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ABSTRACT Microorganisms are key decomposers of vertebrate mortalities, breaking
down body tissues and impacting decomposition progress. During human decomposi-
tion, both extrinsic environmental factors and intrinsic cadaver-related factors have the
potential to impact microbial decomposers either directly or indirectly via altered physi-
cal or chemical conditions. While extrinsic factors (e.g., temperature, humidity) explain
some variation in microbial response during human decomposition in terrestrial settings,
recent work has noted that even under the same environmental conditions, individuals
can have different decomposition patterns, highlighting the potential for intrinsic factors
to impact microbial decomposers. The goal of this study was to investigate the effects
of several intrinsic factors (age, sex, diseases at time of death, and body mass index
[BMI]) on chemical and microbial changes in decomposition-impacted soils. In a field
study conducted at the University of Tennessee Anthropology Research Facility, soils
were collected from the decomposition-impacted area surrounding 19 deceased human
individuals through the end of active decomposition. Soil physicochemical parameters
were measured, and microbial (bacterial and fungal) communities were assessed via
amplicon sequencing. BMI was shown to explain some variation in soil pH and microbial
response to human decomposition. Hierarchical linear mixed (HLM) effects models
revealed that BMI category significantly explained variation in pH response within
decomposition-impacted soils over time (HLM F = 9.647; P , 0.001). Additionally, the rel-
ative abundance of soil Saccharomycetes in decomposition soils under underweight
donors displayed little to no changes (mean maximum change in relative abundance,
16.6%), while all other BMI categories displayed an increased relative abundance of
these organisms over time (normal, 150.6%; overweight, 164.4%; and obese, 164.6%)
(HLM F = 3.441; P = 0.11). Together, these results reveal intrinsic factors influencing
decomposition patterns, especially within the soil environment, and suggest BMI is an
important factor for controlling decomposition processes.

IMPORTANCE This work begins to address questions about interindividual variation in
vertebrate decomposition attributed to intrinsic factors, that is, properties of the carcass or
cadaver itself. Most research on factors affecting decomposition has focused on the extrin-
sic environment, such as temperature or humidity. While these extrinsic factors do explain
some variation in decomposition patterns, interindividual variability is still observed.
Understanding how intrinsic factors influence microbial decomposers will help reveal the
ecological impacts of decomposition. This work also has forensic applications, as soil
chemical and biological changes have been suggested as indicators of postmortem inter-
val. We reveal factors that explain variation in the decomposition environment that should
be considered in these estimates. This is particularly important as we consider the implica-
tions of variations in human populations due to diet, age, BMI, disease, toxicological load-
ing, etc. on forensic investigations dealing with decomposing remains.
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Carcass decomposition is an important ecosystem process, stimulating biological ac-
tivity and nutrient cycling in the local environment. In terrestrial settings, nutrient-

rich fluids from decomposing animal carcasses are flushed into the surrounding soil
during decomposition, altering soil chemistry and increasing soil microbial activity.
Changes in soil chemistry include increased electrical conductivity, ammonium con-
centrations, and dissolved organic carbon and nitrogen content (1–3). Soil microbes
also respond to decomposition products, resulting in altered community composition
and activity. This includes decreased alpha diversity, and increased relative abundance
of Firmicutes and Bacteroidetes during human decomposition (4, 5).

While general patterns in soil responses to human decomposition have been identi-
fied, variability in the direction and magnitude of soil responses has been noted. For
example, change in soil pH is highly variable between studies. While Perrault and
Forbes (6) and Aitkenhead-Peterson et al. (7) reported decreased pH in decomposition-
impacted soils, other studies have reported increased pH (3, 8–10). It is unknown why
differences in soil pH response are observed between sites and studies. However, given
that pH is a key abiotic control on microbial communities, this variation in soil chemical
response likely impacts the activity and succession of soil microbial decomposers dur-
ing decomposition (11) and may constrain the fate of carcass-derived carbon and
nutrients in the ecosystem.

