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Abstract

Background and Aims: To evaluate the expression of microRNA 132 (miR‐132) in

fetuses with normal growth and in fetuses with late‐onset growth restriction (FGR).

Methods: In a prospective cohort study, 48 fetuses (24 with late‐onset FGR and 24

with normal growth) were scanned with Doppler ultrasound after 34 weeks to

measure the umbilical artery and middle cerebral artery pulsatility indices and

followed until birth. Subsequently, blood samples from the umbilical cord were

collected to evaluate the expression of miR‐132 by means of Real‐time quantitative

polymerase chain reaction, determining the existence of normality cut‐offs and

associations with birth weight (BW) centile, cerebroplacental ratio multiples of the

median (CPR MoM), and intrapartum fetal compromise (IFC).

Results: In comparison with normal fetuses, late‐onset FGR fetuses showed

upregulation of miR‐132 (33.94 ± 45.04 vs. 2.88 ± 9.32 2−ddCt, p < 0.001). Using 5

as a cut‐off we obtained a sensitivity of 50% and a specificity of 96% for the

diagnosis of FGR, while for IFC these values were respectively 27% and 73%.

Expression of miR‐132 was associated with BW centile but not with CPR MoM.

Finally, the best detection of IFC was achieved combining miR‐132 expression and

CPR MoM (AUC = 0.69, p < 0.05).

Conclusion: Fetuses with late‐onset FGR show upregulation of miR‐132. Further

studies are needed to investigate the role of miR‐132 in the management of late‐

onset FGR.
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1 | INTRODUCTION

Late‐onset fetal growth restriction (FGR) is characterized by an

unbalance between fetal demands and placental supply occurring

after Week 32, which results in low cerebroplacental ratio (CPR)

values regardless of fetal birth weight (BW).1,2 Fetal hypoxia in late‐

onset FGR is usually mild and subtle, with hemodynamic changes

limited to the middle cerebral and umbilical arteries.1 However, it can

also cause perinatal mortality and morbidity.3 And just as importantly,

it can lead to suboptimal dendritic formation, and poorer postnatal

Health Sci. Rep. 2022;5:e558. wileyonlinelibrary.com/journal/hsr2 | 1 of 8

https://doi.org/10.1002/hsr2.558

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2022 The Authors. Health Science Reports published by Wiley Periodicals LLC

https://orcid.org/0000-0002-8783-6710
mailto:jose.morales@uv.es
https://onlinelibrary.wiley.com/journal/23988835


cognitive status.4,5 Consequently, detection of late‐onset FGR and

intrapartum fetal compromise (IFC) has become of key importance to

prevent neurological long‐term consequences. Unfortunately, current

models based on estimated fetal weight and Doppler ultrasound

(umbilical, middle cerebral, and uterine arteries pulsatility indices),

alone or combined with serological markers such as placental growth

factor, have not proven to be accurate enough for clinical

diagnosis,6–9 making the search for new determinants of FGR and

IFC a key issue in fetal medicine.

MicroRNAs (miRNAs) are small RNA sequences with the ability

to regulate gene expression by means of inhibition of translation or

promotion of messenger RNA (mRNA) degradation.10–13 Cell culture

and clinical experimentation have evidenced several miRNAs related

to neuronal function.14,15 Among them outstands miRNA‐132

(miR‐132) for its important role in maintaining and promoting

neuronal activity: In fact, miR‐132 behaves physiologically as a

dynamic regulator of cognitive capacity, which is required not only

for dendrite and spine maturation but also for synaptic regulation

and function.16–21 Moreover, in patients with Alzheimer's, miR‐132

protects neurons against amyloid‐β (Aβ) and glutamate excitotoxi-

city and mitigates tau pathology.22,23 A protection was also

observed in patients with Parkinson's24 and Huntington's disease,25

where it has been evaluated as a treatment for relieving symptoms

and delaying disease progression.

Considering this background and to investigate new markers of

chronic fetal hypoxia and brain damage, we aimed to evaluate miR‐

132 expression in fetuses with late‐onset FGR, studying potential

roles in the diagnosis of FGR and IFC.

