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Recent studies have reported the pathological effect of ICOS+ T cells, but ICOS signals
also widely participate in anti-inflammatory responses, particularly ICOS+ regulatory
T (Treg) cells. The ICOS signaling pathway endows Tregs with increased generation,
proliferation, and survival abilities. Furthermore, there is enough evidence to suggest a
superior capacity of ICOS+ Tregs, which is partly attributable to IL-10 induced by ICOS,
yet the associated mechanism needs further investigation. In this review, we discuss
the complicated role of ICOS+ Tregs in several classical autoimmune diseases, allergic
diseases, and cancers and investigate the related therapeutic applications in these
diseases. Moreover, we identify ICOS as a potential biomarker for disease treatment
and prognostic prediction. In addition, we believe that anti-ICOS/ICOSL monoclonal
antibodies exhibit excellent clinical application potential. A thorough understanding of
the effect of ICOS+ Tregs and the holistic role of ICOS toward the immune system will
help to improve the therapeutic schedule of diseases.
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INTRODUCTION

Inducible T-cell costimulator (ICOS) is a homodimeric protein with a molecular weight of
approximately 55∼60 kD that was originally discovered on the surface of T cells upon T-cell
receptor (TCR) stimulation in 1999 (1). As the third member of the CD28 super family, the
structure and function of ICOS have many similarities with CD28 despite some differences, with the
major difference being that ICOS cannot be constitutively expressed on resting T cells. Exhibiting
no binding with B7-1/B7-2, ICOS has a unique ligand, ICOSL, which is expressed on the surface
of many antigen presenting cells (APCs), such as B cells, dendritic cells (DCs), macrophages, and
other cell types from non-lymphoid tissue, including fibroblasts, endothelial cells and epithelial
cells (2). Intriguingly, ICOSL has also been detected on a small subset of T cells, accounting for
5% of CD3+ T cells, although the details regarding this population remain unknown (3). Recently,
many researchers have investigated the distribution of ICOS on T cells, and the expression of ICOS
on Th1, Th2, Th17, T follicular helper (Tfh) cells, T follicular regulatory (Tfr) cells, Tregs, type 1
regulatory T (Tr1) cells, and innate lymphoid cells (ILCs) have been successively reported, showing
its indispensable role in immune responses (4–6). Taking into consideration the complexity of ICOS
distribution on T cell subsets and its diverse effect toward each subset, the role of ICOS in various
diseases can hardly be summarized in one word. The overexpression of ICOS could either lead
to Th1 or Th2 dependent immune responses, among which regulatory T cells are an important
counterbalance in the inflammatory state (7).
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First in mice (8) and then in humans (9), researchers
discovered a correlation between the highest level of ICOS on
CD4+ T cells with the generation of the anti-inflammatory
cytokine IL-10, demonstrating the central role of ICOS in the
differentiation and function of FOXP3+ Tregs. Subsequently,
numerous studies have been published to elucidate the role of
ICOS+ Tregs in homeostasis and different disease conditions.
Herein, we describe the phenotype and function of ICOS+
Tregs and summarize ICOS-associated signaling pathways of
Tregs and their relationship with two important cytokines, IL-
2 and IL-10. We also compare ICOS signal transduction with
CD28- and CTLA-4-mediated signaling pathways, and describe
their synergetic effect on anti-inflammation. In addition, we
highlight the crucial role of ICOS+ Tregs in various immune
diseases and outline its diagnostic and therapeutic effect in
autoimmune responses.

ICOS AND Tregs

Origin and Phenotype of ICOS+ Tregs
In homeostasis, ICOS+ T cells only account for a small
subset of CD4+ T cells in peripheral blood, while they
are particularly enriched in FOXP3+ Tregs, accounting for
approximately 20% of Tregs, with most ICOS+ Tregs being
CXCR3+ or CXCR3−CCR6+CCR10−, defined as Th1-like or
Th17-like Tregs, respectively (10). The much higher proportion
of CD4+ICOS+ Tregs among CD4+ Tregs than that of
CD4+ICOS+ T cells among CD4+ T cells begs a question: where
do these ICOS+ Tregs come from? During the development of
thymocytes, only T cells with high-affinity TCR evolve into Tregs,
and combined with the consideration that the recognition of
antigens with TCR is a prerequisite for the induced expression
of ICOS, it was supposed that the increased proportion of ICOS
in Tregs was partly induced by these self-antigens presented
by medullary thymic epithelial cells (mTECs). This opinion has
been put forward by Ito et al. (2008), who observed that both
ICOS+ and ICOS− Tregs existed in both newborn thymus and
cord blood, and 50% of the ICOS+ Tregs from cord blood
expressed CD31, suggesting it contains recent thymic emigrants
(9). In addition, mTECs can induce IL-2 overproduction by
CD4+CD25− T cells via ICOSL to promote Treg proliferation,
providing additional evidence for the existence of ICOS+ Tregs
in the thymus (11). However, almost all of these ICOS+ Tregs
in adult blood were CD45RO+, contrasting with the phenotype
of ICOS− Tregs, which still included some CD45RA+ Tregs,
and ICOS+ Tregs in cord blood, which expressed high levels
of CD45RA (9). This phenomenon suggested that most of the
ICOS+ Tregs in adult blood are actually effector/memory Treg
cells. Similarly, although ICOS is expressed in small amounts
in CD44loCD62Lhi cTregs, ICOS is highly expressed in murine
splenic CD44hiCD62Llo eTregs (12). Most of these eTregs are
Helios-positive, indicating they are mostly derived from the
thymus (12). Moreover, Nicolas and colleagues have observed
the expansion of ICOS+ Tregs from the pool of naturally
occurring Tregs (nTregs) after 2,4-dinitrofluorobenzene (DNFB)
sensitization in mice and ICOS+ Tregs being generated from

ICOS− precursors (13). In addition, using T cell adoptive transfer
experiments, they did not observe a generation of adaptive
Tregs (aTregs) with ICOS expression from FOXP3− T cells
after DNFB sensitization (13). However, by eliminating thymus-
derived Treg (tTreg, also known as nTreg) development using
Rag1−/− mice, Ashley et al. have demonstrated that ICOS
deficiency can reduce the accumulation of peripherally induced
Tregs (pTregs, also known as aTregs) in the large intestine,
indicating an important role of ICOS for the generation of pTregs
under steady state conditions (14). Therefore, ICOS+ Tregs can
be generated from both the thymus and peripheral tissues, which
can be expanded rapidly or transformed from ICOS− nTregs
after antigen stimulation. Additionally, we suspect that the higher
ICOS expression levels in Tregs than in other CD4+ T cell subsets
could be beneficial for the maintenance of immune homeostasis,
as the superior suppressive ability of ICOS+ Tregs could make
them more efficient and capable of preventing the human body
from producing overactive inflammatory responses to daily low-
dose harmless antigenic stimulation.

Recently, various studies have investigated the phenotype
of ICOS+ Tregs in diverse diseases or in the steady state.
In general, Tregs with ICOS expression also coexpress many
immunosuppressive receptors, such as CTLA-4, PD-1, TIGIT,
and Lag3, and exhibit a higher secretion of IL-10, providing
them with superior suppressive potential (13, 15). However, it
is not clear if ICOS expression or signaling accounts for these
observations. The co-expression of these molecules may be a
reflection of the fact that they are both highly expressed by
eTregs. ICOS, as a co-stimulatory molecule, does not have a
direct inhibitory function per se. Whether the ICOS signaling
could influence the expression of other co-inhibitory molecules
needs further exploration, and some of the relationships between
ICOS and CTLA-4 or IL-10 are discussed below (in section
“ICOS and CTLA-4” and section “The Role of ICOS Signaling
in Tregs,” respectively).

Furthermore, ICOS+ Tregs also upregulate many genes
associated with TCR stimulation and appear to be more
proliferative. Some transcription factors that are usually
associated with T helper cell differentiation have been observed
to participate in the biology of eTregs and to be associate
with ICOS expression. For example, B lymphocyte induced
maturation protein 1 (Blimp1), which regulates eTregs activation
and tissue homeostasis, is required for IL-10 production and
ICOS expression (16). Interferon regulatory factor 4 (IRF4),
one molecule expressed in both Th2 cells and Tregs, was
demonstrated to be essential for Tregs to suppress Th2 responses
and was further shown to be required in type 1 inflammatory
conditions due to its role in the effector Treg differentiation
(16, 17). Irf4−/− Tregs show impaired CD62L downregulation
and loss ICOS expression in the mixed chimeric mice generated
with WT and Irf4−/− bone morrow (16). Furthermore, JunB,
an important AP-1 factor, has also been observed to promote
ICOS expression in basic leucine zipper transcription factor
ATF-like (BATF)-dependent and BATF-independent manners
in murine eTregs (18). By chromatin immunoprecipitation
(ChIP)-sequencing analysis, Koizumi et al. have demonstrated
that JunB can facilitate DNA-binding of IRF4 at sites located
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near Icos (18). In addition, NF-κB also plays an essential role
in Treg identity and function, among which two canonical
subunits are c-Rel and RelA (p65). NF-κB c-Rel is critical
for thymic Treg development, and it was also shown to be
important for the function of activated Tregs, as a number of
genes associated with homeostasis and function of aTregs were
dramatically downregulated in c-Rel-deficient Tregs, whereas
RelA (p65) mediates the development, survival, and function of
eTregs (19–21). RelA-deficient Tregs were observed to show a
significant reduction in the expression of eTreg signature genes,
such as Icos, Tigit, and Il10, which share some similarities with
IRF-4-deficient Tregs (21). However, RelA acts independently
of IRF4 in the regulation of eTreg development and function.
TNFRSF signaling, particularly GITR or TNF signaling, was
demonstrated to activate RelA independent of TCR signals,
thereby regulating Treg cell function (21).