Both extrinsic environmental factors (e.g., temperature, season, moisture, etc.) and
intrinsic cadaver-related factors (e.g., sex, diseases, mass, etc.) have the potential to
impact decomposition rates and patterns. Specifically, warmer temperatures increase
insect and microbial activity, and more rapid decomposition rates are observed com-
pared to cooler temperatures (12). Moisture also affects decomposition by mediating
microbial activity (13). However, even when extrinsic factors are controlled for, such as
when multiple carcasses start decomposition at the same time and experience the
same local environmental conditions, differential decomposition patterns have been
observed among individuals (1, 2, 14), suggesting that intrinsic factors may also impact
decomposition patterns. Genetics, age, sex, diet, body mass index (BMI), and diseases
(including therapeutic interventions) can lead to differences in body physiology or
chemistry and microbiome between individuals (15–20) that may ultimately impact
decomposer activity during decomposition. This could be a direct effect on soil physio-
chemistry and microbes because of changes in tissue decomposition product chemis-
try, or an indirect effect, for example, by influencing insect or scavenger behavior,
which then alters decomposition progression (Fig. 1).

Changes in soil chemistry and microbial succession in response to human decomposi-
tion have been suggested as potential markers to estimate the postmortem interval (PMI)
as evidence in death investigations (21–23); therefore, understanding sources of variation
in human decomposition is critical for forensic applications. Both extrinsic and intrinsic fac-
tors are sources of variability that can impact PMI; however, a majority of decomposition
studies have focused only on extrinsic factors (1, 10, 24–27). A few terrestrial decomposi-
tion studies have shown that the inclusion of BMI in soil chemistry-based PMI models
improves model prediction (2, 28). In contrast, microbial abundance-based PMI models
(23, 29) have not incorporated any extrinsic or intrinsic variables in model construction
and rely solely on sequencing data. Additionally, the few studies addressing the effects
of intrinsic factors on microbial succession concentrate on internal microbial commun-
ities (30–32), leaving questions about the influence of intrinsic factors on environmental
microbes during decomposition.

The purpose of this study was to investigate the effects of several intrinsic factors (age,
sex, diseases at time of death, and BMI) on chemical and microbial changes in decomposi-
tion fluids and soils impacted by the fluids during human decomposition. Our overarching
hypothesis was that differences in these intrinsic factors would lead to changes in the
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magnitude of soil chemical response and altered microbial successional patterns. Based on
the demographics of our study population (age $40), BMI is a reasonable proxy for body
composition, where a higher BMI is associated with a greater proportion of fat tissue
relative to muscle tissue (33, 34). We hypothesized that differences in the fat:muscle com-
position of a body changes the nutrient resources available to the environment during
decomposition and therefore may alter microbial communities (e.g., a higher fat content
might result in selection for lipid metabolizers). Additionally, we examined the effects of
diseases on decomposition. Diseases are known to alter microbiome composition and tis-
sue chemistry antemortem (18); thus, we hypothesized that they would also affect the
postmortem diversity and activity of microbial decomposers. To address our questions, 19
deceased human individuals were studied in an outdoor surface decomposition experi-
ment at the University of Tennessee Anthropology Research Facility (ARF) from February
2019 to March 2020. Soil chemical analyses were combined with characterization of soil
bacterial and fungal communities using amplicon sequencing to link these differences to
intrinsic factors, ultimately gaining a better understanding of soil dynamics during human
decomposition.