2 | METHODS

2.1 | Study design

This was a prospective cohort study of 48 fetuses, belonging to the

area controlled by the maternity of the public tertiary hospital La Fe

(Institution Review Board and Hospital Ethics Committee permission

number 2016/0453). To avoid overlapping with early‐onset FGR

cases, these fetuses underwent an ultrasound scan, between 34 and

41 weeks, which included a Doppler interrogation of the umbilical

artery pulsatility index (UA PI), middle cerebral artery pulsatility index

(MCA PI), and CPR (a ratio which reflects the relationship between

fetal demands and placental supply). UA PI and MCA PI were recorded

using color and pulse Doppler according to earlier descriptions,26,27

while CPR was calculated as the simple ratio between MCA PI and UA

PI.28 All pregnancies were followed‐up and delivered in 15 days or less

after the scan, between 35 and 41 weeks, and only the last

examination per fetus was included. To adjust for the effect of the

gestational age (GA), BW values were converted into local reference

centiles29 adjusting also for fetal gender, and CPR values were

converted into multiples of the median (MoM) dividing each Doppler

value by the 50th centile at each gestational age as earlier described.26

CPR medians (50th centile) were represented by the equation:

CPR 50th centile = − 3.814786276 + 0.36363249 × GA

− 0.005646672 × GA2

Where GA was gestational age in weeks with decimals.

All Doppler examinations were performed by the first author, a

certified teaching expert in obstetric ultrasound by the Spanish

Society of Obstetrics and Gynecology, using General Electric

Voluson® (E8/E6/730) ultrasound machines (General Electric Health-

care) with 2–8MHz convex probes, during fetal quiescence, in the

absence of fetal tachycardia, and keeping the insonation angle with

the examined vessels as small as possible and always below 30°. GA

was determined according to the crown‐rump length in the first

trimester. Multiple pregnancies and those complicated by congenital

fetal abnormalities were excluded. Gestational characteristics includ-

ing maternal age, weight, height, body mass index (BMI), parity,

number of gestations, and ethnicity were collected at examination

together with ultrasound parameters, while labor data including BW,

BW centile, mode of delivery, 5min Apgar score, cord arterial pH and

baby destiny were collected at birth.

2.2 | Study population

For comparison purposes, the study evaluated two groups of fetuses:

1. Late‐onset FGR: characterized by a BW<3rd centile or alterna-

tively a BW between the 3rd and 10th centile plus an abnormal

fetal Doppler (represented by a CPR < 0.6765 MoM).29–33

2. Normal fetuses: characterized by a BW>3rd centile plus a normal

Doppler (represented by a CPR > 0.6765 MoM). For study

purposes, small for gestational age fetuses (BW between the

3rd and 10th centile plus a normal fetal Doppler) were considered

within normality limits.

Other fetuses, like those with normal BW plus an abnormal CPR,

were not included in the study, although they represented an

interesting group for future research.30–34

IFC was considered when any of the following circumstances

were present: (1) abnormal intrapartum fetal heart rate (according to

the intrapartum fetal monitoring guidelines of the FIGO),35

(2) intrapartum fetal scalp pH <7.20 requiring cesarean section, and

(3) neonatal umbilical cord pH <7.20.

To avoid biases, we did not consider 5min Apgar score and

postpartum admission to neonatal care for outcome analysis due to

their close relationship with BW centile. Finally, the onset of labor

occurred for obstetric indications, and management was done as per

local protocol according to fetal progression at labor.

2.3 | Real‐time quantitative polymerase chain
reaction (qPCR) from umbilical cord plasma

Blood samples were collected from all fetuses in ethylenediaminete-

traacetic acid tubes just after delivery. Each one was centrifuged at
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2000–2500 rpm for 10min to separate the plasma, and this was stored

at −80°C until RNA extraction. Cell‐free total RNA (including miRNAs)

was isolated from 500µl of plasma using the miRNeasy Serum/Plasma

kit (Qiagen®), following the manufacturer's protocol. The concentration

of cell‐free total RNA (including miRNAs) was subsequently quantified

using NanoDrop One® UV‐spectrophotometer (Thermo Scientific).

Reverse transcription reactions were performed using the Taq-

Man® miRNA Reverse Transcription Kit (Part No. 4366596; Applied

Biosystems Inc.) and miRNA‐specific stem‐loop primers (Part No.

4366597; Applied Biosystems Inc.) and 100 ng of input cell‐free RNA

in a 20 µl RT reaction. Real‐time PCR reactions were performed in

triplicate, in scaled‐down 10 µl reaction volumes using 5 µl TaqMan®

2× Universal PCR Master Mix (Applied Biosystems Inc.) with No

UNG, 0.5 µl TaqMan® Small RNA assay (20×) (Applied Biosystems

Inc.), (hsa‐miR‐132 [Assay ID 000457]), 3.5 µl of nuclease‐free water,

and 1 µl of RT product. Real‐time PCR was carried out on an Applied

BioSystems QuantStudio5® thermocycler (Applied Biosystems Inc.).