In addition, it is intriguing that, regardless of IL-10, a
small but significant subgroup of ICOS+ Tregs were shown
to produce IFN-γ and IL-17 as well as the corresponding
specific transcription factors T-bet and RORγt in normal human
peripheral blood and in draining lymph nodes of DNFB-
sensitized mice (10, 13). Thus, although most studies have
defined ICOS+ Tregs as a subset of activated Tregs with high
suppressive function, we still have some reservations regarding
these IL-17 or IFN-γ producing Treg cells. One reason is that
the identification of Tregs based on CD25 and FOXP3 expression
cannot guarantee that all the identified cells are real Tregs. It
is inevitable that a small group of activated effector T cells
are included in CD25+FOXP3+ T cells, (22, 23) which could
be IL-17 or IFN-γ positive, and this proportion could be even
higher in inflammatory environment. Another reason is that
the stability and function of IL-17 or IFN-γ producing Tregs
remain unelucidated.

Recently, a series of studies have been done to investigate
the specific identities of T-bet+/RORγt+ Tregs or IFN-γ+/IL-
17+ Tregs in homeostasis and various disease conditions. T-bet+
Tregs have been demonstrated to be detectable in the steady state
and show an increased frequency and absolute number during
type 1 immune responses, thereby playing an important role
in the maintenance of Treg homeostasis in the inflammatory
environment (24, 25). Although T-bet+ Tregs could not represent
a stable Treg subset in the steady state, as the expression of T-bet
in Tregs can be easily influenced by cytokine environment in vitro
and in vivo, thus displaying a highly dynamic pattern, (25) T-bet+
Tregs were shown to be necessary and capable of restraining the
proinflammatory role of pathological T cells (26). Remarkably,
only a small proportion of FOXP3+T-bet+ cells are IFN-γ-
positive in the steady state (24). Similarly, RORγt+ Tregs can
also be detected in lymphoid and non-lymphoid tissues of mice
in the steady state (27). In particular, significantly higher RORγt
expression was observed in colonic Tregs, which is probably
induced by symbiotic microbiota (27–29). These colonic RORγt+
Tregs display a CD44hiCD62Llo eTreg phenotype with absent
expression of Helios or Nrp-1 and a low degree of demethylation
in Ikzf2 (Helios) site, indicating that they are derived from
pTregs (27–29). Additionally, these colonic RORγt+ Tregs were
shown to be relative stable, although they were observed to loss

FOXP3 expression slightly higher than FOXP3+ Tregs when
transferred to lymphopenic mice together with naïve T cells, and
to be necessary to maintain colonic homeostasis, displaying a
superior regulatory capacity to prevent colitis (27). Moreover,
these colonic RORγt+ Tregs express IL-10 but few IL-17+ cells
even in inflamed colon (27, 28).

However, consistent with the idea that strong self-antigen
stimulation could promote the loss of FOXP3 expression in
Tregs, thus favoring ex-Treg formation in inflammatory setting,
(30) a large number of transferred CBir1-specific FOXP3+ Tregs
in TCRβxδ−/− mice that were induced in vitro by culturing naïve
CD4+ T cells in the presence of TGF-β lost FOXP3 expression
and converted to IFN-γ+/IL-17+ T cells, and a fraction of
transferred cells obtained IL-17+/IFN-γ+ Treg phenotype (31).
This phenomenon could also be partly explained by their use
of in vitro induced Tregs (iTregs) in the experiments, as iTregs
are less stable than tTregs to maintain FOXP3 expression due
to conserved non-coding DNA sequence (CNS) 2 CpG island
hypermethylation (32). Additionally, although these CBir1-
specific Foxp3+IFN-γ+ T cells retained suppressive ability, it was
observed that these FOXP3+IFN-γ+ T cells can differentiate into
IFN-γ+ T cells ultimately (31). Similarly, CD4+FOXP3+IL-17A+
T cells in the dermis of lesional skin and an enhanced propensity
of purified peripheral blood Tregs to convert to IL-17A+ T cells
after ex vivo stimulation compared with healthy individuals have
been shown in severe psoriatic patients (33). Therefore, it is
hard to say whether the stability and the inhibitory capacity of
ICOS+IFN-γ+/IL-17+ Tregs that are observed in both the steady
state and inflammatory condition are still retained. Activated
eTregs have been shown to be less stable than cTregs to maintain
FOXP3 expression and ICOS-induced higher PI3K signaling also
contributes to this instability (34, 35). The stability and function
of these specific ICOS+ Tregs need further detailed inspection.

The Role of ICOS Signaling in Tregs
According to various studies, ICOS is generally involved in
the production, proliferation and survival of Tregs, providing
them a strong suppressive capability, which we will discuss
separately below.

First, ICOS can mediate the generation of FOXP3+ Tregs.
Compared with healthy individuals, CD4+CD25− T cells from
a small subset of common variable immunodeficiency (CVID)
patients who have a homozygous genomic deletion of ICOS
cannot induce anergic T cells with immature myeloid DCs, (36)
which are involved in maintaining peripheral tolerance by the
induction of Tregs (37). Furthermore, the ablation of ICOS in
unmanipulated mice was shown to result in a reduced number
of FOXP3+ Tregs compared to that observed in WT mice (38,
39). Blockage of ICOS-ICOSL ligation when culturing human
naïve CD4+ T cells with CD40-activated B cells in vitro was
also shown to decrease FOXP3 levels, thereby impairing the
generation of FOXP3+ Tregs (40). These phenomena confirm
the importance of ICOS for the transcriptional activity of Foxp3,
which could be illustrated by favoring the combination of nuclear
factor of activated T cells (NFAT) to FOXP3 over NFAT to
activator protein 1 (AP-1) (41). In addition, ICOS-deficient Treg
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cells showing Foxp3 instability due to significant methylation of
Foxp3 CNS2 may be another reason for the reduction of Tregs
(14). However, the reduced frequency of FOXP3+ Tregs in the
periphery should not be attributed to the dysfunction of the
thymus, as Icos−/− mice exhibit a similar percentage of FOXP3+
T cells in the thymus compared with WT mice (38). In contrast,
by analyzing TCR excision circles, a significant increase in the
thymic output of Tregs was detected in Icos−/− mice compared
with that observed in WT mice (14).

Second, the ICOS signal aids in promoting the proliferation
of Tregs. The superior proliferative capacity of ICOS+ Tregs
has been confirmed by a higher Ki-67 expression expressed
on these cells (42, 43). ICOSL expressed on plasmacytoid
DCs was demonstrated to preferentially promote ICOS+ Treg
proliferation by engaging with ICOS on Tregs in vitro (9).
When immunizing Icosl−/−mice with endotoxin-free ovalbumin
(OVA), which is known to facilitate Treg proliferation, the
proportion of FOXP3+ antigen-specific Tregs was significantly
lower than that observed in WT mice, suggesting a great
effect for ICOS co-stimulation in the expansion of Tregs (38).
Likewise, a delayed and insufficient Treg expansion was also
observed in C57BL/6 Icos−/− mice during helminth infection
(44). Nevertheless, the results of assays using BrdU to track T
cell proliferation indicated that no difference in BrdU uptake was
observed in FOXP3+ Tregs from Icos−/− mice upon infection
compared with that observed in WT mice. The deficiency of
Tregs could result from the enhanced apoptosis of Icos−/− Tregs
(44). From this perspective, the auxo-action of ICOS to Treg
proliferation and survival is hard to clearly measure.

Indeed, ICOS signaling is highly involved in the survival of
Tregs. When murine CFSE-labeled Tregs were stimulated with
anti-CD3 antibody for 2 days, ICOS− Tregs died within the
few hours after TCR stimulation, while ICOS+ Tregs became
hyperproliferative, suggesting a death tendency of Tregs with
absent ICOS expression (43). Furthermore, during the in vitro
stimulation culture in the presence of IL-2, purified mouse
ICOS+ Tregs from lymph node and spleen expressed a higher
level of Bcl-2, an anti-apoptotic molecule belonging to the Bcl-2
super family, than ICOS− Tregs (42). But the higher expression
of Bcl-2 in ICOS+ Tregs could also be partly explained by
the addition of IL-2, as Bcl-2 is known to be sensitive to IL-
2 stimulation, and ICOS− Tregs do not respond to IL-2 like
ICOS+ Tregs and therefore do not upregulate Bcl-2 expression
(42). Indeed, CD44hiCD62Llo eTregs that express high levels of
ICOS exhibit low Bcl-2 expression under steady state conditions,
and these Bcl-2lo eTregs were observed to be selectively lost after
2 weeks of ICOSL blockage in WT mice, indicating an important
anti-apoptotic role of ICOS signaling in promoting Bcl-2lo eTregs
survival (12).