RESULTS
BMI and decomposition time. BMI of the 19 individuals used in this study ranged

from 14.2 to 55.1, with a median BMI of 24.6. In general, as BMI of the individual
increased, the time (in accumulated degree hours [ADH]) to complete active decompo-
sition increased (linear mixed-effects model F = 39.58; P , 0.001) (Fig. S1A in the sup-
plemental material). ADH to complete active decomposition ranged from 1,500 for the
lowest BMI donor to 18,500 for the highest BMI donor, where the completion of active
decomposition was determined as the stage when the abdomen was completely

FIG 1 During human decomposition, host-associated microbes, environmental microbes, insects, and
scavengers work together to break down body tissues. Liquified decomposition products are flushed into
soil where microbes respond to the influx and changes in soil chemistry. Antemortem conditions, such as
body mass, age, diet, diseases, or drugs and other treatments, can influence decomposer (i.e., scavengers,
insects, and microbes) activity leading to variability in decomposition rate and progression.
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collapsed, and the body was no longer actively producing visible decomposition fluids.
While not significant, males in this study had slightly higher BMIs than females
(Wilcoxon W = 34; P = 0.4002), and BMI decreased with age at death (ANOVA F = 3.121;
P = 0.095) (Fig. S1B and C). Differences in BMI by end-of-life diseases were only
observed for cardiovascular diseases (W = 10, P = 0.019), where donors with cardiovas-
cular diseases were associated with higher BMI (Fig. S2).

Decomposition effects on soil physiochemistry and microbial activity. Decomposition
significantly increased soil electrical conductivity (EC) compared to control soils but had no
consistent or significant effect on soil pH (hierarchical linear mixed [HLM] effects model pH
P = 0.149; EC P = 0.002) (Fig. S3). When normalized to the control soils (to account for back-
ground variability), the log response ratio of soil EC significantly increased over time
(F = 27.93; P, 0.001). In contrast, the log response ratio of soil pH was not significantly dif-
ferent over time (F = 0.242; P = 0.623) due to high variability between donors. In particular,
while a majority of donors (n = 14) displayed decreases in soil pH, some donors (n = 5)
resulted in increased pH (Fig. S3). Similar to EC, decomposition resulted in increased heter-
otrophic respiration during decomposition (F = 11.39; P = 0.029). The log response ratio of
soil parameters did not significantly differ between seasons or due to the sex of the indi-
vidual (Table 1). It was also noted that at the end of active decay, all the soil parameters
measured were still altered compared to initial conditions.

To assess soil microbial activity in soils, we measured the activity of four common
soil extracellular enzymes: b-glucosidase (BG), N-acetyl-b-D-glucosaminidase (NAG),
phosphatase (PHOS), and leucine aminopeptidase (LAP). Decomposition significantly
altered the activity of NAG (F = 6.523; P = 0.012); however, no significant differences
were detected between decomposition and control soils over time for BG (F = 0.626;
P = 0.431), PHOS (F = 2.300; P = 0.133), and LAP (F = 0.054; P = 0.817) in decomposi-
tion-impacted soils within our data set. Additionally, decomposition time (in ADH) did
not significantly describe changes in the log response ratio (LRR) of all four enzymes
(Table 1). However, general patterns show NAG and PHOS activity increased (Fig. S3),
while the protein-degrading enzyme LAP was variable between individuals (n = 13
decreased) in soils during decomposition (Fig. S3).

Principal-component analysis (PCA) of normalized (LRR) soil parameters (pH, EC, BG,
NAG, PHOS, and LAP) revealed relationships between soil parameter responses during
decomposition (Fig. 2). Principal component (PC) 1 was associated with time and related to
an increase in soil parameters EC, PHOS, NAG, and BG. Soil response varied along PC2,
which was related to differences in pH and LAP activity between individuals.

BMI and soil responses. We observed a relationship between variability in soil pH
response and donor BMI. Hierarchical linear mixed-effects models revealed that BMI cate-
gory significantly explained variation in pH response within decomposition-impacted soils
over time (HLM F = 9.647; P, 0.001) (Table 1). Specifically, soil pH increased in decomposi-
tion-impacted soils of underweight individuals but decreased under normal, overweight,
and obese donors (Fig. 3). Soil pH and LAP activity were positively correlated (Spearman
r = 0.73; P , 0.001) during the study period, with LAP activity increasing with pH
(F = 4.781; P = 0.032). However, the change in LAP activity over time (F = 2.444; P = 0.131)
was not significantly different between BMI categories.

