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Abstract: An RSS transform–based weighted k-nearest neighbor (WKNN) indoor positioning al-
gorithm, Q-WKNN, is proposed to improve the positioning accuracy and real-time performance
of Wi-Fi fingerprint–based indoor positioning. To smooth the RSS fluctuation difference caused
by acquisition equipment, time, and environment changes, base Q is introduced in Q-WKNN to
transform RSS to Q-based RSS, based on the relationship between the received signal strength (RSS)
and physical distance. Analysis of the effective range of base Q indicates that Q-WKNN is more
suitable for regions with noticeable environmental changes and fixed access points (APs). To reduce
the positioning time, APs are selected to form a Q-WKNN similarity matrix. Adaptive K is applied
to estimate the test point (TP) position. Commonly used indoor positioning algorithms are compared
to Q-WKNN on Zenodo and underground parking databases. Results show that Q-WKNN has
better positioning accuracy and real-time performance than WKNN, modified-WKNN (M-WKNN),
Gaussian kernel (GK), and least squares-support vector machine (LS-SVM) algorithms.

Keywords: Wi-Fi fingerprint; RSS fluctuation; AP selection; WKNN

1. Introduction

Indoor positioning is used in areas where the global positioning system (GPS) is
not desirable. Unlike the well-solved outdoor positioning problem, indoor positioning
encounters the challenge of no line of sight (NLOS). However, the extensive deployment of
wireless infrastructure and the proliferation of mobile devices have facilitated positioning
in indoor scenes, and positioning based on received signal strength (RSS) has been an
attractive solution [1]. Common wireless signals such as Bluetooth [2], Wi-Fi [3], ultra-
wideband (UWB) [4], and radio frequency identification (RFID) [5] are often used for
positioning. Positioning is also dependent on the existing position calculation algorithms,
such as direct positioning, geometrical calculations, and fingerprint localization. In terms
of measurement techniques, the common methods include time of arrival (TOA), angle of
arrival (AOA), time difference of arrival (TDOA), and received signal strength (RSS) [6].
Among these methods, Wi-Fi—based indoor positioning has gone viral for advantages
such as no need for additional hardware assistance except access points (APs) [7], adaption
to various indoor environments, and convenient acquisition of RSS.

Building an RSS fingerprint database for comparison with test points (TPs) is the
core of RSS fingerprint-based indoor positioning. Different points in the positioning area
receive different RSSs of each AP, which compose fingerprints, and these different detailed
characteristics provide unique confirmation information. Positioning usually has offline
and online phases. The main work in the offline stage is building a fingerprint dataset
based on the measured RSS of APs at different spots (i.e., reference points, or RPs), which
are predefined according to the AP’s position, the expected positioning accuracy, and
the area of the whole positioning field. It is time- and labor-consuming. To address this
issue, researchers have done some significant work: (1) the large UJIIndoorLoc dataset
covers multiple buildings [8]; (2) the IPIN2016 Tutorial dataset focuses on small scene
positioning [9]; and (3) Zenodo dataset contains both long- and short-term changes [10].
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The position coordinates are estimated in the online stage by matching the newly minted
fingerprint of a TP with multiple known fingerprints of reference points stored in a well-
built database.

Calculating the similarity between a dataset’s fingerprints and a TP’s fingerprint
to estimate its position is the basic idea of matching. Positioning accuracy is affected
to various degrees by the quality of the estimation algorithm and the reliability of the
fingerprint dataset.

Among many indoor position estimation algorithms, those employing machine learn-
ing are the subject of much research. The K-nearest neighbors (KNN) algorithm, a popular
machine learning method, was first introduced in positioning, and algorithms including
WKNN, M-WKNN, and GK are based on it [11–14]. Other machine learning methods
applied for indoor positioning include support vector machine (SVM) [15,16], k-means
clustering [17], and deep neural networks [18–20].

RSS fluctuation is one of the important reasons that reduce the reliability of fingerprint
dataset. In fact, there are many factors that cause RSS fluctuation. Signals would fade
in propagation, mainly including fast fading and slow fading, which are different but
not independent. Slow fading is mainly due to path loss and is related to moving speed
and working frequency of electromagnetic wave. The phenomenon that the multipath
transmission of the signal causes the rapid fluctuation of the received signal is called fast
fading [21]. Furthermore, individual phone models and individual electrical devices like
iPad have different sensitivities, and the RSS indicated on one may vary. Meanwhile, APs
adjust their power level according to the environment and traffic load. Multiple input
multiple output (MIMO) technology adopted in modern APs also drastically alters the
radio frequency field in a time-varying manner. Affected by all these factors, a completely
reliable fingerprint database has not been built yet. Some studies treat signal fluctuation as
noise, with promising results [22–29]. However, unified processing as noise would erase
some characteristics of the signal, which is not conducive to the improvement of positioning
accuracy. Therefore, we correct signal fading according to the signal propagation law and
smoothen the RSS fluctuation to preserve the signal characteristics as much as possible.
This smoothing method has a higher tolerance to different path loss factors, does not
require frequent recalibration, and retains the difference information of RSS.