However, Bcl-2 is not exclusively important for Treg survival.
There are many other molecules belonging to the Bcl-2 family
involved in the regulation of Treg survival, especially Bim and
Mcl-1. Chougnet et al. reported that Tregs accumulation in
aged mice could be attributed to the increased survival due to
decreased expression of Bim in Tregs, while neither Bcl-2 nor
Mcl-1 contributes to the increased survival in old Tregs (45). It
was demonstrated further that the reduced Bim expression in

Tregs mainly promotes effector, but not central, Tregs accrual, as
the accumulated Tregs in aged mice are mainly CD44hiCD62Llo

eTregs, and Treg-specific or germline deletion of Bim cannot
rescue the decreased number of cTregs with age in mice (46).
Moreover, Mcl-1, but not other anti-apoptotic proteins including
Bcl-xl and Bcl-2, has been demonstrated to be particularly
important for the survival of Tregs to maintain homeostasis (47).

These two essential proteins have also been shown to be
included in ICOS-mediated survival signals. By comparing the
expression levels of ICOS on Tregs in mice of different ages,
Raynor et al. showed a coordinating increase in ICOS expression
with the age-dependent accrual of regulatory T cells in old
mice and indicated an effect of ICOS/ICOSL interaction on
Tregs homeostasis, which is mediated by antagonizing Bim in
eTregs (46). The increased levels of IL-6 that occurs with age
enhanced TCR-driven ICOS expression, thereby attenuating Bim
expression and sustaining aged effector Tregs survival, possibly
though PI3K/Akt/FOXO pathway (46). Moreover, ICOS-ICOSL
interaction could yield the recruitment of PI3K components,
leading to cross activation of the PI3K-Akt downstream signals,
which was previously suggested to mediate anti-apoptotic effects.
For instance, blocking p110δ with the selective inhibitor CAL-
101 can lead to sufficient GSK-3β activation, resulting in the
degradation of the anti-apoptotic protein Mcl-1 and effectively
impeding Tregs survival (48). In summary, ICOS signaling can
mediate Treg survival by fine-tuning the expression of multiple
anti-apoptotic and pro-apoptotic molecules of Bcl-2 family.

In addition, one cytokine that is worth mentioning is IL-2,
which is also regarded as being essential for the expansion and
survival of Tregs. IL-2 signaling was shown to induce FOXP3
expression during the Treg development in the thymus and was
observed to be widely involved in Treg differentiation, lineage
stability, proliferation, and function (49). Phosphorylation of
STAT5 could be an important hallmark for the activation of the
IL-2 signals. It was demonstrated that pSTAT5+ Tregs exist as
discrete clusters in secondary lymphoid tissues of mice with IL-
2-producing proto-effector T cells and DCs to exert suppressive
functions, making effects to maintain immune homeostasis (50).
Moreover, some survival factors that can be regulated by ICOS
have also been observed to be regulated by IL-2. For example,
IL-2 addition can increase Mcl-1 expression in vitro and in vivo
(47). Here, we would like to discuss the effect of IL-2 to ICOS+
Tregs and the non-redundant role of IL-2 and ICOS signaling
in Treg biology.

As is reported by Kornete et al., the effect of IL-2 to ICOS+
Tregs is much more than the superficial cognition that it
promotes Tregs expansion, IL-2 gives a functional fitness to
ICOS+ Tregs (42). In other words, ICOS+ Tregs are more
sensitive to IL-2 stimulation and more dependent on IL-2 to
maintain their survival than ICOS− Tregs. They observed a
higher responsiveness to IL-2 in ICOS+ Tregs, as a fold increase
of surface marker CD25, a high-affinity IL-2 receptor component,
and STAT5 phosphorylation were detected in ICOS+ Tregs when
culturing Tregs from BCD2.5 Foxp3GFP mice with APCs (42).
Furthermore, the withdrawal of IL-2 led to an apoptotic tendency
of ICOS+ Tregs during the culturing of separated ICOS+ Tregs
and ICOS− Tregs, which could be rescued by re-adding IL-2 (42).
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This result was not only observed in mice, but has also been
reproduced in human cells, indicating an important role of IL-2
in the survival of ICOS+ Tregs in vitro (9).

However, it should be noted that ICOS may promote Treg
proliferation or survival independently of IL-2 signaling in vivo.
On one hand, the ablation of ICOS was observed to reduce the
inhibitory function of Tregs without affecting their reactivity to
IL-2, as Icos−/− BDC2.5 Tregs exhibited no difference with WT
Tregs in their intrinsic responses to IL-2, (42) and transferring
OT-II T cells into Icosl−/− mice did not affect IL-2 production
by these T cells (38). On the other hand, the results of a study
using C57BL/6 mouse model have indicated that blockage of IL-
2 signaling results in significant loss of CD44loCD62LhiCCR7hi

cTregs without significantly impacting the number or the
proportion of CD44hiCD62LloCCR7lo eTregs, which express
high levels of ICOS, in the lymphoid or non-lymphoid tissues
(12). Moreover, although a great increase of CD25 expression
was observed in ICOS+ Treg after IL-2 stimulation in vitro,
eTregs express a lower level of CD25 and less depend on IL-
2 than cTregs for their maintenance in vivo (12). The signaling
switch from IL-2 to ICOS in eTregs is probably due to the unique
environment where eTregs are located, as they mostly populate
in peripheral tissues, in which IL-2 is not prevalent, whereas
cTregs are continuously circulating between lymphoid tissues
and blood and could easily gain access to IL-2 in the T cell
zones of secondary lymphoid organs (12). In addition, Zhang
et al. further demonstrated that this signaling switch in eTregs
can cause FOXP3 instability, consistent with the opinion that a
small fraction of activated Tregs could loss FOXP3 expression
and transform into Th cells under disease conditions (34).

Last but not least, ICOS endows Tregs with a stronger
suppressive function. Recent many studies have shown the
significance of the ICOS-ICOSL signaling pathway for the self-
tolerance mediated by Tregs. Icos−/− mice, which fail to develop
respiratory tolerance induced by intranasal Ag application,
display no significantly increase in splenic and lung-resident
CD4+FOXP3+ Tregs after being immunized with OVA and a
decreased ability to secrete IL-10 compared with that observed
in WT mice (39). Similarly, ICOS+ Tregs were suggested
as a dominant Treg subset to prevent NOD mice from the
development of diabetes, and a drastic reduction in ICOS
expression on pancreatic Tregs was observed as NOD mice
progressed from prediabetic stage to overt diabetes (42).

The stronger inhibitory ability of ICOS+ Tregs than ICOS−
Tregs was partly relies on the higher expression levels of IL-
10. Indeed, as early as in 2003, Löhning et al. observed that
ICOShigh T cells were closely correlated with the expression of
IL-10 (8). Soon afterward, ICOS-dependent IL-10 production
was demonstrated to be indispensable for the acquisition of
the suppressive ability of T cells generated in DO × OVAhigh

mice, which presented a self-tolerance phenotype with low
numbers of T cells and a reduced proliferative ability compared
to DO × OVAlow mice, owning to the largely generated IL-10-
producing CD4+ T cells (51). Furthermore, ICOS+ Tregs and
ICOS− Tregs were shown to exert inhibitory function through
different molecular mechanisms. ICOS+ Tregs produce higher
amount of IL-10 but lower level of TGF-β than ICOS− Tregs.

By adding a neutralizing antibody against IL-10 or blocking
TGF-β signaling with a pharmacological inhibitor when culturing
ICOS+ or ICOS− Tregs with naïve T cells in vitro, the inhibitory
function ICOS+ Tregs was shown to be mediated through both
IL-10 and membrane TGF-β (mTGF-β), whereas ICOS− Tregs
only used mTGF-β in the cell-cell contact dependent manner (9).