Diseases and soil responses.We sought to determine if donors’ diseases explained
some of the variability in soil parameters. The primary effects of the presence and ab-
sence of four disease categories (cancer, respiratory diseases, cardiovascular diseases,
and neurological diseases) and their influence on soil parameters over time were eval-
uated with HLM, and results are reported in Table S1. A few trends were observed
between donor disease state and soil responses during decomposition. First, pH
decreased to a greater extent in the decomposition soil of individuals with neurologi-
cal diseases compared to those without (HLM F = 30.79; P , 0.001). Microbial respira-
tion increased to a greater extent for those with cardiovascular diseases over time
(F = 5.077; P = 0.026). Individuals with cancer displayed a greater decrease in soil LAP
activity (F = 4.201; P = 0.045) and less of an increase in microbial respiration (F = 8.776;
P = 0.004) with the progress of decomposition.
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Microbial communities. 16S rRNA gene (V4 region) sequencing yielded a total of
17,372,327 raw reads. Removal of primers, erroneous reads ($1 ambiguous bases,
50 . bp . 275), sequences that aligned poorly, and chimera and nonbacterial sequen-
ces resulted in 10,844,074 remaining reads. In R, control samples (e.g., extraction
blanks) and singletons were removed leaving 10,579,899 reads across 134 samples
with a mean library size of 78,954 reads. Reads were clustered into 33,363 operational
taxonomic units (OTUs) at 97% similarity, with a mean of 3,958 OTUs per sample.
Good’s coverage for bacterial libraries was greater than 0.994 for all samples; therefore,
libraries were randomly subsampled to the smallest 16S library size (n = 26,780) before
alpha- and beta-diversity analyses.

Gene amplification of the ITS2 region yielded a total of 13,044,056 raw reads. Removal
of primers, erroneous reads ($1 ambiguous bases, bp, 200), and chimera and nonfungal

TABLE 1 Analysis of variance results from hierarchical linear mixed-effects models for the log response ratio of each soil parameter and
bacterial and fungal community Chao1 richness and inverse Simpsona

Factors ADH
BMI
category Sex Season

ADH: BMI
category ADH: sex

BMI category:
sex

ADH: BMI category:
sex

pH LRR
F 0.242 5.392 0.001 1.880 9.647 0.017 3.833 3.066
P 0.623 0.017 9.81 0.208 ,0.001 0.897 0.045 0.029

Electrical conductivity LRR
F 27.93 2.659 0.145 0.195 1.709 0.645 0.604 0.247
P ,0.001 0.050 0.704 0.899 0.235 0.439 0.613 0.861

Heterotrophic respiration LRR
F 11.39 0.640 0.173 0.550 0.353 0.010 0.211 0.016
P 0.029 0.595 0.680 0.652 0.796 0.922 0.888 0.904

b-Glucosidase LRR
F 1.117 0.250 0.844 0.583 0.578 3.655 1.923 1.364
P 0.296 0.860 0.379 0.643 0.632 0.062 0.179 0.265

N-acetyl-b-D-glucosaminidase LRR
F 0.364 0.519 1.487 1.173 3.096 6.157 2.500 4.945
P 0.549 0.677 0.249 0.379 0.035 0.016 0.107 0.004

Alkaline phosphatase LRR
F 1.44 0.583 0.005 0.031 0.875 0.188 0.236 0.476
P 0.235 0.636 0.945 0.992 0.460 0.670 0.870 0.701

Leucine amino peptidase LRR
F 1.844 1.803 0.179 0.595 2.444 0.056 0.509 0.298
P 0.201 0.158 0.674 0.621 0.131 0.817 0.678 0.826

16S Chao1
F 5.944 0.1612 0.121 0.108 1.334 0.665 0.041 0.932
P 0.018 0.920 0.725 0.953 0.274 0.419 0.988 0.432