Many APs are easily detected in indoor public places, but some APs with empty or
low values (named useless APs) affect the reliability of the fingerprint database. In an
ideal environment, more APs would mean higher positioning accuracy. However, in actual
positioning, it means more signal loss and more fluctuations. In addition, superabundant
APs would consume more computing resources [30]. Therefore, mass APs must be selected
reasonably. The selection criterion is to keep as many effective features as possible while
removing the AP’s RSS, which is useless for improving the positioning accuracy. We
combine the maximum value of RSS with the occurrence frequency of effective signals
and propose a new standard for AP selection, which ensures accuracy and improves the
efficiency of the algorithm.

Our work has four parts:

• After analyzing the relationship between RSS and physical distance in signal prop-
agation, base Q is proposed to smooth fluctuation by transforming RSS before the
similarity match;

• A new AP selection method is proposed, which selects APs that contribute more to
the positioning;

• An adaptive K value is proposed, which is dynamically determined according to the
distance collection S between RPs and TP;

• Based on the above three parts of this work, the Q-WKNN algorithm is proposed.
The algorithm is compared to commonly used algorithms such as WKNN, M-WKNN,
GK, and LS-SVM to demonstrate its improved positioning accuracy and real-time
performance. The environment where the Q-WKNN algorithm could achieve better
position results is found.
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The rest of this article is structured as follows. Related work is reviewed in Section 2. A
detailed description of the proposed algorithm Q-WKNN is given in Section 3. Experimen-
tal methods and settings are discussed in Section 4, and the proposed algorithm is compared
with several well-used algorithms in positioning accuracy and time-consumption. Section 5
summarizes our work and concludes that the Q-WKNN algorithm can effectively improve
the positioning accuracy.

2. Related Work
2.1. Processing for RSS Fluctuation

RSS fluctuations are often treated as noises. Taking the mean of successive measure-
ments at the same RP was historically utilized to deal with signal fluctuations [22]. In
this case, the signal fluctuation is treated as simple additive noise, and the fluctuation
is simply eliminated by the operation of averaging. It is effective, but the results are
not desirable. Some studies have examined signal fluctuations in detail to extract more
useful information from data affected by multipath effects, environmental dynamics, and
equipment difference.

The mainstream ideas put forward to deal with signal fluctuation consist of fingerprint
structure reconstruction and signal transformation before analysis. Reconstructing the
fingerprint structure is often based on the relationship between fingerprints. An NR-RSS
fingerprint based on the RSS difference between adjacent positions was constructed to elimi-
nate the influence of environmental dynamics and equipment heterogeneity [23]. Using the
spatial relationship between fingerprints in multiple adjacent positions, a fingerprint spatial
gradient (FSG) was proposed to reduce the uncertainty of RSS fingerprints [24]. These
fingerprint structures’ reconstructions are often subject to complex calculations. There are
several ways to transform the RSS. For example, time-domain convolution was applied
to model the dynamic multipath behavior, making it linearly separable, and extracting
the robust signal characteristics [25,26]. This achieved terrific results, but fluctuation that
can reflect the characteristics of RSS is also considered as multipath interference. Another
promising way to deal with fluctuation is choosing the appropriate data transformation
rather than using RSS values directly to smooth the fluctuation. Because of the logarithmic
property of signal propagation, the linear transformation, such as normalization, can be
outperformed by exponential transformation [27,28]. Accordingly, lowest RMSE could be
achieved after exponential transformation, but a base that considers path loss parameters
and signal fluctuations is difficult to determine [29].

We combine the ideas of separation and simplification. First, we eliminate the coarse
noise caused by environmental mutation. Then, inspired by mean smoothing [22] and
exponential transformation [26], we smooth the RSS fluctuations after a Q-based RSS
transformation on the premise of retaining RSS characteristics according to the signal
propagation model.

2.2. AP Selection

A reasonable choice of APs improves both the efficiency of the algorithm and the
positioning accuracy. Particle swarm optimization was used to generate AP placement
strategies for different maps [30]. Feature selection was applied to intelligently select
the number of AP for location estimation using fewer APs [31]. Discriminability APs
were measured independently, ignoring correlation between APs. An intelligent selection
method combining AP position information was subsequently proposed [32]. The idea
of information gain has achieved outstanding results, but the computational cost is high.
A selection method considering the RSS standard deviation (SD) of APs in the online
positioning stage was proposed to filter out some abnormal APs of RSS [33]. In fact, AP
prescreening in the offline stage should not be ignored. AP discrimination indices and AP
strength were used to perform AP selection in offline and online phases, respectively, with
better results than the commonly used Fisher and maximum RSS strength selection [34].
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However, AP discrimination indices may be difficult to distinguish with a large amount of
randomly distributed APs.

Choosing the most robust AP is inseparable from signal strength characteristics. It
has been proposed that taking the average RSS value as the signal strength feature is not
the best choice [35]. Our AP selection strategy combines the maximum RSS, which reflects
the individual strength of APs, with the appearance ratio of effective signals to choose the
reliable APs.