However, although some studies suggested a correlation
between ICOS expression and IL-10 secretion, other researchers
observed no reduction of IL-10 production when ICOS ligation
was blocked. For example, ICOS deficiency resulted in a large
reduction in FOXP3+ Tregs in the spleen and colonic lamina
propria but a similar level of IL-10 expression relative to that
observed in Icos+/+ mice (14). In addition, IL-10 was shown
to be unnecessary for ICOS-mediated suppressive function in
some cases. The intranasal application of Protollin inhibited
allergen-induced airway hyperresponsiveness (AHR) through
toll-like receptor (TLR) 4 dependent ICOS+ Tregs induction
(52). However, IL-10 was demonstrated to be dispensable
for its inhibition of experimental asthma, although increased
Il10 mRNA could be detected in nasal associated lymphoid
tissue (NALT) harvested from mice 14 days after Protollin
administration (52). These conditions not only indicate the
possibility that there are other IL-10-producing CD4+FOXP3−
T cells that can compensate the reduced secretion of IL-10
induced by ICOS signaling in its absence, more importantly,
there are also other ways for ICOS to mediate the inhibitory
function of Tregs. In other words, the part of ICOS signaling
that mediates the suppressive function of Tregs incompletely
overlaps with the IL-10 signals. As an example, blockage of IL-
10R or ICOSL was observed to cause divergent outcomes to
mice with chronic toxoplasma gondii infection (53). Treatment
with anti-IL-10R blocking Ab increased CD4+FOXP3− effector T
cell expansion, activated APCs, recruited numerous neutrophils
to the brain and led to an eventually fatal immunopathology,
whereas blocking ICOS signaling only resulted in a non-lethal
expansion of T cells without limited IL-10 expression or APC
activation (53). Additionally, IL-10-deficient mice develop more
severe disease than Icos−/− mice (38, 54). Although B and T
lymphocytes are generated normally in both knockout mice,
germline deficiency for Il10 leads to development of chronic
enterocolitis spontaneously, whereas Icos ablation does not (38,
54). Using Treg-specific IL-10 knockout mice, it was further
shown that Treg-derived IL-10 production can help to keep
immune responses in check at mucosal interfaces (55).

At present, the mechanism underlying the ICOS-associated
suppressive function of Tregs is still unclear. For one thing,
it remains confusing how the downstream pathways of ICOS
ligation induce Il10 transcription. Recently, the results of many
studies have confirmed the correlation between the increased
expression of ICOS and the overexpression of CTLA-4, GITR,
lag3, TIGIT, and CD69 on Tregs, (9, 15, 56, 57) and some
of these upregulated markers have been shown to be involved
in exerting the suppressive function of Tregs through IL-10
induction (Figure 1) (58, 59). For example, CD69+ Tregs,
which highly express ICOS, were shown to be unable to exert
their inhibitory function in Il10 knockout mice (57). Similarly,
compared with TIGIT− Tregs, TIGIT+ Tregs expressed higher
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FIGURE 1 | Production of IL-10 by ICOS-expressing T cells with regulatory function. CD4+ ICOS+ Tregs express high levels of IL-10 but smaller amounts of TGF-β
compared with ICOS− Tregs. Transcriptome and FACS analyses have demonstrated a correlation between the increased ICOS expression on Tregs with the high
expression levels of CD5, CD69, CXCR3, and T-bet as well as some checkpoint inhibitors, such as CTLA-4, TIGIT, Lag3, and PD-1, (15, 56, 57) some of which have
been shown to promote the transcription of the IL-10 gene, contributing to high levels of IL-10 secretion together with ICOS. In addition, other ICOS-expressing
regulatory cells, such as Tr1, Treg-of-B cells, and Tfr cells, can also be the source of IL-10.

amounts of ICOS and other co-inhibitory molecules, including
CTLA-4, PD-1, Lag3, and Tim3, and exhibited high levels of
IL-10 expression, endowing Tregs inhibitory capabilities (15).
However, despite TIGIT ligation induced Il10 gene expression
in vitro, IL-10 was not detectable in culture supernatants
of TIGIT agonist-treated Tregs, which was isolated from
immunized mice and was restimulated for 2 days in vitro (15).
Additionally, deletion of Fgl2, an important mediator for TIGIT-
mediated Treg suppressive function, did not affect TIGHT-
mediated IL-10 induction in Fgl2−/− Tregs in vitro, indicating
that the TIGIT-related IL-10 pathway diverges from TIGIT-
CEBPα-Fgl2 inhibitory signaling pathway (15). Therefore, the

upstream signaling pathways of IL-10 as well as the interaction
between ICOS and these molecules that promote IL-10 secretion
require further study. For another thing, the existence and
transmission mode of the ICOS-related but IL-10 independent
suppressive signals remain an enigma. In addition to the direct
inhibition mechanism mediated by ICOS, an enhanced migration
of Tregs to target organs mediated by ICOS could also contribute
to their increased inhibitory function. Co-stimulation with ICOS
was shown to downregulate CD62L and CCR7 while upregulating
many chemokine ligands on CD4+ T cells, which led to reduced
homing capacity to lymph nodes but increased accumulation
of Treg cells in target tissues (60, 61). For example, using

Frontiers in Immunology | www.frontiersin.org 6 August 2020 | Volume 11 | Article 2104

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-02104 May 10, 2021 Time: 16:25 # 7

Li and Xiong ICOS+ Tregs in Immune Diseases

photoconvertible fluorescent proteins to track Tregs recirculating
between inflamed colon and the distal part of mesenteric lymph
nodes, these migratory Tregs were discovered to display a highly
immunosuppressive phenotype with a high expression of ICOS,
Lag3, CTLA-4, CD103, PD-1, and CCR5 while exhibiting reduced
expression of CCR7 (62). Intestinal inflammation increased Treg
turnover as well as the number of Tregs with an inhibitory
phenotype mentioned above, which contributed to controlling
dextran sodium sulfate (DSS)-induced colitis (62). Additionally,
except for ICOS+ Tregs, Tr1 cells, Tfr cells, and B-cell induced
CD4+ Foxp3− regulatory T cells (Treg-of-B cells), which also
highly express ICOS, can exert suppressive abilities in vitro and
in vivo (6, 63).

PI3K Signaling and ICOS in Tregs
The most thoroughly studied downstream signaling pathway
in ICOS+ Tregs is the PI3K signal pathway. The class IA
phosphatidylinositol 3-kinase (PI3K), which is widely involved
in relaying signals from TCR and co-stimulatory receptors of
T cells, are heterodimeric enzymes made up of a regulatory
subunit (p85α, p55α, p50α, p85β or p55γ) and a catalytic subunit
(p110α, p110β, or p110δ) (64). Although there is no difference
in the expression levels of p110α, p110β, or p110δ in Tregs
and Tcons, p110δ plays an indispensable role in Treg cells (48).
ICOS cross-linking results in the phosphorylation of Tyr181 in
the YMFM motif, which binds to the SH2 domain of p85α or
p50α, and further recruits the p110 catalytic subunit to activate

downstream molecules, such as the lipids phosphatidylinositol
(3, 4)-biphosphate (PIP2) that is subsequently converted to
phosphatidylinositol 3,4,5-trisphosphate (PIP3) at the inner
leaflet of the cytomembrane under the catalysis of p110 (64).
After that, PIP3 phosphorylates Akt, which activates complex
downstream signals, thus playing an essential role in Treg cell
proliferation, survival as well as metabolism, some details of
which are discussed in the preceding section (Figure 2).

In addition, the PI3K-mTORC signal is also involved in
the regulation of ICOS in Tregs. As an intracellular energy
metabolism receptor, the mammalian target of rapamycin
(mTOR), which is comprised of mTOR complex 1 (mTORC1)
and mTORC2, integrates immune and metabolic signals inside
and outside T cells, participates in the maintenance of T
cell homeostasis, and determines the fate of cells (65). Under
steady state conditions, Tregs display elevated phosphorylation
of two major substrate molecules downstream of mTORC1,
4E-BP1 and S6, compared with naïve T cells (66). Although
numerous studies have revealed a negative effect of the mTORC
signaling on the de novo differentiation and population expansion
of Tregs, (67, 68) and mTORC1 and mTORC2 are likely to
mediate the inhibition of Treg differentiation through different
mechanisms, (65) mTORC1 is suggested to be responsible
for the homeostasis and suppressive activity of Tregs (66).
Zeng et al. demonstrated that selective deletion of Raptor in
Tregs caused profound inflammatory diseases accompanied by
lymphoproliferative manifestation in Foxp3creRaptorfl/fl mice,

FIGURE 2 | ICOS signaling pathway in Tregs. ICOS-ICOSL interaction promotes the generation, proliferation, survival and suppressive ability of regulatory T cells
(Tregs) through complex signaling pathways. First, activation of ICOS promotes Foxp3 transcription, favoring NFAT binding to FOXP3 over AP-1 and upregulating
FOXP3 downstream regulatory genes, such as Il-10 and Tgf-β. Second, ICOS engagement induces PI3K recruitment to the YMFM motif at the cytoplasmic tail and
the phosphorylation of Akt. Activation of Akt can induce Bcl-2 expression and inhibit pro-apoptotic Bcl-2 family protein production, thereby promoting ICOS+ Treg
survival. Furthermore, ICOS also activates the mTORC1 signals, which is suggested to mediate protein synthesis and metabolism in Tregs. In addition, ICOS
expression elevates CXCR3 expression, which promotes the migration of Tregs to inflammatory tissues.
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despite these Raptor-deficient Tregs exhibited normal FOXP3
expression and retained the capacity to produce the anti-
inflammatory cytokines, TGF-β1 and IL-10 (66). Whereas,
Raptor-deficient Tregs showed decreased expression of CTLA-
4 and ICOS, two important molecules for Treg function, and
impaired proliferation ability in a disease-free environment.
Furthermore, they suggested that Raptor/mTORC1 signaling can
regulate cholesterol/lipid metabolism through the mevalonate
pathway, promoting enhanced Treg proliferation and CTLA-4
and ICOS upregulation, which increase Treg function (66). In
addition, despite the mTORC1 signaling have been demonstrated
to be essential to the homeostatic proliferation of Tregs, Xu
et al. reported that a half reduction of mTORC1 signaling in
Tregs did not apparently influence the expansion and suppressive
function of FOXP3+ Tregs in Raptorfl/+Foxp3Cre mice after
OVA/CFA immunization (69). In contrast, a decrease in the
percentage and absolute number of FOXP3+CXCR5+ Tfr cells
was observed in Raptorfl/+Foxp3Cre mice compared with that
observed in WT mice, and these Raptorfl/+ Tfr cells also
expressed a decreased level of CTLA-4, ICOS, and PD-1 (69).
Indeed, the mTORC1 signaling is critical for both the de novo
differentiation of Tfr cells from conventional Tregs precursors
by activating mTORC1-p-STAT3-TCF-1-Bcl-6 axis and their
suppressive functions (69). Moreover, except for the fact that
mTORC1 signaling could promote ICOS expression in Tfr cells,
ICOS signaling also promotes Tfr cell differentiation and function
in immunized mice (70).