We used hsa‐miR‐191‐5p (Assay ID 002299), which has been

previously used as an endogenous control to normalize the

expression of miRNAs in plasma samples. All the fold‐change data

were obtained using the delta‐delta Ct method ( ∆∆2 C‐ t or 2−ddCt).
36

2.4 | Statistical analysis

Continuous and categorical variables in the study populations,

including the expression of miR‐132, were compared using

Mann–Whitney U and Fisher tests. Afterward, values were depicted

in scattergrams and the presence of associations with BW centile or

CPR MoM was evaluated, including the existence of cut‐offs

differentiating normal from abnormal fetuses. Finally, the different

accuracies for the diagnosis of IFC were studied by means of ROC

analysis, determining the areas under the curve (AUC) and the 95%

confidence intervals (95% CI). p < 0.05 were considered significant.

Graphs and statistics were performed using GraphPad Prism® 5.0a

and StatPlus® Pro 7.3.3.2 for Apple Macintosh.

3 | RESULTS

Concerning the characteristics of the study population, in summary, it

included 48 fetuses scanned after 34 weeks, of which 19 (39.6%)

were males. The mean maternal age, gravidity, parity, and BMI were

32.5, 2, 0.5, and 23, and the mean GA at examination and delivery

was 38.5 and 39.1 weeks. Most pregnancies initiated labor with

induction (79.2%), delivering spontaneously (47.9%), and most

neonates were born uneventfully, accompanying the mother to the

maternity ward (85.4%). Moreover, despite the important proportion

of fetuses with growth restriction (58%), no fetus presented severe

hypoxia, suggested by an Apgar score below 7 at 5min or cord pH

below 7.10.

Table 1 compares normal versus FGR pregnancies. In summary,

fetuses in the FGR group were examined and delivered earlier

(p < 0.01), had a lower CPR MoM, BW, and BW centile (p < 0.0001)

and presented worse perinatal outcome (p < 0.01) which required

more frequent postnatal pediatric surveillance.

Figure 1 shows the expression of miR‐132 in FGR and normal

fetuses. Fetuses in the late‐onset FGR group presented a

significantly higher miR‐132 expression (p < 0.001). Moreover, most

fetuses in the normal group presented miR‐132 expressions (2 C‐dd t )

below 5.

Figure 2 shows the scattered values of the study population

depicted according to BW centile and miR‐132 expression. Most of

the miR‐132 cases with overexpression are correlated with lower BW

centiles, existing a clear correlation between both parameters

(R2 = 0.26). Moreover, the use of 5 (2−ddCt) as the cut‐off value for

miR‐132 expression showed a sensitivity of 50% and a specificity of

96%, for the diagnosis of FGR and a sensitivity of 27% and a

specificity of 73% for the diagnosis of IFC.

Figure 3 shows the scattered values of the study population

depicted according to CPR MoM and miR‐132 expression (2−ddCt).

No correlation was detected between miR‐132 expression and brain

sparing represented by CPR MoM (R2 = 0).

Table 2 shows the accuracies of several models (single and

combined) for the diagnosis of IFC. Models that included only single

parameters presented poor AUCs and were not significant, probably

due to the low number of cases. Concerning combined models, only

those including CPR MoM were significant although with moderate

AUC (0.69, p < 0.05). The addition of miR‐132 expression to CPR

MoM seemed to improve IFC detection (AUC from 0.65 up to 0.69),

while the effect of BW centile addition seemed to be null, suggesting

miR‐132 expression plus CPR MoM was the optimal combination for

the detection of IFC.

4 | DISCUSSION

4.1 | Principal finding

Analysis of umbilical blood at birth by means of qPCR showed that

miR‐132 was overexpressed in fetuses with late‐onset FGR. This

overexpression correlated with BW centile and could be incorporated

into a multivariable model to improve CPR detection of IFC.

4.2 | Research implications

A number of miRNAs have been related to the nervous system.37,38

However miR‐132, a member of the miR‐212/132 cluster, stands out

for its importance in neuronal survival.39–43 Production of miR‐132 is

crucial for neuronal function and is increased whenever the neuronal

tissue is threatened, not only by fetal hypoxia44,45 but also by other

harmful agents like Bupivacain46,47 or valproate.48 In this regard,

despite the mechanisms for miR‐132 stimulation having not been

fully described, it seems to be a common end‐point for different

protection pathways, like those acting by means of acetylcholine,49
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TABLE 1 Comparisons between normal and late‐onset fetal growth restriction (FGR) populations

Variable
Late‐onset FGR (N = 24) (50%) Normal fetuses (N = 24) (50%)

Continuous/Categorical data
Mean (SD), median (1st, 3rd
Quartiles)/N (%)