2.3. Popular Fingerprint Positioning Algorithms

Fingerprint-based k-nearest neighbors (KNN) indoor positioning was proposed by
Bahl and Padmanabhan in 2000. The algorithm finds K RPs with the smallest Euclidean
distance from TP in the fingerprint space and uses their mean coordinate as the TP’s
estimation coordinate [11]. The WKNN algorithm assigns weighting coefficients to the
position coordinates of different RPs based on KNN, and the weight of each RP is usually
set as the reciprocal of the Euclidian distance between RP’s and TP’s fingerprints. WKNN
improves the positioning accuracy, and the implementation is simple [12]. However, room
remains for improvement, which has inspired much research. Proposed by Liu, M-WKNN
uses a weighting coefficient algorithm based on the signal propagation model which
revealed the nonlinear relationship between RSS and physical distance [13]. Roos proposed
the GK algorithm, which realizes the estimated coordinates by calculating the mean value
of K coordinates of RPs with the maximum likelihood probability [14]. The algorithm can
achieve superb positioning accuracy, at the cost of much calculation.

More accurate estimation algorithms can improve positioning accuracy, but often have
higher time complexity. LS-SVM indoor positioning transforms the positioning problem to
one of multi-class classification [15,16]. Its regularization and kernel parameters (c, g) are
determined through parallel grid searching. LS-SVM improves positioning accuracy but
needs much training time. K-means clustering is more suitable for pre-classification of a
fingerprint database. When used for estimation, it is the same as SVM, which increases
complexity without a significant improvement in accuracy. Due to the large amount of
data required, the sensitivity to fluctuating data, and high time complexity, deep neural
networks are rarely used for indoor positioning.

Considering accuracy and speed comprehensively, KNN has achieved brilliant results
in comparative experiments [19] and positioning competitions [20]. Therefore, the improve-
ment of many localization algorithms is based on KNN algorithm. Both dynamic selection
of the appropriate K value and assign weight to K nearest RPs may help to improve the
efficiency of the algorithm.

3. Details of Proposed Algorithm

The Wi-Fi fingerprint positioning algorithm uses the RSS similarity between TP and
RPs to obtain nearby RPs and then estimates the TP’s position based on their coordinates.
As shown in Figure 1, the algorithm has two phases: offline training and online positioning.

The offline training phase, or site survey, constructs a fingerprint database consisting
of preset RP coordinates and RSS, which is time- and labor-consuming. The Wi-Fi signal
detection device collects the RSS corresponding to each Wi-Fi signal AP and generates a
fingerprint database. In addition, due to the characteristics of signal propagation, RSS is
easily affected by environmental changes, which causes unstable values. Hence, the RSS
of each RP must be measured multiple times. The online positioning phase matches the
fingerprints of TPs and RPs in the database and estimates the TPs’ positions according to
the matching results. The higher the fingerprint similarity between TP and RP, the closer
they are.
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Figure 1. Flowchart of fingerprint positioning algorithm.

3.1. Fingerprint and Database

The combination of collected RSS is called a fingerprint, which could be classified
as that of a TP or RP. A TP’s fingerprint is measured in the online phase and used to
estimate the TP’s position, while an RPs’ fingerprint stored in the database plays the role of
a predefined criterion.

Suppose RSS(i,j) represents the RSS from APi received at RPj, and the numbers of APs
and RPs are n and m, respectively. Assume that the fingerprint acquired during the online
phase is FPTP =

[
RSS(1,TP), RSS(2,TP), . . . , RSS(n,TP)

]
, and RSS(i,TP) is the RSS received

from APi.
To reduce the buffering influence, fingerprint collected at each RP are preprocessed

before being saved. The fingerprint at the RPj is FPj = [RSS(1,j), RSS(2,j), . . . , RSS(n,j)].
The fingerprint matrix FP is composed of fingerprints of each RP,

FP =


RSS(1,1), RSS(2,1), . . . , RSS(n,1)
RSS(1,2), RSS(2,2), . . . , RSS(n,2)

· · ·
RSS(1,m), RSS(2,m), . . . , RSS(n,m)

. (1)

As RPj has coordinates
(

xj, yj

)
, the dataset includes the fingerprint and coordinates

of each RP is named FPDB:

FPDB =


RSS(1,1), RSS(2,1), . . . , RSS(n,1), x1, y1
RSS(1,2), RSS(2,2), . . . , RSS(n,2), x2, y2

· · ·
RSS(1,m), RSS(2,m), . . . , RSS(n,m), xm, ym

. (2)

3.2. RSS Fluctuation in Raw Fingerprint

Similarity matrices commonly compare the RSS difference of the fingerprint between
TP and RPs, whether large or small. However, in the actual environment, RSSs acquired
from the same AP at the same position are different due to factors such as acquisition time,
acquisition equipment, and environmental changes. For example, in Figure 2, DATA1
represents the RSS received at a position from AP1 to AP40, and DATA2 represents the RSS
received at the same spot shortly after DATA1 under the same conditions. The absolute
RSS difference between DATA1 and DATA2 is denoted as RSS-ABS-DIFF and is drawn at
the top.
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It can be inferred from Figure 2 that even under the same conditions, RSS acquired at
intervals would have a maximum fluctuation of about 10 dB. The RSS difference of finger-
prints always contains such fluctuations. Most algorithms do not account for their impact
when calculating fingerprint similarity. Simply ignoring such fluctuations undoubtedly
undermined the fingerprint similarity, which further affects positioning accuracy.

3.3. Data Preprocessing

The complexity of Wi-Fi signal propagation leads to fluctuations of RSS, i.e., the
measured RSS at a given position fluctuates continuously. To build a robust fingerprint
database, the raw RSS must be preprocessed to eliminate abnormal data and coarse errors.