The PI3K-mTORC2 signaling also plays an essential role for
Tregs differently from mTORC1 signaling. PETN-mTORC2 can
regulate metabolic balance between glycolysis and mitochondrial
fitness in Tregs which is probably associated with Treg stability
(71). Compared with effector T cells, Tregs maintain high levels
of PTEN to control PI3K signal strength at an appropriate
level, which is essential for Tregs to maintain lineage stability
and homeostasis (35). This condition can also be supported
by the fact that activated eTregs, which upregulate ICOS
expression and activate PI3K signaling, can be less stable
than cTregs (34). Deletion of PTEN disables Treg to maintain
an activated phenotype and fails to create a suppressive
tumor microenvironment, therefore displaying a protective role
in tumor models (72). Pten-1Treg mice, which specifically
delete PTEN in FOXP3+ Tregs, develop an autoimmune-
lymphoproliferative disease featured by uncontrolled Th1 and
Tfh responses and excess germinal center formation (35, 71).
PTEN deletion causes great Treg proliferation and higher
expressions of CD44, CD69, ICOS, and PD-1 but a lower
expression of CD62L in Ptenfl/flFoxp3Cre Tregs, indicating an
activated phenotype (35, 71). However, these PTEN-deficient
Tregs are unstable, which could spontaneously downregulate
CD25 and subsequently loss FOXP3 expression during in vitro
culture with IL-2 supplementation and as Pten-1Treg mice
age, and might be pathogenic as they could not resolve
the induced experimental autoimmune encephalomyelitis in
Pten-1Treg mice (35). The loss of function of PTEN-
deficient Tregs could be restored by inhibition of mTORC2
signaling that is upregulated after PTEN deficiency (71). In
addition, PTEN-mTORC2 axis has also been shown to be

important for Tfr cells to suppress Tfh and germinal center
responses (71).

SIMILARITIES AND DIFFERENCES
BETWEEN ICOS AND OTHER CD28
FAMILY MEMBERS

ICOS and CD28
As a member of the CD28 family, human ICOS is a type-I
transmembrane protein that shares 24% identity with CD28 and
17% identity with CTLA-4 (1). Previous studies have reported a
synergistic co-stimulatory effect of ICOS and CD28 to promote T
cell activation, proliferation and function. However, there are still
some differences in the downstream signals between ICOS and
CD28, and they function in somewhat different ways.

ICOS possesses the YMFM motif at the cytoplasmic tail, which
is the YMNM motif at the corresponding site of CD28 (73). The
YMFM motif allows ICOS to preferentially recruit p50α that has a
stronger lipid kinase activity than p85α, therefore activating PI3K
more strongly than CD28 (74). Transformation of asparagine
(N) to phenylalanine (F) in ICOS also causes it to lose the
ability to bind with the SH2 domain of Grb2 that activates the
NFAT/AP-1 site to promote IL-2 transcription (75). Furthermore,
different abilities to activate MAPK have been observed, with
CD28 exhibiting a stronger ability to phosphorylate p46 JNK
(76). Moreover, the absence of an MYPPPY motif in the
single immunoglobulin (lg)V-like extracellular domain inhibits
the ability of ICOS to bind to B7-1/B7-2 like CD28 (77).
Alternatively, ICOS interacts with a unique ligand ICOSL,
which is also expressed on ILCs and some types of non-
hematopoietic cells except for APCs, increasing its functionality.
Additionally, upon TCR stimulation, ICOSL can be rapidly shed
after binding to ICOS to maintain a proper strength of the co-
stimulatory signal on T cells, but the same situation has not been
observed in CD28-B7-1/B7-2 interaction (78, 79). This process is
demonstrated to be mediated by the AMDM family-dependent
proteolytic cleavage of ICOSL on B cells (80).

These differences between ICOS and CD28 signaling could
lead to different effects on Tregs. It has been well established that
CD28 plays an essential role in the development, proliferation,
and function of Tregs. Cd28−/− mice display a significant
reduction of Tregs in the spleen and other secondary lymphoid
organs compared with WT mice (81). Remarkably, CD28 is
important for the development and homeostatic proliferation of
tTregs, whereas the anti-apoptotic activity or slow proliferation
in the steady state of pTregs was observed unaffected by CD28
deficiency (81). Wakamatsu et al. have also shown that pTregs
were still abundant in the intestines of Cd28−/− mice, although a
weaker suppressive ability of these Cd28−/− Tregs was observed,
suggesting that pTregs can be developed in a CD28-independent
manner (82). Additionally, during the in vitro generation of
iTregs, CD28 stimulation was considered to be a limiting factor
for the acquisition of Treg-specific DNA hypomethylation at
the signature genes of Tregs (83). In contrast to CD28, ICOS
deficiency seems not to impair thymus output of Tregs, although
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the number of Tregs was observed to be reduced by 30% in
Icos−/− mice (14, 38). Therefore, ICOS signaling may be more
involved in Treg generation in the periphery and eTreg expansion
and function. But it could not be excluded that the expression
of tTreg signature genes is affected during the development
in the thymus when ICOS signaling is absent, which should
be clarified further. Furthermore, when isolated ICOS+ Tregs
were cultured in the presence of anti-CD3 mAb and IL-2, the
addition of ICOSL was observed to facilitate Treg proliferation,
whereas adding anti-CD28 mAb plus ICOSL strongly inhibited
this promotion (9). This result not only indicates a negative effect
of CD28 to promote ICOS+ Treg proliferation in vitro, but also
emphasizes a proliferation promoting effect of ICOS independent
of CD28. In addition, ICOS signaling induces the production of
large amounts of IL-10 but limited IL-2 secretion, just opposite to
CD28 signaling (76).

ICOS and CTLA-4
Unlike CD28 which is constitutively expressed on the surface
of T cells, or ICOS which exhibits an inductive expression
pattern, CTLA-4 is rarely detected on resting T cells but is
predominately centralized in the intracellular compartments
of Tregs and activated T cells (84). Only under specific
conditions can CTLA-4 be expressed on the cell surface.
CTLA-4 interacts with B7-1/B7-2 with higher affinity and
avidity than CD28 and plays the opposite role to CD28.
Unlike Icos−/− mice that remain healthy and have normal
absolute number of lymphocytes in homeostasis, Ctla-4−/−

mice develop fatal lymphoproliferative disease, characterized
by splenomegaly, lymphadenopathy, multiorgan lymphocytic
infiltration, and tissue destruction (38, 85, 86). Hyperproduction
of lgE and lgG reveals the susceptibility to autoimmune diseases
of CTLA-4 deficient mice (86, 87). Similar but less severe
symptoms are also observed in mice with Treg-specific CTLA-
4 deficiency, indicating that this disorder is largely attributed to
loss of function of CTLA-4 deficient Tregs to suppress T cell
responses (87). Additionally, Wing et al. have also demonstrated
that CTLA-4 mainly affects Treg suppressive function in the
periphery, the generation of FOXP3+ thymocytes is minimally
altered in CTLA-4 conditional knockout mice (87).