16S inverse Simpson
F 5.335 1.400 0.432 0.015 3.705 2.239 0.478 0.009
P 0.025 0.287 0.525 0.997 0.017 0.141 0.703 0.999

ITS Chao1
F 15.00 0.081 0.136 0.662 0.899 0.056 0.056 0.524
P ,0.001 0.970 0.718 0.598 0.448 0.799 0.982 0.667

ITS inverse Simpson
F 5.700 1.100 0.005 0.815 0.957 0.006 0.923 1.075
P 0.021 0.370 0.943 0.522 0.420 0.939 0.447 0.368

aOnly samples#5.000 ADH were used to capture the linear section of parameter responses. Significant (P, 0.05) models are indicated in bold italics. 16S, bacterial; ITS,
fungal; LRR, log response ratio.
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sequences resulted in 9,052,099 remaining reads. After the removal of control samples and
singletons in R, 9,037,408 reads across 134 samples remained, with a mean library size of
67,443. Reads were clustered into 13,536 operational taxonomic units (OTUs) at 97% simi-
larity, with a mean of 852 OTUs per sample. For all fungal libraries, Good’s coverage was
greater than 0.991. Libraries were randomly subsampled to the smallest ITS library size
(n = 13,193) before alpha- and beta-diversity analyses.

Decomposition fluid microbial communities. Chao1 richness estimates of the
decomposition fluid bacterial and fungal communities ranged from 228.93 to 739.95 and
53.49 to 381.38, respectively, while inverse Simpson diversity values ranged from 4.31 to
24.87 and 1.08 to 47.07, respectively. Generally, alpha diversity (Chao1 richness and inverse
Simpson diversity estimate) of decomposition fluid bacterial communities increased with
greater total ADH to complete active decomposition. Mean richness was 318.3 for donors
that completed decomposition quickly (ADH#5,000) and 517.1 for donors that took longer
to decompose (ADH$10,000). Other than total ADH, no variables tested explained the vari-
ation in Chao1 or inverse Simpson estimates of decomposition fluid bacterial communities

FIG 2 Principal component analysis (PCA) of soil chemical profiles during decomposition. Blue
arrows represent principal component (PC) loadings for each variable included in the analysis. Point
size corresponds to donor BMI while color denotes sample time as a percentage of the total time
required for that donor to complete active decomposition in ADH.

FIG 3 Donor BMI impacts soil pH response during human decomposition. Decomposition of underweight
(purple) donors resulted in increased soil pH, while pH decreased during decomposition of normal (blue),
overweight (green), and obese (yellow) donors. Lines represent the linear relationship between soil pH and
time (in ADH) for each BMI category and gray shading shows the 95% confidence interval for each linear
relationship.
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between donors, while none of the variables tested significantly explained fluid fungal com-
munity diversity changes (Table S2). Furthermore, no extrinsic or intrinsic factors tested,
such as season, age, sex, BMI, and respective diseases, significantly explained (permutational
multivariate analysis of variance [PERMANOVA] P. 0.05) the variation in bacterial or fungal
community composition of decomposition fluid communities (Table S2).

Microbial communities found in the decomposition fluid emitting from the donors
were comprised of two to five different bacterial phyla (Fig. 4). A majority of the bacte-
rial communities were comprised of Firmicutes and Proteobacteria with a mean relative
abundance across individuals of 63% and 28%, respectively. At the class level, decompo-
sition fluid communities were dominated by Clostridia (39%), Gammaproteobacteria (29%),
and Bacilli (28%). High interindividual variability was observed between fluid bacterial
communities at the genus level; however, Oblitimonas (25%), Lactobacillus (22%), and
Ignatzchineria (20%) were commonly observed. Fungal communities in the decompo-
sition fluid were comprised of one to four dominant phyla (Fig. 4) depending on the
individual. Across all individuals, the fungal phylum Ascomycota dominated the
decomposition fluid community, with an average relative abundance of 91% across
individuals. A majority of these Ascomycota belonged to the fungal class Saccharomycetes
(78%) (Fig. 4); however, a subset of individuals (n = 7) also contained Sordariomycetes in
their decomposition fluids. Aside from one individual (TOX002), a majority of fungal organ-
isms in decomposition fluid (mean 65%) were of the genus Yarrowia, a Saccharomycete.
The genus Dipodascus was also present in fluid samples from a subset of individuals (n = 5).
Interestingly, the common human fungal commensal Candida (class Saccharomycetes) was
only detected in the decomposition fluid of one individual (TOX017) at relative abundances
higher than 5%.