Assume that RSS(i,j), which is the RSS of APi at RPj, is measured p times, and mea-

surements collection is S = {RSS(1)
(i,j), RSS(2)

(i,j), · · · , RSS(p)
(i,j)}.

We define the residual rq to indicate the degree of deviation of RSS(q)
(i,j) from the mean

RSS(i,j),

rq = RSS(q)
(i,j) − RSS(i,j), q ∈ [1, p], (3)

where RSS(i,j) =
1
p ∑

p
q=1 RSS(q)

(i,j). We calculate the root mean square error of the residual,

σ =

√(
1
p ∑p

i=q rq2
)

, (4)

Pauta criterion is suitable for eliminating the gross errors on large number of data
samples that are approximately the normal distribution. In fact, the RSS measurement
values have a slightly left-skewed normal distribution, which generally could be regarded
as approximately normal [36]. As the amount of a RSS(i,j) measurement in our experiment
is large (up to 300), we take Pauta criterion to eliminate gross error.

Therefore, according to the Pauta criterion, in the normal distribution, σ is the standard
deviation, µ is the mean, and the probability that the value in (µ− 3σ, µ + 3σ) is 99.73%. If
a residual satisfies

∣∣rq
∣∣ > 3σ, then the corresponding RSS(q)

(i,j) is removed from S as a coarse
error. The S without coarse error is named S’. To improve the robustness of the fingerprint,
the average of preprocessed S’, which eliminates abnormal data and coarse errors, is taken
as the final RSS.

More detailed fluctuation processing is required in the fingerprint matching stage, as
we discuss next.



Sensors 2021, 21, 5685 7 of 18

3.4. RSS Propagation and Base Q

To smooth the RSS fluctuation difference of fingerprint, in this part, base Q is intro-
duced to transform RSS to Q-based RSS, after the relationship between the received signal
strength (RSS) and physical distance in signal propagation is analyzed.

The Wi-Fi signal propagation model [37] is

R(di)
= R(d0)

− η10 log10

(
di
d0

)
± X, (5)

where R(d) is RSS at a point where is d meter away from the AP, η is the path loss exponent,
and X is the RSS fluctuation caused by acquisition equipment, time, and environmental
changes at the same place. d0, R(d0)

, and η are preset modeling parameters. R(di)
is the

measured RSS of APi at a point where it is di meter away from APi. According to the signal
propagation model, as long as R(di)

is known, the unknown distance, di, between the point
and APi could be calculated as

di = d010(
R(d0)

−R(di)
±X

10η ). (6)

Assume RP and TP are two points that are dRP
i and dTP

i away from APi, respectively,
then the physical distance ∆d between RP and TP could be expressed as

∆d|=dRP
i − dTP

i

|=d010(
R(d0)

−R
(dRP

i )
±XRP

10η ) − d010(
R(d0)

−R
(dTP

i )
±XTP

10η )

|=d010
1

10η

(
R(d0)

−R
(dRP

i )
±XRP

)
− d010

1
10η

(
R(d0)

−R
(dTP

i )
±XTP

)
.

(7)

Simplify ‘−R(dRP
i ) ± XRP’ to RSSRP.

Simplify ‘−R(dTP
i ) ± XTP’ to RSSTP.

Simplify 10(
1

10η ) to Q, and Equation (7) is converted to

∆d
d0

= QR(d0)
+RSSRP

−QR(d0)
+RSSTP

. (8)

Simplify QR(d0) to a.
Equation (8) is converted to

∆d
a · d0

= QRSSRP −QRSSTP
. (9)

Due to noise and missing signals, many believe that Euclidian distance is not the
best measure of similarity [27]. In fact, fingerprints are not mathematic vectors defined in
Euclidean space but a collection of RSS measurements, so Euclidean distance is not desirable
for similarity measurement of collection with noise and missing elements. Research
indicates that for a Wi-Fi fingerprint system, Euclidean distance for NN, and Manhattan
distance for KNN or WKNN gave the least mean distance error [38]. Accordingly, we chose
Manhattan distance as our fingerprint similarity measurement. However, the relationship
between physical distance and signal differences is not directly proportional, and simple
signal subtraction, containing the fluctuation, cannot directly reflect the difference in
physical distance. Therefore, in order to smoothen the impact of severe fluctuations, we
use Q-based RSS subtraction, instead of direct RSS subtraction, to compare similarity.
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3.5. AP Selection Algorithm

In an ideal indoor environment, positioning results should be improved by using
more APs [32]. However, in an actual indoor environment, the RSS of each AP is affected
by obstacles and multipath effects. Using RSS from all detected APs without screening
decreases positioning accuracy. Therefore, an algorithm is applied to select those APs that
contribute more to positioning. Those RSSs from these APs increased positioning accuracy
and decreased computational cost. The criterion for AP selection uses two indicators,
M(APi) and P(APi), representing the maximum value of RSS and appearance ratio of
APi, respectively.

Because the positioning accuracy using the average value of RSS as a feature is not as
good as the maximum RSS in a steady-state environment [35]. The first indicator is

M(APi) =
maxAPi + U

U
, (10)

where maxAPi is the maximum value of RSS from APi, and U is the preset absolute value
of the RSS of undetected APs. A larger M(APi) indicates a more reliable APi.