Interestingly, CTLA-4 has been observed to be expressed
at relatively higher levels on the surface of ICOS+ Tregs, (9)
suggesting a subtle connection between these two molecules
that belong to the same superfamily. However, considering that
CTLA-4 deficiency, but not ICOS, is associated with the loss
of immune tolerance, there raises a question of whether the
superior suppressive ability of ICOS+ Tregs relies on CTLA-
4 expression. Recently, Zheng et al. reported that blockage of
the ICOS-ICOSL interaction decreased the surface expression
of CTLA-4 in CD4hi Tregs induced by coculturing human
naïve CD4+CD45RO−CD25− T cells with CD40-activated B
cells without impairment of total CTLA-4 production, and they
ascribed the observed reduction to the strong recruitment of
PI3K to the ICOS cytoplasmic domain, which competed with
adaptor protein 2 (AP-2) to preferentially bind to mCTLA-4 (40).
AP-2 is a critical factor to mediate CTLA-4 rapid endocytosis by
targeting the YVNM motif on the cytoplasmic tail of CTLA-4,

reduced combination of which with CTLA-4 retains more CTLA-
4 proteins on the cell membrane (88). Additionally, ICOS
has been suggested to be a pivotal marker of Tregs with a
high capability to mediate CTLA-4-dependent transendocytosis,
which is an important mechanism by which the activation signal
can be attenuated by removing B7-1/B7-2 from opposing cells
(89). In summary, ICOS expression plays a synergistic role for
CTLA-4 to exert an inhibitory function of Tregs. The superior
suppressive ability of ICOS+ Tregs is likely owned to the higher
CTLA-4 expression in part. Additionally, we have to note that as
a co-inhibitory molecule, CTLA-4 can effectively inhibit ICOS-
producing effector T cells, complicating the links between ICOS
and CTLA-4 in fine-tuning the immune responses in diseases as
well as under steady state conditions.

Recently, immune checkpoint therapy has demonstrated great
clinical efficacy in the areas of anti-tumor treatment. Blocking the
negative regulator of co-stimulation CTLA-4 is a feasible means
by which to disrupt the immunosuppressive microenvironment
in tumor tissue. The anti-CTLA-4 monoclonal antibody
ipilimumab has been confirmed to have efficacy in treating
multiple types of advanced tumors, such as gastric cancer,
non-small cell lung cancer (NSCLC), metastatic melanoma, and
urologic neoplasms. Furthermore, an increased proportion of
IFN-γ-producing CD4+ICOS+ T cells was sequentially observed
in peripheral blood and tumor tissue after patients received
anti-CTLA-4 therapy for bladder cancer, prostate tumors and
metastatic melanoma, which was closely associated with clinical
benefits and could serve as a specific pharmacodynamic indicator
to monitor the efficacy of anti-CTLA-4 therapy (90–93). The
benefits of this immunotherapy are a result of ICOS-activated
PI3K signaling and T-bet expression that drives IFN-γ secretion
and changes the tumor suppressive immune microenvironment
to a Th1 cell-dependent anti-tumor immune state (94). Based
on this evidence, an anti-CTLA-4 antibody and ICOS agonist
combination treatment may be an even better means of treating
cancer. In addition, the frequency of CD4+ICOS+ T cells was
also shown to be unexpectedly elevated in non-tumor tissues
during treatment with CTLA-4 antibody, causing immune-
related adverse events, such as colitis, which should be improved
in the future (91, 95).

ICOS+ Tregs AND IMMUNE DISEASES

The expression of ICOS has been observed to be upregulated in
many autoimmune diseases, allergic diseases and different types
of neoplasms. In some diseases, the upregulation of ICOS was
most prominent in Tregs, and these ICOS+ Tregs displayed a
pivotal function in these diseases. Here, we briefly introduce the
role of ICOS+ Tregs in immune tolerance using several typical
immune diseases as examples.

ICOS+ Tregs and Type 1 Diabetes
Type 1 diabetes (T1D) is a common autoimmune disease induced
by T cell-dependent damage to insulin-producing islet beta cells.
The NOD mouse strain is a classical model of autoimmune
diseases that can spontaneously develop autoimmune diabetes
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and highly simulates the pathogenesis of T1D in human subjects
(96). Through over 10 years of studies of diabetogenesis in NOD
mice as well as type 1 diabetic patients, researchers have shown
that the breakdown of immunological tolerance is a crucial step
in the development of this disease, with Tregs being a major
component mediating immunosuppression. Functional waning
of Tregs in aged NOD mice was shown to result in an insufficient
ability to control pathogenic Teff infiltration within pancreatic
sites, leading to diabetogenic insulitis lesions and beta cell
damage, although the number of nTregs did not decrease relative
to that observed in T1D-resistant mice (97). The ineffectiveness
of Tregs has also been confirmed in humans by observing their
deficiency in suppressing Teff proliferation in vitro, with similar
proportions of CD4+CD25+FOXP3+ Tregs detected in age-
matched healthy individuals and type 1 diabetic subjects (98, 99).
Due to the observed reduction in quality rather than quantity of
Tregs, researches therefore wondered if there are differences in
Tregs composition between T1D subjects and controls. Finally,
after a great deal of investigation, T1D progression was shown
to be correlated with the decrease in ICOS expression by intra-
islet Tregs (42). ICOS+ Tregs, in contrast to ICOS− Tregs, were
shown to be more proliferative and suppressive in situ, with a
higher capacity to secrete IL-10 after islet-Ag stimulation. ICOS
deficiency or Ag blockage impairs the competitive fitness of
Tregs and fails to protect NOD mice from the onset of T1D
(42, 100). Furthermore, Kornete et al. observed that ICOS+
Tregs preferentially expressed CXCR3 in the pancreatic lymph
node of prediabetic NOD mice, and this expression gave them
a better migratory ability to home to β-islets (61). This discovery
highlights the crucial role of ICOS from another perspective, as
Cxcr3−/− NOD mice developed diabetes earlier than WT mice
due to a decreased potential of these Cxcr3−/− Treg cells to
migrate from pancreatic lymph nodes to β-islets (101). Indeed,
ICOS signaling is indispensable for the expression of CXCR3 on
Tregs. Tregs from Icos−/− NOD mice only express limited level
of CXCR3 (61). These CXCR3-expressing ICOS+ Tregs showed
a Th1-like phenotype, with an increased expression of T-bet and
IFN-γ as well as its receptor IFN-γR, which enables ICOS+ Tregs
to respond to IFN-γ produced by effector T cells and provides
Tregs with an enhanced inhibitory ability (61).

In light of all of the evidence indicating the tremendous
protective function of Tregs, particularly those that express
ICOS, two therapeutic strategies have been suggested in the
pathogenesis of T1D, and we will discuss below.

Low dose IL-2 supplementation or Il2 protective allelic
variation was shown to be sufficient to release the local deficiency
of IL-2 in pancreatic islets, increase the number of Tregs and
rebalance the Treg-Teff cell ratio in inflamed islets, thereby
preventing the onset or reversing established diabetes eventually
(42, 102–104). This benefit of IL-2 therapy was partially
contributed to by the augmented expansion of ICOS+ Tregs in
response to IL-2, which also imparted these regulatory cells with
a higher anti-apoptotic and inhibitory function by promoting the
expression of Bcl-2 and other Treg-associated proteins (CD25,
CTLA-4, and GITR).

Another hotspot in diabetic treatment is the adoptive
transfer of Tregs. The administration of autologous

CD4+CD25highCD127low Tregs, which were isolated from
the peripheral blood of the same individual and expanded ex vivo
under polyclonal stimulation, to children with recent-onset of
type 1 diabetes, dramatically increased C-peptide levels and
decreased the dependency on exogenous insulin, demonstrating
a safe and efficient therapy for T1D (105, 106). In addition,
with the further development of this approach, researchers
observed that Ag-specific Tregs could more efficiently suppress
autoimmune diabetes than the blind amplified polyclonal Tregs
in a NOD mouse model (107, 108). Recently, with the help of
single-cell T cell receptor analysis and MHC tetramer staining,
the specific antigens recognized by islet Tregs were finally
discovered, among which, antigens corresponding to the top two
islet Treg clones were insulin B:9-23 and proinsulin (109). This
result also provides guidance for the selection of more effective
Tregs for transfer. However, due to the rarity of Tregs specific
to a particular islet antigen in the human Treg pool, obtaining
enough Ag-specific Tregs is hardly realized in clinical practice as
in animal experiments, where it is achievable to gain sufficient
seed cells for expansion using TCR-transgenic mice. Therefore, a
better means appears to be the use of the entire repertoire of islet-
specific Tregs for expansion in actual treatment. Interestingly,
by examining the distinct and restricted islet-specific Treg
repertoire, researchers observed that the dominant clones highly
expressed the TCR-dependent markers CD103, TIGIT, and
ICOS, and markers of recent antigen exposure such as CD5
and Nur77 (109). Similarly, another study investigating a subset
of tissue-specific Tregs with a high degree of self-reactivity,
CD5hi Tregs, suggested that these highly self-reactive Tregs
could provide significant protection against the development
of diabetes (56). These CD5hi Tregs from infiltrated islets of
NOD mice demonstrated an increased transcription of genes
associated with TCR signaling, as well as those associated with an
inhibitory function (Ctla-4, Icos, Lag3, and Tight), which seems to
be highly associated with the characteristics of islet-specific Tregs
(56). Therefore, it is not unreasonable to speculate that both
methods identify the same functional Treg subset, which could
provide a convenient means of obtaining therapeutic Tregs using
a combination of several molecular markers for the treatment
of diabetes, and even other autoimmune diseases. Additionally,
before the use of adoptive cell transfer therapy, the stability of
these Ag-specific Tregs should be taken into consideration, as
Tregs may loss some stability after TCR activation and have a
risk of transforming into pathogenic ex-Tregs (110). Perhaps
adopting some approaches to promote Treg stability, such as
using monoclonal antibody drugs to intervene Nrp1/PTEN/Foxo
axis, prior to and/or following Treg adoptive transfer may be a
good solution (110).