Mean (SD), median (1st, 3rd
Quartiles)/N (%) p value*/**

Maternal characteristics

Maternal age (years) 31.5 (5.2), 31.0 (29, 34.5) 34.0 (4.2), 34 (31.0, 36) NS

Gravidity 1.7 (1.0), 1 (1, 2) 2.2 (1.4), 2 (1, 3) NS

Parity 0.4 (0.6), 0 (0, 1) 0.5 (0.6), 0 (0, 1) NS

Maternal prepregnancy weight (kg) 58.8 (9.2), 58.5 (50.5, 66.7) 61.5 (10), 62 (53.5, 69.2) NS

Maternal height (cm) 162.6 (5.6), 161.5 (158.3, 167.8) 160.9 (8.3), 161.5 (154.5, 167) NS

Maternal body mass index 22.2 (3), 22.5 (20.1, 24.7) 23.7 (3.4), 23.7 (20.8, 26.6) NS

Smoking during pregnancy 8 (33.3) 4 (16.7) NS

Fetal examination

Fetal gender (male) 9 (37.5) 10 (41.7) NS

Gestational age at ultrasound examination (week) 37.9 (1.5), 37.3 (36.7, 38.7) 39.1 (1), 39.1 (38.6, 40) <0.01

Gestational age at delivery (week) 38.4 (1.5), 37.9 (36.4, 39.9) 39.7 (1.2), 39.7 (38.8, 40.8) <0.01

Interval examination‐delivery (day) 3.5 (2.8), 3 (1.2, 5) 4.3 (3.5), 4 (1.2, 6) NS

CPR MoM 0.70 (0.26), 0.62 (0.49, 0.96) 1.2 (0.3), 1.2 (1, 1.4) <0.0001

Birth weight (g) 2278 (320), 2340 (2053, 2538) 3179 (453), 3145 (2753, 3575) <0.0001

Birth weight centile 1.5 (1.9), 1 (0, 2) 35.3 (26.4), 29.5 (13.75, 57.5) <0.0001

Gestational age at ultrasound examination (week) 37.9 (1.5), 37.3 (36.7, 38.7) 39.1 (1), 39.1 (38.6, 40) <0.01

Gestational age at delivery (week) 38.4 (1.5), 37.9 (36.4, 39.9) 39.7 (1.2), 39.7 (38.8, 40.8) <0.01

Labor and delivery

IFC 11 (45.8) 2 (8.3) <0.01

Apgar <7 at 5min 0 (0) 0 (0) NS

Arterial pH <7.20 6 (25) 3 (12.5) NS

Arterial pH <7.10 0 (0) 0 (0) NS

Type of event leading to labor onset

Spontaneous labor onset 2 (8.3) 6 (5) NS

Induction of labor 21 (87.5) 17 (70.8) NS

Elective cesarean 1 (4.2) 1 (4.2) NS

Via of delivery

Cesarean section (scheduled) 1 (4.2) 1 (4.2) NS

Cesarean section (failure to progress) 2 (8.3) 2 (8.3) NS

Cesarean section (abnormal CTG) 7 (29.2) 2 (8.3) NS

Assisted vaginal delivery 6 (25) 4 (16.7) NS

Spontaneous vaginal delivery 8 (33.3) 15 (62.5) NS

Neonate destiny

Maternal ward 17 (70.8) 24 (100) <0.01

Neonates ward 7 (29.2) 0 (0) <0.01

Pediatric Intensive care unit 0 (0) 0 (0) NS

Abbreviations: BW, birth weight; CPR MoM, cerebroplacental ratio multiples of the median; FGR: fetal growth restriction: BW<3rd centile or alternatively
BW<10th centile plus abnormal Doppler (represented by a CPR < 0.6765 MoM), IFC: intrapartum fetal compromise; IFC, intrapartum fetal
compromise; MoM, multiples of the median, *Mann–Whitney U test, **Fisher test; SD, standard deviation.
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F IGURE 1 Expression of miR‐132 in normal fetuses and in
fetuses affected with late‐onset growth restriction (FGR), (in red).
Fetuses in the FGR group presented a significantly higher miR‐132
expression (p < 0.001). Boxes represent the median and interquartile
range. Whiskers represent the 90th and 10th centiles. Most fetuses
in the normal group presented miR‐132 expressions below 5 2−ddCt

F IGURE 2 Scattered values of the study population depicted
according to birth weight (BW) centile and miR‐132 expression
(2−ddCt). A correlation was detected between miR‐132 expression
and BW centile (R2 = 0.26). Lines represent the exponential
correlation with its 95% confidence interval. Most of the cases with
miR‐132 overexpression present low BW centiles. Most fetuses in
the normal group presented miR‐132 expressions below 5 2−ddCt