The second indicator, P(APi), is the appearance ratio of the signal of APi in one
complete fingerprint collection,

P(APi) =
S

S− PAPi

(11)

In one collection, S is the number of fingerprints in the dataset, and PAPi is the times of
APi’s appearance. P(APi) increases with PAPi . When PAPi = S, APi will be selected directly.

The criterion for AP selection reflects the reliability of the APi and is defined as

R(APi) = M(APi) ∗ P(APi). (12)

The APs are sorted in descending order of R(APi), and the first L APs are selected
for positioning.

3.6. Adaptive K Algorithm

In WKNN, the value of K plays an important role in positioning accuracy. A large K
means more neighbor RPs including irrelevant RPs which lead to low positioning accuracy,
and a small K implies the degradation of KNN. Our adaptive K is dynamically determined
based on the fingerprints’ Manhattan distance collection, S, between RPs and TP. There are
two filter steps in determining K.

First, a threshold KTh is set to filter each element in S, where S is a distance collection
with m elements (m is the number of RPs). If the value is greater than KTh, then the element
is removed from S. KTh should obviously be adaptive because every TP has a unique S.
To reduce the error caused by a constant threshold, we use KTh = 2 ∗ Smin, where Smin is
the minimum value in S. The filtered distance collection,

S′ =
{

S1, S2, . . . , S f

}
= {Si|Si ≤ KTh, 1 ≤ i ≤ m}, (13)

contains f ( f ≤ m) elements in ascending order, corresponding to RPs.
Second, we define Gi as Gi = |Si − S1| (S1 is the minimum), where i takes values from

2 to f . We calculate the mean of these differences,

E(G) =
∑

f
i=2 Gi

f − 1
, (14)

If Gi is greater than E(G), then Si is removed from S′. After these comparisons are
made, the number of elements remaining in S′ is the adaptive K, K = Count(S′).
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3.7. Q-WKNN

According to the above analysis, to smooth the signal fluctuation and improve posi-
tioning accuracy, Q-based RSS Manhattan distance is adopted in the fingerprint similarity
calculation between the RP and TPs after data preprocessing and AP selection. A TP’s posi-
tion could be estimated by WKNN with adaptive K, as shown in the flowchart in Figure 3.
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In summary, Q-based distance collection DJ = {d(1,j), d(2,j), · · · , d(L,j)} (where 1 to L
indicate L reliable APs), consisting of the selected APs’ RSS difference between RPj and TP
is adopted as a similarity metric.

As mentioned in Section 3.4, the base Q is introduced to the Manhattan distance
to smooth the RSS fluctuation. Before using Manhattan distance to calculate similarity,
according to Equation (9), Q is taken as the base number, and RSS is the index. Q-based
RSSs are subtracted to map the physical distance difference,

d(i,j) =
∣∣∣QRSS(i,j) −QRSS(i,TP)

∣∣∣, i ∈ (1, L). (15)

Accordingly, the fingerprints’ Manhattan distance between RPj and TP is

Sj = ∑L
i=1 d(i,j). (16)

After picking up the adaptive K-nearest neighbor RPs, the reciprocals of the Q-based
Manhattan distances are taken as the weights collection,

W = {w1, w2, . . . , wk} =
{

1
S1

,
1
S2

, . . . ,
1
Sk

}
(17)

If the subscripts of the selected K RPs are [1, K], the coordinates of RPj (1 ≤ j ≤ K)
are

(
Xj, Yj

)
, and its corresponding weight is wj, the TP’s coordination (X, Y) can be esti-

mated as

X =
∑K

j=1(Xjwj)

∑K
j=1 wj

Y =
∑K

j=1(Yjwj)

∑K
j=1 wj

. (18)

4. Experiment and Discussion
4.1. Experiment Environment

To test the positioning performance of Q-WKNN, we adopted two real-world datasets
in different environments for experiment. Meanwhile, in order to check Q’s role, we also
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generated simulated data. The Zenodo dataset was provided by Mendoza-Silva, Richter,
and Torres-Sospedra. We collected the Park dataset in the underground garage of North
China Electric Power University. Zenodo is a massive, open, long-term database that is
updated monthly with data acquired from the third- and fifth-floor bookshelf areas of a
library. Since the two floors are identical in structure, we only used the third-floor data for
experiment. The dataset contains 25 months of measurement data with 48 RPs (24 RPs per
floor) RSS from a total of 620 APs (including APs whose signal were not detected in some
month label). Each AP is uniquely identified by its media access control (MAC) address
and service set identifier (SSID). The RSSs were acquired six times at each point to avoid
error due to chance. To clearly name 25 months in a dataset, Zenodo uses numbers 1–25 to
label these months.

There are three reasons for choosing the Zenodo dataset: (1) it provides up to
25 months of signal data, which enables researchers to fully test the reliability and stability
of a positioning algorithm; (2) it includes several scenario simulations and many survey
and test spots, such as a user’s stopping and walking state; (3) the dataset has been widely
used for accuracy testing of positioning algorithms, making it convenient for comparison.

The Park dataset was used to compare the applicability of the Q-WKNN algorithm
in different environments and determine the scope of the base Q. It uses a measurement
method like Zenodo, but contains more actual environmental information, like the coordi-
nates of every APs. The Park dataset uses a smaller number of fixed APs, and the coverage
area of TPs is wider. Due to the frequent entry and exit of vehicles, the environmental
changes in the dataset are more complicated and noisier.