In summary, ICOS+ Tregs are the primary cells in
pancreatic islets involved in the prevention of diabetes, and
any measures to expand these anti-inflammatory cells would
efficiently treat diabetes.

ICOS+ Tregs and IBD
Inflammatory bowel disease (IBD) is a chronic inflammatory
disease characterized by the disruption of mucosal barrier
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function due to the dysbiosis of gut microbiota and unrestrained
inflammatory responses mediated by effector T cells. Recent
evidence has suggested that Tregs have a major role in
the immune homeostasis of intestine and in the prevention
of the development of IBD. For example, the transfer of
CD4+CD25+ Tregs into mice with established inflammatory
bowel disease, induced by injecting CD4+CD45RBhigh T
cells into severe combined immunodeficiency (SCID) mice,
relieved wasting disease symptoms as well as infiltration of
inflammatory cells (111).

To date, many therapeutic approaches have been shown
to be effective against colitis in mouse models, most of
which function by promoting the expansion and function of
intestinal resident Tregs, especially ICOS-expressing Tregs. For
instance, the injection of anti-CTLA-4 mAb was shown to
ameliorate trinitrobenzene sulfonic acid (TNBS)-induced colitis
by increasing indoleamine 2,3 dioxygenase (IDO) expression
and inducing IL-10-producing ICOS+ Treg expansion in the
mesenteric lymph nodes and inflamed colon (112). Besides
that, the administration of galectin-3, which is limited in the
inflamed intestinal epithelium of IBD patients but abundant in
serum successfully suppressed the intense colonic inflammation
induced by DSS or in a CD4+CD25− T cell transfer model
(113). Careful inspection showed a superior suppressive function
of Tregs induced by galectin-3, which promoted the expression
of ICOS, PD-1, and FOXP3 on CD4+ T cells in vitro in a
dose-dependent manner (113). More recently, a study reported
an interesting result where the adoptive transfer of CD69+
Tregs could attenuate severe colitis in two mouse models (57).
Furthermore, they suggested that the reason why CD69+ Tregs
were more effective than CD69− Tregs for the treatment of
IBD was the high IL-10 production induced by CD69 in a
c-Maf- and STAT3- dependent manner (57). Intriguingly, these
CD69+ Tregs were resistant to Th17 polarization and exhibited
high expression of the immunosuppression-associated markers
CTLA-4, ICOS, CD38, and ICAM-1 (57). This outcome was
consistent with the view that IL-10 secretion is associated
with ICOS expression on Tregs. In addition, with increasing
attention being paid to the intestinal microbiota, there is
a great deal of evidence suggesting that many species of
commensal microorganisms have a strong capability to affect
the proliferation and function of colonic Tregs (114). Among
these indigenous microorganisms, 46 mouse and 17 human
strains belonging to Clostridia clusters IV, XIVa and XVIII have
been shown to promote the accumulation and differentiation
of Tregs in the colon lamina propria by providing a TGF-
β- and IDO-enriched intestinal environment (115, 116). Oral
inoculation of Clostridia strains attenuated the colitis of adult
mice induced chemically or by the transfer of CD4+CD45RBhi

T cells, providing another potential for treatment for IBD
by rectifying bacterial dysbiosis (115, 116). Notably, most
of the Clostridia-induced Tregs were helios−RORγt+CTLA-
4hiICOS+IL-10+ Tregs.

Considering all of the above evidence, we speculate that ICOS
could serve as a pivotal marker representing an indispensable
subset of Tregs, at least those located in intestinal tissue, which
are more suppressive and indicative of the positive outcome of

IBD. Landuyt et al. have confirmed that ICOS+ but not ICOS-
deficient Tregs could ameliorate active colitis, which is a strong
corroboration of our point of view (14). Indeed, not only are
ICOS+ Tregs capable of maintaining T cell tolerance, various
FOXP3− regulatory T cells, such as Tr1 cells and Treg-of-B cells,
which also express ICOS, can protect mice from experimental
colitis (117). However, although ICOS appears to be beneficial
by promoting the inhibitory ability of Tregs to assist in the
prevention of IBD attacks, it was highly expressed on activated
CD4+ T cells after the onset of IBD (118). In addition, Kanai et al.
have proved the therapeutic potential of anti-ICOS mAb in colitis
induced by transfer of CD4+CD45RBhi T cells to SCID mice
(119). This paradox also gives us a warning that a comprehensive
and careful measurement of the impact of ICOS on the overall
immune environment, not just confined to Tregs or effector T
cells, should be made before the selection of an ICOS agonist or
antagonist for the treatment of one type of disease.

ICOS+ Tregs and Chronic Airway
Inflammatory Diseases
Elucidating the complicated interactions between various
immune cells or between immune and structural cells and
attempting to control the excessive immune responses and
oversecretion of inflammatory mediators are key and difficult
issues in the study of chronic airway inflammatory diseases,
among which, chronic obstructive pulmonary disease (COPD)
and asthma are two major diseases. Up to now, there was little
knowledge regarding the importance of ICOS-related signals
in COPD. Recently, we observed an increased proportion of
ICOS in CD4+CD25+FOXP3+ Tregs of COPD patients, yet the
details of the function of this molecule remains to be studied
(120). Herein, we emphatically introduce ICOS-associated
signals in asthma.

Asthma is an airway hyperreactive disease mediated by type
2 immunity characterized by airway eosinophilic inflammation,
mucus hypersecretion, high type 2 cytokines secretion and
increased lgE antibody titers. T cell tolerance is the primary
mechanism protecting human from the development of this
disease. Numerous recent studies have revealed that Tregs
and ICOS-ICOSL signals are highly involved in the anti-
inflammatory process against asthma (39, 121). The percentage
of ICOS+ Tregs was shown to be increased in the lungs of OVA-
tolerized mice, and they exerted a strong capacity to inhibit
Th2-mediated immune responses (91). ICOS deficiency was
observed to restrain the suppressive ability of Tregs in controlling
asthma, as the transfer of Icos−/− Tregs into OVA-sensitized
recipients could not suppress the severe allergic phenotype (91).
Moreover, compared to WT mice, Icos−/− mice were unable
to generate an equal number of FOXP3+ Tregs in the lungs,
indicating a potent proliferation-promoting effect mediated by
ICOS signaling other than enhancing the inhibitory ability of
Tregs (91). More importantly, ICOS signaling was reported to
be widely involved in the induction of respiratory tolerance.
Blockage of the ICOS signaling pathway in the induction stage
of the immune tolerance of OVA-challenged mice impaired the
development of respiratory tolerance (39, 121). This effect of the
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induction of tolerance was partly attributed to lung plasmacytoid
DCs, which were shown to produce IL-10 and express high levels
of ICOSL, as well as having the ability to induce Treg generation
(121–123). A deficiency of ICOS in CD4+ T cells or pretreatment
of DCs with anti-ICOSL mAb both abolished the ability of DCs to
induce T cell tolerance ex vivo and in an adoptive transfer model
(36). Furthermore, several studies regarding Fms-like tyrosine
kinase 3 ligand (Flt3-L), which can reverse allergen-induced
mouse models of asthma, demonstrated that Flt3-L not only
increases the number of CD4+CD25+FOXP3+IL-10+ICOS+
Tregs but also recruits more CD11chighCD11blow DCs to the lung
of OVA-sensitized mice, both of which worked synergistically to
attenuate AHR through the reinforced interaction between ICOS
and ICOSL (124, 125).

Apart from the interaction of ICOS and ICOSL between
DCs and Tregs, the interaction between Tregs and ILC2 is also
important in the suppression of allergens. As is reported, group
2 innate lymphoid cells (ILC2s), which resemble Th2 cells, are
capable of producing copious amounts of the type 2 cytokines IL-
5 and IL-13 and are responsible for the development of allergic
respiratory inflammation (126). The co-expression of ICOS and
ICOSL on ILC2s promotes the homeostasis and function of these
cells in a cis and trans formation, exaggerating the inflammatory
responses (127, 128). In contrast, ICOS expressed on Tregs
could occupy ICOSL on ILC2s, restricting the cis communication
among ILC2s and leading to decreased cytokine production by
ILC2s (127, 128). With the assistance of the suppressive cytokines
TGF-β and IL-10, Tregs were shown to powerfully attenuate
airway hyperreactivity induced by ILC2 in an ICOS:ICOSL cell-
to-cell contact manner (127, 128).

