instance. The
testing will have the 215 RNA sequence as the input to the
neural networks and the 22”¢ RNA sequence as the tar-
get output. The results show that after 3743901 learning
cycles of back-forth propagation, the validation accuracy
reaches 70 % percent as shown in Fig. 5.

Training Error Maximum Average

1.0000
0.9000
0.8000
0.7000
0.6000
0.5000
0.4000
0.3000
0.2000

0.1000

LY T TR R P NGRS TR,

Minimum Validating error

274 585

Fig. 5 Neural network classification results

3560 10600 31400 124000 590000 3743901

Learning Cycles
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Table 1 AB genotype rules for the Chinese data set

Page 9 of 11

Nucleotide Predicted Rule Nsequence

position genotype

N33 T N37=C CCCCCCCCCCCcrrecccrrecccrcceeccceccccccecceccc

Nag T Nagz=T GGTGGGTGGGGAGGAGGGGGGGGAGGAAAAAAAAAAGAAAGAA

Ns3 G N33=C GGGGGEGEEEEEGEEEEEGEEEEEEEEEEGETEGEEEEEEEEGEEEEGE
T N33=T

Neg @ N33=T GGGGGEGEEEGEEGEEEEEGEEEEEEEGEEEELEEEEGEEEEEGEEEEGE

N33=C
Nige G N3g=A AAAGGAAAAAAAAAAGAACAAAAAAAAAAAAAAAAAAAAAAAAA

3.2 Rough set gene evolution (RSGE) results

The validation of the proposed rough set gene evolu-
tion (RSGE) is achieved through testing the total number
of nucleotides. For the Korean input data set where the
total number of nucleotides is 200, the number of correct
nucleotide matches is 148, which is considered 74 % clas-
sification accuracy percentage. Also, only four nucleotides
have shown incorrect matches, which corresponds to
2 % out of all nucleotides. 48 nucleotides have shown no
matching results, which indicates that none of the four
rules of each of these nucleotides is applied. These results
show the predicted and actual target RNA sequence of
nucleotides.

For Korea Data Set Newcastle disease virus strain Kr-
XX/YY [1982-2012]:

e Actual : ATGGGTTCCAAATCTTCTACCAG
e Predicted : ATGGGNNCCANANCTTCTACCAN

For the Chinese input data set where the total number
of nucleotides is 240, the number of correct nucleotide
matches is 180, which corresponds to 75 % classifica-
tion accuracy. Also, only four nucleotides, i.e., 1.6 %,
have shown incorrect matches. And, 56 nucleotides have
shown no matching results, which indicates that non of
the four rules of each of these nucleotides is applied. The

Fig. 6 Nucleotides correlation in China data set

results for the China Data Set Newcastle disease virus
isolate JS XX XX Ch [2011-2012] is:

e Actual : ATGGGCTCCAAACCTTCTACCAG
e Predicted : TGGGCTCCAAACNTTCTACCNG

4 Discussion
A sample of the generated rules is figured as follows:

e Tor Nucleotide P131:

— If Genotype is A then P47=C, P57=A
— If Genotype is G then P23=A

e Tor Nucleotide P101:

— If Genotype is C then P6=T, P118=C
— If Genotype is T then P6=G, P118=A

This sample is composed of two base nucleotides only
in the RNA sequence, which are 131 and 101. The first
rule shows that the nucleotide at position 131 will take
the genotype value “A” in the following generation if
the nucleotide at position 47 in the current generation
is 'C’ and the one at position 57 is of type “A” These
rules show the existence of a correlation between the
three nucleotides, i.e., those at positions [131, 47, and
57], in the first rule and [101, 6 and 118]. The geno-
type values of some specific nucleotides could affect the

Fig. 7 Nucleotides correlation in Korean data set
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76%

74%

72%

68%

66%

Classification accuracy
3

Korean Data Set

Fig. 8 Prediction accuracy for Korean and Chinese data sets

Prediction accuracy of NN and RGSE

E NN
@ RSGE

Chinese Data Set

alteration/mutation of the RNA sequence. The input Chi-
nese and Korean data sets contain different genotypes,
AA, AB, and BB. The nucleotides of the genotypes that
have the value AA and BB can be excluded from the
resulted rule set. These genotypes need not to be pre-
dicted as the values are the same over all the generations.
Table 1 shows the extracted rule sets of China coun-
tries for the AB nucleotides only. On the other hand, a
similar table of rules is generated for the Korean data
set.

Finally, the correlation between the nucleotides can be
visualized after extracting the prediction rules from the
RSGE technique. This form of exploring the effect of
nucleotides on one another can provide a better under-
standing of the mutation mechanism existing in the virus’s
RNA. An example of this correlation visual is shown in
Fig. 6. In this figure, when the genotype of the nucleotide
at position N37 is C, the genotype of the nucleotide at posi-
tion N33 is T. And when the genotype of the nucleotide at
position N33 is T, the genotype of the nucleotides at posi-
tions Ns3 and Ngg are T and G respectively. The is applied
on the rules generated for the Korean data set as shown in
Fig. 7.

4.1 NN vs.RSGE

Figure 8 demonstrates a comparison between the results
of using neural networks versus the proposed rough set
gene evolution prediction techniques in the classifica-
tion of both the Chinese and Korean data sets. The
results show a good performance of the RSGE in com-
parison to NN. As the data set increase, the preprocess-
ing increases, and hence, the computational complexity

of the neural networks and increases the classification
accuracy decreases. On the other hand, the error in
the classification using the RSGE proposed technique is
approximately 2 % in 77 % of the sequence. The rest 23 %
could not be predicted by the technique and were replaced
by the genotype in the previous generation.

5 Conclusions

The contribution of machine learning techniques in the
RNA mutation was limited to the prediction of the activ-
ity of the virus of resulted RNA. This work paves the
way to a new horizon where the prediction of the muta-
tions, such as virus evolution, is possible. It can assist the
designing of new drugs for possible drug-resistant strains
of the virus before a possible outbreak. Also it can help
in devising diagnostics for the early detection of cancer
and possibly for the early start-of-treatment. This work
studies the correlation between the nucleotides in RNA
including the effect of each nucleotide in chaining the
genotypes of other nucleotides. These rules of these cor-
relations are explored and visualized for the prediction of
the mutations that may appear in the following genera-
tions. The prediction rules are extracted by a proposed
technique based on RSGE, and is trained by two data sets
extracted from two different countries. This work proves
the existence of a correlation between the mutation of
nucleotides, and successfully predicts the nucleotides in
the next generation in the testing parts of two used data
sets with a success rate of 75 %. On the other hand, the
proposed rough set (RSGE) based technique shows a bet-
ter prediction result than the neural networks technique,
and moreover, it extract the rules used in the prediction.
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