As show in Figure 4, ten wireless router devices (taken as APs in this paper), denoted
by black circle, were used for Park dataset collection. Each device has both 2.4G and 5G
frequency band signals, forming a total of 20 APs. RPs (denoted as 41 white pentagons and
45 purple pentagons) and TPs (denoted as 22 red dots, 21 black rectangles, 21 white triangles,
and 21 white rectangles) are distributed in the U-shaped corridor, and measurement
was done 10 times at each point. The U-shaped corridor surrounds the entrance of the
underground garage, and the wall in the middle (denoted by gray rectangular) forms a
rectangular area where Wi-Fi signals pass with difficulty. The test set was not derived from
the training set but from separately selected TPs for a more credible test effect.
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Table 1 compares the Zenodo and Park datasets.

Table 1. Comparison of Zenodo and park datasets.

Attribute Zenodo Park

Distribution of RPs Small area,
zigzag route

Large area,
U-shaped corridor

Major obstruction Book rack Concrete column,
automobile

Dynamic change Movement of people In and out of vehicles
Missing values Many Few

Data distribution Left-skewed normal Approximately normal

4.2. Results and Comparison

In this paper, proposed algorithm Q-WKNN is the improvement of WKNN. Hence,
WKNN, M-WKNN, and the common positioning algorithms GK and LS-SVM were com-
pared with Q-WKNN to verify its positioning accuracy and real-time performance. Sim-
ulation on the Zenodo dataset proceeded as follows. For each month, positioning was
performed using one training set as an RP dataset and all test sets as TPs to imitate different
users. We calculated the positioning error and plotted the cumulative distribution function
(CDF) for all test sets. Positioning accuracy was evaluated in terms of 75th percentiles of
positioning error CDF. We used this instead of the mean error because the latter tends to
be small, from which researchers may make overly optimistic judgments on the position-
ing accuracy of an algorithm. This standard is also used in a competition for the Indoor
Positioning and Indoor Navigation (IPIN) conference.

The experiment was also carried out on the Park dataset, following the same procedures.
According to the principle of the proposed algorithm, its positioning accuracy is re-

lated to the base Q, the reliable AP number L, and adaptive K. Therefore, before comparing
Q-WKNN with other algorithms, the effects of the hyperparameters Q, K, and L are subject
to experiment, respectively.

4.2.1. Impact of base Q

The effect of Q was inferred on the simulated data and tested on real data for ver-

ification. According to Equation (8), Q is calculated as Q = 10(
1

10η ), where η is the path
loss factor.

The algorithm used in the following experiment is KNN, the K value is 3, and the
similarity measure is Manhattan distance. The same data preprocessing steps, mentioned
in Section 3.3, are used for each set of simulated data and real data.

As Q is inferred from a signal propagation model, we first verify the smoothing effect
of Q on simulated data. The source of signal fluctuation dominated by thermal noise is
complex and changeable, so we superimpose Gaussian noise and use additive noise to
simulate signal fluctuations caused by a real environment.

The simulation area was 60 m long and 30 m wide, and 12 APs were randomly set.
To imitate an actual situation as realistically as possible, some APs could not be detected
at some spots. A signal strength less than −90 dB was considered undetectable. Fifteen
sets of data were generated in this area, with noise standard deviations varied from 1 dB to
15 dB, and η was set to 4.5. As shown in Figure 5, when the noise standard deviation is
2–11 dB, the data processed by base Q can decrease the position error. Data with excessive
noise (bigger than 12 dB) makes it difficult to extract effective features, and the effect of
base Q is not obvious when the noise is too small (less than 2 dB).
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Figure 5. Positioning error of different noise standard deviations on simulated data.

Signals from different AP have different paths to TP, and the corresponding η is also
different. In addition, the value of η is often unknown in the real world. In order to
simulate the unknown state of η in the real world, we assumed that η was unknown and
experimented with Q corresponding to different values of η in the range 3–6. It can be seen
from Figure 6 that the improvement of positioning accuracy becomes insignificant or even
decreases when η deviates greatly from the true value of 4.5, and the base Q has a certain
smoothing effect when η is 3.9–5.4, which is around the true value of 4.5.
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Based on the above speculation, experiments were conducted on the Zenodo and Park
datasets. In fact, η is an empirical parameter, and its common value is 2–6 in an indoor
environment. In an actual environment, it is difficult to accurately determine η for signals
transmitted by each AP, and only its η distribution can be determined empirically.

We experimented with Q corresponding to different values of η in the range 2–7 on
the Zenodo dataset. The positioning errors of different values of η on Zenodo are shown
in Figure 7.

It can be seen from Figure 7 that when the value of η is 5, 75%, positioning error and
mean error achieved their highest improvements, 2.534 m and 1.873 m, respectively, and
after this point, there is no obviously improvement. Therefore, η = 5 is the best value in
this environment. When η is near 5, compared with not using base Q processing, a certain
accuracy improvement is obtained. The above result is consistent with our speculation
from the simulated data that the positioning error can be decreased when the η used to
calculate Q is near the true η.
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We also used data from other month labels in Zenodo to conduct experiments. In
months labeled 06, 08, 11, 14, and 15, Q failed and even brought more errors. It is speculated
that Zenodo contains up to 620 APs, a large number of them are useless, and effective APs
are constantly changing. In addition, in the months when Q fails, effective AP values less
than −90 dB and more than −30 dB accounted for a higher proportion.