Moreover, emerging evidence has shown that IL-35
produced by ICOS+ Tregs can suppress IL-17-dependent
airway hyperresponsiveness, which is another synergetic
mechanism contributing to allergic asthma (129). Overall,
ICOS+ Tregs work with multiple types of immune cells to
establish immune tolerance to asthma, which demonstrates their
utility as a therapeutic or in the strategies for the prevention
of allergic airway diseases. However, it should also be noticed
that divergent outcomes could be caused by intervention of the
ICOS pathway at different time points in the course of asthma.
The blockade of ICOS co-stimulation was shown to attenuate
Th2-mediated airway inflammation in an allergic mouse model
after mice were sensitized and challenged to an allergen, while
they showed symptoms comparable to allergic mice, such as
aggravated eosinophil infiltration, Th2 cytokine secretion and
mucus hypersecretion, if these mice received anti-ICOSL mAb
in the induction stage of immune tolerance (39, 130). Therefore,
both the intervention time and overall understanding of a
particular disease are necessary concerns if applying drugs or
other means to interfere with ICOS signaling for treatment.

ICOS+ Tregs and Other Autoimmune
Diseases
In addition to the three diseases mentioned above, there are
other diseases with high ICOS expression on Tregs, including
systemic lupus erythematosus (SLE), rheumatoid arthritis (RA),

sarcoidosis (131–133). The increased frequency of ICOS+ Tregs
has been shown to have practical significance in these diseases.
For example, the elevated frequency of ICOS+ Tregs was
observed to show a positive correlation with SLE disease activity
index scores and the serum antibody titer of anti-dsDNA,
although the authors suggested that these ICOS+ Tregs might
be precursor inflammatory cells (131). In addition, it was also
demonstrated to serve as a predictor of responses to treatment,
as a significantly larger proportion of ICOS+ Tregs and skewed
type 2 responses were observed in MTX-non-responsive RA
patients (132). Moreover, Sakthivel and colleagues reported high
expression levels of ICOS in lung Tregs of pulmonary sarcoidosis
patients, and it was particularly high in patients with Lofgren’s
syndrome (LS) compared with NLS, thus associating the degree
of ICOS expression on Tregs with prognosis of sarcoidosis (133).
In summary, the abnormal frequency of ICOS+ Tregs could be
a potential biomarker in the assessment of prognosis and the
effectiveness of specific treatment regimens.

ICOS+ Tregs and Malignant Tumors
In contrast to most autoimmune diseases or allergic diseases,
Tregs infiltrated in tumor tissues consistently impede effector T
cell-mediated anti-tumor responses, inhibiting the treatment of
tumors. ICOS+ Tregs, which were suggested to have a potent
suppressive ability compared with their ICOS− counterpart,
therefore, play a dominant role in the process of immune
escape. Recently, with a growing numbers of studies focusing
on the immunophenotype of TILs, an increased percentage of
ICOS+ Tregs have been observed in more and more types
of tumor tissues, including melanoma, (134) head and neck
squamous cell cancers, (135) gastric cancers, (136) breast cancer,
(137) ovarian cancer, (138) clear cell renal cell carcinoma, (139)
and acute myeloid leukemia (AML) (140). Furthermore, the
elevated proportion of ICOS+ Tregs was shown to be associated
with a bad outcome in most cases, and it was indicated as a
better predictor of prognosis than the percentage of total Tregs
under some circumstances. For instance, Nagase et al. observed
an increased expression of ICOS in CD4+FOXP3+ TILs with
the increase in the stage of gastric cancers, and the elevated
expression of ICOS in CD4+FOXP3+ TILs was negatively
correlated with relapse-free survival time (136). AML patients
with high frequency of ICOS+ Tregs have an evidently shorter
overall survival and disease-free survival relative to those of low
ICOS+ Treg group (140). Moreover, an enhanced expansion
of ICOS+ Tregs in patients with melanoma after the first
cycle of high-dose IL-2 therapy was identified to be associated
with unfavorable prognosis (141). In addition, the expression
of ICOSL in malignant tumor cells or tumor-associated pDCs
was confirmed to be a good booster for the accumulation of
ICOS+ Tregs in some tumor tissues (137, 140, 142). Thus, the
interaction between ICOS and ICOSL is a central mechanism in
tumor immune evasion, although there are still other cancer types
with higher levels of ICOS expression on activated effector TILs
other than Tregs, in which ICOS expression was correlated with
improved survival, such as in colorectal cancer (143) and lung
adenocarcinoma (144).

Frontiers in Immunology | www.frontiersin.org 12 August 2020 | Volume 11 | Article 2104

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-02104 May 10, 2021 Time: 16:25 # 13

Li and Xiong ICOS+ Tregs in Immune Diseases

ICOS-ASSOCIATED THERAPEUTIC
APPLICATIONS IN IMMUNE DISEASES

Currently, various monoclonal antibodies have been developed
to intervene the overactive ICOS-ICOSL interaction. At present,
there are six anti-ICOS monoclonal antibodies [JTX-2011
(NCT04319224), GSK3359609 (NCT04128696), vopratelimab
(NCT04319224), BMS-986226 (NCT03251924), MEDI-570
(NCT02520791), and KY1044 (NCT03829501)] and three
anti-ICOSL mAbs [AMG-557 (NCT01683695), AMG570
(NCT04058028), and ALPN-101 (NCT04227938)] on the market
or in clinical trials. Treatment with anti-ICOS agonistic mAb
or anti-ICOS antagonistic mAb to treat cancers by enhancing
the function of effector T cells and/or depleting ICOShi Tregs
alone or in combination with other monoclonal antibodies
such as nivolumab and ipilimumab has achieved great success
and has been a hot spot in cancer immunotherapy (145). For
example, KY1044 can preferentially deplete ICOShigh Tregs via
antibody dependent cell-mediated cytotoxicity (ADCC) and
stimulate ICOS+ T effector cells to exhibit anti-tumor responses
(146). Furthermore, some bispecific antibodies are currently
being developed, including XmAb23104 (NCT03752398) and
KY1055 (146), which simultaneously target ICOS/PD-1 or
ICOS/PD-L1, respectively, potentially delivering a stronger
anti-tumor response.

Except for these innovating monoclonal antibodies, there are
other therapeutic schedules available depending on the ICOS-
ICOSL pathway. The CAR with the ICOS-4-1BB fusing protein
increased CAR-T cell persistence in vivo and anti-tumor efficacy
(147). Additionally, a technology using a 89Zr-DFO-ICOS mAb
as a probe for PET imaging was developed as a non-invasive
strategy to monitor or allow for the early prediction of therapeutic
responses by quantifying the number of ICOS+ activated T cells
in a Lewis lung cancer model (148). In other words, there is great
potentiality for the use of ICOS as a therapeutic target in the
treatment of tumors.

For autoimmune diseases, the use of ICOS as a therapeutic
target is still being explored. Despite the application of drugs to
increase the proportion of ICOS+ Tregs or the adoptive transfer
of Tregs having been shown to be therapeutic in mouse models,
these treatments still have a long way to go to be put into
clinical use, partly because of the technical difficulty and high cost
of adoptive transfer therapy. Anti-ICOS/ICOSL mAb treatment
may be a potential therapeutic option for some refractory or
severe autoimmune diseases. At present, there are some phase I/II
clinical trials of anti-ICOSL monoclonal antibody drugs to treat
autoimmune diseases, such as on SLE, RA, psoriasis, and primary
Sjögren’s syndrome. For example, AMG557 has been used for SLE
treatment and shows safety and potential efficacy for this disease
(149, 150). Yet a great deal of research needs to be performed
before these monoclonal antibody drugs are applied to the clinic.

Additionally, it should be noted that both ICOS monoclonal
antibody treatment and other therapeutic schedules act on the
total ICOS signaling, rather than Treg-specific ICOS signaling.
But the benefits of ICOS immunotherapy can be partly gained
either by limiting ICOS+ Treg expansion and function in cancer
diseases or by enhancing Treg immunoregulatory capacity in
autoimmune diseases, although they could also be obtained by
regulating effector T cells or Tfh cells, which depends on different
drug mechanisms and context conditions. Different monoclonal
antibodies can function through different mechanisms, affecting
either effector T cells or Tregs, and diverse disease conditions
should also be taken into consideration in the selection of
monoclonal antibodies.

CONCLUSION

The ICOS signaling pathway is widely involved in immune
responses, indicating an activated state for immune cells in
general. Despite exerting pro-inflammatory effect in effector T
cells, ICOS signaling is also highly involved in anti-inflammatory
responses, and this involvement is primarily mediated by Tregs.
The results of many recent studies have suggested that ICOS+
Tregs are an activated subset with strong inhibitory ability
that can prevent the onset or restrain the progression of most
autoimmune and allergic diseases, while they can also contribute
to the immunosuppression of tumors. Sufficient evidence has
demonstrated that ICOS+ Tregs can serve as a biomarker for
clinical outcome and be used in testing therapeutic responses, not
only in autoimmune diseases but also in tumors. However, due to
the complex and comprehensive effects of ICOS to immune cells,
which are not limited to Tregs, a thorough understanding of the
essential role of ICOS in Tregs and its complicated function to
the overall immune system before treatment would be conducive
to the formulation of rational strategies to manipulate ICOS
signals, such as in the selection of appropriate anti-ICOS/ICOSL
monoclonal antibody drugs.
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