F IGURE 3 Scattered values of the study population depicted
according to cerebroplacental ratio multiples of the median (CPR MoM)
and miR‐132 expression (2−ddCt). No correlation was detected between
miR‐132 expression and CPR MoM (R2 = 0.01). Lines represent the
linear correlation with its 95% confidence interval. Most fetuses in the
normal group presented miR‐132 expressions below 5 2−ddCt

TABLE 2 Accuracy of several models for the prediction of
intrapartum fetal compromise (IFC)

Logistic regression
model AUC

Lower
95% CI

Upper
95% CI p Value

miR‐132 alone 0.60 0.40 0.80 NS

CPR MoM alone 0.65 0.47 0.82 NS

BW centile alone 0.64 0.46 0.81 NS

CPR MoM+miR‐132 0.69 0.51 0.86 P < 0.05

CPR MoM+BW centile 0.65 0.47 0.82 NS

miR‐132 + BW centile 0.62 0.45 0.80 NS

CPR MoM+BW
centile + miR‐132

0.69 0.58 0.87 P < 0.05

Note: The best model included cerebroplacental ratio multiples of the

median (CPR MoM) and expression of miR‐132 in neonatal cord blood. No
benefit was obtained adding birth weight (BW) centile.

Abbreviations: AUC, areas under the curve; CI, confidence interval.

melatonin,50 and especially brain‐derived neurotrophic factors

(BDNF).51–55

In view of the previous evidence, we expected in our population

not only the observed association with BW centile but also some

degree of correlation between miR‐132 expression and CPR MoM.

However, we were surprised to see that miR‐132 expression was

only correlated with BW centile.
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A possible explanation for this apparent incongruence might be

the existence of different sources for miR‐132 expression, not

necessarily the brain in direct relation with cerebral vasodilation.

Accumulating evidence indicates that miRNAs are secreted in

exosomes or microvesicle‐encapsulated forms56,57 or released in

vesicle‐free forms bound to proteins.58 Moreover, miR‐132 produc-

tion has also been related to hepatic,59 cardiac,60,61 and adipose

tissue62 activity, which are also plausible sources for miR‐132

production in fetuses with FGR. Therefore, blood levels of miR‐132

do not have necessarily reflect miR‐132 activity in the brain, which

may be indeed a target for external production. In this regard and

despite the well‐known effect of miR‐132 on neuronal tissue,

maternal serum levels could be the resultant of miR‐132 production

at different sites and might not necessarily correlate with CPR MoM.

4.3 | Clinical implications

Regardless of its origin, we have preliminarily proved that miR‐132

overexpression occurs in FGR fetuses and that this information might

be added to ultrasound to improve the prediction of IFC. However,

this is of little use considering that before labor there is no access to

fetal cord blood without performing invasive procedures. In this

regard, it is yet to be established that this overexpression can be

detected in maternal blood. However, some findings support this

hypothesis: on one hand, miR‐132 is transferred via exosomes to

proximal endothelial cells to maintain brain vascular integrity.63 On

the other, hypoxia‐related miRNA produced in the placenta can cross

the placental barrier and be detected in maternal blood.64 Therefore,

if other miRNAs can circulate between the mother and the fetus,

miR‐132 might also be detected in maternal serum and become a

marker of outcome in an isolated or combined way. Therefore, a

practical consequence of miR‐132 overexpression might be the

possibility to detect differential levels in maternal blood, increasing

the predictive ability for IFC. This will be the object of future

research.

4.4 | Comparison with earlier references

Regarding previous references, while we studied fetal blood in late‐

onset FGR cases without pre‐eclampsia, earlier works evaluated

maternal blood in early‐onset pregnancies frequently affected with

pre‐eclampsia. Moreover, they did not study miR‐132.65–70 Conse-

quently, we could not find previous references with which to

compare our work.

4.5 | Strengths and limitations

The main strength of this study is its novelty, as we have been the

first investigators to evaluate miR‐132 in fetal cord blood and the

first to describe an overexpression in late‐onset‐FGR. Shortcomings

are the low number of cases, which limits the ability to obtain robust

conclusions, the nonspecificity of fetal blood origin as above

indicated, the possibility that miRNA expression varies with GA,

and the absence of postnatal follow‐up in relation to neurocognitive

evolution.

In conclusion, in comparison to fetuses with normal growth,

fetuses with late‐onset FGR present a fold difference which suggests

upregulation of miR‐132 in cord blood serum. Future studies are

needed to investigate the role of miR‐132 expression in the diagnosis

and management of late‐onset FGR.
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