Soil microbial communities. Soil bacterial communities had greater diversity than
decomposition fluid communities (6 times higher Chao1 and 6.5 times higher inverse
Simpson index). In general, species richness and diversity of soil bacterial and fungal
communities decreased as decomposition progressed (Fig. S4). The contribution of
intrinsic and extrinsic factors to interindividual variability in diversity was investigated
using HLM. Factors of interest included season, body mass index (BMI), sex, and the
presence/absence of different diseases at time of death (Table 1 and Table S1). We
found that neither season nor sex had a significant effect (P . 0.05, Table 1) on Chao1
richness or inverse Simpson estimates. BMI category was not related to bacterial rich-
ness; however, there were differences in diversity (inverse Simpson estimates) over
time by BMI category (HLM F = 3.705; P = 0.017). Specifically, diversity in soils below
underweight and normal individuals decreased, while diversity in soils below over-
weight and obese individuals remained constant through 5,000 ADH. BMI category did
not explain differences in soil fungal richness or alpha diversity (Table 1).

Changes in soil chemistry were related to some of the differences in microbial com-
munities over time. Within bacterial communities, richness (F = 13.09; P, 0.001) and diver-
sity (F = 6.331; P = 0.014) estimates decreased as soil EC increased. For fungal communities,
richness (F = 5.424; P = 0.023) and diversity (F = 17.19; P, 0.001) increased with increasing
LAP activity in decomposition soils. Fungal community diversity was also shown to increase
with increasing BG activity (F = 12.41; P, 0.001) and soil moisture (F = 30.06; P, 0.001).

Some trends were observed with microbial richness (Chao1 estimates) and disease
(Table S1). Specifically, change in bacterial Chao1 estimates over time differed between
donors with and without respiratory (F = 4.640; P = 0.035) or neurological (F = 5.237;
P = 0.026) diseases. While no overall relationship between Chao1 estimates and the
presence of cancer was observed using HLMs, we did observe lower richness in decom-
position soils surrounding individuals with cancer compared to those without cancer
at one time point: 4,500 ADH (Wilcoxon P = 0.01). The presence or absence of disease
at time of death did not explain differences in fungal richness or diversity (Table S1).
We did not observe any relationship between the presence of cancer, cardiovascular,
respiratory, or neurological diseases and bacterial diversity in decomposition soils.

Soil microbial community structure. Microbial community composition was altered
in response to human decomposition (Fig. 5A and B). Both bacterial (PERMANOVA

BMI Impacts Soil Microbiology during Human Decomposition mSphere

September/October 2022 Volume 7 Issue 5 10.1128/msphere.00325-22 7

https://journals.asm.org/journal/msphere
https://doi.org/10.1128/msphere.00325-22


F = 2.25; r2 = 0.025; P = 0.004) and fungal (F = 2.97; r2 = 0.023; P = 0.002) community com-
position was significantly different in decomposition-impacted soils compared to controls.
Constrained analysis of principal coordinates (CAP) of Bray-Curtis distances was used to
relate changing microbial community composition to soil environmental parameters. The
first two CAP axes explained 14.6% and 16% of bacterial and fungal community variation,
respectively (Fig. 5A and B). In both bacterial (Fig. 5A) and fungal (Fig. 5B) CAP analyses,