Unlike Zenodo, the Park dataset comes from 20 stable AP signals. More than 80% of
the RSS values are in the stable signal range of −50 dB to −90 dB, and the data are approx-
imately Gaussian. The main factor affecting positioning accuracy is signal fluctuations
caused by vehicles entering and exiting. With the three-week data of the Park dataset, the
value of η was increased from 3 to 7 at intervals of 0.5. When η = 7, the three sets of data
all achieved the best positioning effect. Table 2 shows the results of the three-week data
processing using the base Q. It can be seen in three weeks, compared to WKNN, the 75%
positioning error of Q-WKNN achieved 0.103 m, 0.329 m, and 0.409 m drop, respectively,
which are 4.41%, 13.98%, and 19.38% decreases accordingly.

Table 2. Q effect on three weeks of Park database.

Week WKNN (m) Q-WKNN (m) Decrease (m) Percentage of
Decrease

1 2.339 2.236 0.103 4.41%
2 2.357 2.028 0.329 13.98%
3 2.108 1.700 0.409 19.38%

The positioning accuracy in the third week improved significantly, and the improve-
ment in the first week was small, because the training sets of the second and third weeks
were measured on working days and the first week was measured on rest days. The
frequent entry and exit of vehicles in the underground garage during working days can
better reflect the smoothing effect of the base Q on the signal.

In summary, the base Q is suitable for smoothing data with the following character-
istics: (1) the signal can always be detected, and its value is within a meaningful range;
(2) the signal fluctuates sharply due to environmental changes, which better reflects the
smoothing effect of the base Q.

Therefore, AP selection plays an important role in positioning accuracy. We performed
an analysis to select an optimal number L for AP selection.

4.2.2. Impact of Reliable AP Number L

The object of AP selection is to select APs that contribute more to positioning. It is
important to find the optimal reliable number L of APs to improve positioning accuracy
and reduce computation costs. We set L from 10 to 100 to see the impact on positioning
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and compared the results with the use of no AP selection algorithm, as shown in Figure 8.
In this experiment, the total number of APs was 620, and “ALL” on the horizontal axis in
Figure 8 means L = 620.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 8. Positioning errors of different L on Zenodo. 

Initially, the positioning error gradually decreases as L increases, but it does not con-
tinue to decrease when L exceeds 90. It can be inferred from Figure 8 that setting an ap-
propriately reliable AP number L can improve positioning accuracy. We take 90 as a reli-
able number L for AP selection. 

4.2.3. Impact of K in WKNN 
Two adaptive filtering steps are used to obtain the dynamically changing K, and K 

undoubtedly affects the positioning accuracy. When K is 1, the algorithm degenerates to 
the NN algorithm. 

Different K values were used to perform the positioning experiment based on normal 
WKNN, and the value with the highest positioning accuracy was found for subsequent 
comparison of algorithms. We set K from 1 to 6, with results as shown in Figure 9. 

 
Figure 9. Positioning errors for different K based on WKNN on Zenodo. 

It can be seen from Figure 9 that the positioning accuracy of WKNN gradually in-
creased with K, but it did not increase permanently. When K was 3, the error of the 75th 
percentile was 2.92 m. Therefore, subsequent experiment took K = 3 as the parameter of 
WKNN. 

To verify the improvement of the positioning accuracy of the adaptive K algorithm, 
Q-WKNN based on different K and adaptive K was used for positioning. The results are 
shown in Figure 10. 

Figure 8. Positioning errors of different L on Zenodo.

Initially, the positioning error gradually decreases as L increases, but it does not
continue to decrease when L exceeds 90. It can be inferred from Figure 8 that setting an
appropriately reliable AP number L can improve positioning accuracy. We take 90 as a
reliable number L for AP selection.

4.2.3. Impact of K in WKNN

Two adaptive filtering steps are used to obtain the dynamically changing K, and K
undoubtedly affects the positioning accuracy. When K is 1, the algorithm degenerates to
the NN algorithm.

Different K values were used to perform the positioning experiment based on normal
WKNN, and the value with the highest positioning accuracy was found for subsequent
comparison of algorithms. We set K from 1 to 6, with results as shown in Figure 9.
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It can be seen from Figure 9 that the positioning accuracy of WKNN gradually in-
creased with K, but it did not increase permanently. When K was 3, the error of the 75th
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percentile was 2.92 m. Therefore, subsequent experiment took K = 3 as the parameter
of WKNN.

To verify the improvement of the positioning accuracy of the adaptive K algorithm,
Q-WKNN based on different K and adaptive K was used for positioning. The results are
shown in Figure 10.
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As can be seen from Figure 10, the positioning accuracy of Q-WKNN rose with
increasing K, but it did not rise permanently. When K was 4, the mean error with the
biggest decrease was 1.862 m, which was still greater than the mean error of 1.858 m using
the adaptive K. When K was 3, the 75th percentile error with biggest decrease was 2.686 m,
which was still greater than that of 2.524 m using the adaptive K. Therefore, compared with
a fixed K, Q-WKNN based on adaptive K brought an improvement in positioning accuracy.

4.2.4. Positioning Accuracy Comparison of Algorithms

The proposed Q-WKNN algorithm was implemented with the commonly used
WKNN, M-WKNN, GK, and LS-SVM on the Zenodo dataset. According to the above
results, the hyperparameters of the algorithm were set as follows. For WKNN (M-WKNN),
K = 3. For Q-WKNN, η = 7 and L = 90. For GK, K = 6 and σ = 4. For LS-SVM, (c, g) were
automatically optimized.

The positioning error of the 75th percentile and the mean positioning error are shown
in Table 3. Compared to WKNN, M-WKNN, GK, and LS-SVM, the positioning error of
Q-WKNN decreased by 20.2%, 17.1%, 21.3%, and 21.8%, respectively.

Table 3. Positioning errors of different algorithms on Zenodo.

Algorithm Q-WKNN WKNN M-WKNN GK LS-SVM

Mean Error (m) 1.858 2.331 2.241 2.362 2.376
75th Percentile Error (m) 2.524 3.075 3.085 3.19 3.208

Table 4 shows the cumulative error probability of different algorithms under a fixed
accuracy limit, which is higher for Q-WKNN than for other algorithms under the same
positioning accuracy limits.

The obtained results show that Q-WKNN has a certain improvement in positioning
accuracy compared to WKNN, M-WKNN, GK, and LS-SVM.
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Table 4. Cumulative error probability of different algorithms under fixed accuracy limit on Zenodo.

Algorithm 1 m 1.5 m 2 m 2.5 m 3 m

Q-WKNN 26.28% 47.92% 59.42% 73.54% 82.21%
WKNN 15.36% 30.49% 46.41% 60.38% 73.26%

M-WKNN 15.31% 37.18% 47.18% 65.95% 73.69%
GK 19.18% 36.47% 49.01% 63.04% 72.02%

LS-SVM 16.15% 30.58% 46.05% 59.36% 70.8%

4.2.5. Time-Consumption Comparison of Algorithms

The proposed algorithm not only improves the accuracy but partly reduces the time
consumption of positioning. AP selection in the offline phase reduces the number of AP
used for fingerprint matching in the online phase. In addition, gross error elimination and
fluctuation smoothing in advance in the offline stage also saves the time in the online stage.

The time needed in a single location is mainly contains the signal measurement and
the delay of data transmission with the server. Otherwise, the time of fingerprint matching
is very short, and it is difficult for users to perceive. From the view of the fingerprint
matching algorithm alone, when it comes to large amount of positioning requests, the
advantage of short time consumption could be better reflected. Therefore, we use the
CPU time consumed by different positioning algorithms as a time-consumption criterion.
Table 5 shows the time consumption of algorithms in Table 4 with different amount of test
points. To avoid errors due to accidents, time-consumption experiments are carried out
five times, and the average is taken. The time unit in Table 5 is second(s).

Table 5. Time consumption for algorithms based on different test sample sizes on Zenodo.

Algorithm

Total Number of
Test Points 260 780 1300 2860 3900

WKNN 0.1 0.4 0.8 1.7 2.6
M-WKNN 0.1 0.5 1.1 2.3 3.4
Q-WKNN 0.1 0.3 0.6 1.3 2.0

GK 1.0 3.3 5.6 12.4 16.2
LS-SVM 0.2 0.5 1.2 2.6 3.8

Referring to Table 5, when the total number of test points is small, the positioning time
consumption is similar to that of algorithms other than GK, but the difference gradually
increases with number increase. According to the result of 3900, the positioning time con-
sumption of Q-WKNN, compared to WKNN, M-WKNN, GK, and LS-SVM, has decreased
by 23.1%, 41.2%, 87.6%, and 47.4%, respectively.

In Table 5, it is clear that the positioning time consumption of Q-WKNN with different
test point number is much less than that of other algorithms, and as the total number
increases, the gap becomes more obvious. In summary, Q-WKNN is superior to the
comparison algorithms in real-time performance.

5. Conclusions

We presented an RSS transform-based WKNN algorithm after smoothing signal fluc-
tuations for Wi-Fi indoor positioning. After deducing the relationship between physical
distance and RSS according to a signal propagation model, the base Q was introduced to
smooth RSS fluctuation. As Manhattan distance valued every element’s contribution at
the same degree, it is adopted as a similarity measurement to compare our Q based RSS
transformations with direct RSS in aspect of the fluctuation’s smoothing. In addition, AP
selection and an adaptive K algorithm were proposed to further improve the positioning
accuracy and real-time performance of Q-WKNN. To verify the algorithm’s effectiveness
and application range, experiments were carried out on two datasets with different charac-
teristics. The results show that Q-WKNN has better positioning accuracy than common



Sensors 2021, 21, 5685 17 of 18

algorithms WKNN, M-WKNN, GK, and LS-SVM, and it consumes much less positioning
time. In conclusion, the algorithm is suitable for areas where the AP is relatively fixed, and
its superiority is better reflected when the signal fluctuates sharply due to environmental
changes. While the proposed algorithm achieves several improvements, there is still room
to increase positioning accuracy, such as to separately consider data on rest days and
working days to reduce positioning errors.
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