FIG 4 Relative abundance of bacterial (column 1) and fungal (column 2) taxa in decomposition fluid samples at the phylum (row 1), class (row 2), and
genus (row 3) levels.
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gravimetric moisture and temperature were related to CAP2, while pH, EC, extracellular
enzymes, and time (as percent ADH) were related to CAP1. Interestingly, the relationships
between soil chemical variables and microbial compositional shifts followed those identi-
fied in the soil chemical responses during decomposition (Fig. 2). Microbial community
composition shifted along CAP1, which was strongly correlated with increased EC in
decomposition soils. Similar to soil chemistry shifts, soil pH and LAP activity were positively
correlated in constrained ordinations. Composition also varied along CAP2, where soil sam-
ples with increased temperature had lower gravimetric moisture.

Some differences in bacterial and fungal compositional shifts in response to decomposi-
tion were observed. Specifically, while soil bacterial communities changed as decomposi-
tion progressed, they did not become more similar with time. Statistical beta dispersion, a
measure of variability between groups, shows that the statistical beta dispersion of bacte-
rial communities increases slightly over time (Fig. 6A). In contrast, dispersion of fungal com-
munities decreased with time (beta dispersion F = 11.17; P = 0.001) (Fig. 6C), showing that
fungal communities become more similar during active decomposition. Additionally, inter-
individual variability was greater within bacterial communities than within fungal commun-
ities (Fig. 6B and D). Beta dispersion of bacterial communities was significantly different
between individuals (F = 4.239; P = 0.001), while the beta dispersion of fungal communities
was not (F = 0.796; P = 0.711).

Two-way PERMANOVAs assessing the effects of time and respective factors on bac-
terial and fungal community composition were performed, while beta-dispersion
results for all variables are reported in Table S3. Within bacterial communities, all varia-
bles were significant (PERMANOVA P , 0.05), while all but cancer were significant for
fungal communities. This was likely due to repeated measures within each donor caus-
ing lower P values. As a result, we also evaluated potential effects on community com-
position within respective time points (0, 1,500, 3,000, 4,500, and 6,000 ADH) using
one-way PERMANOVA with each factor. An individual’s age explained some of the vari-
ation in bacterial (PERMANOVA F = 1.611; P = 0.017) and fungal (F = 1.318; P = 0.0489)
communities at 1,500 ADH (Table S4). No other variables were significant for bacterial
communities, but season did significantly impact soil fungal communities. Specifically,
variation in fungal community composition in decomposition-impacted soils was par-
tially explained by season at 3,000 and 4,500 ADH. Additionally, fungal communities
differed by season (F = 1.271; P = 0.033) in control soils, while bacterial communities

FIG 5 Constrained analysis of principal coordinates (CAP) of Bray-Curtis distances in bacterial (A) and fungal (B) community structure within decomposition
soil samples. Gray arrows represent the influence of each environmental parameter included in the analysis. Data point color denotes decomposition time
as percent ADH (sample ADH divided by total ADH required to complete active decomposition).
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did not (F = 1.124; P = 0.2707). We also noted that soils collected from decomposition
plots before placement were not significantly different from controls in regard to bac-
terial (F = 1.217; P = 0.2328) and fungal (F = 1.148; P = 0.1958) community
composition.

Soil bacterial community composition. Relative abundance of bacterial taxa in soil
changed throughout decomposition (Fig. S5A and Fig. 7A). At the phylum level, increases in
relative abundance of Proteobacteria (median 13.8% increase across all donors) and Firmicutes
(20.4%) were observed over time, while median relative abundance of Verrucomicrobia (me-
dian 7.7% decrease across all donors) and Acidobacteria (12%) decreased. Changes in
Bacteroidetes and Actinobacteriawere variable among individuals: Bacteroidetes increased in 14
individuals and decreased in five, while Actinobacteria increased in 11 and decreased in 8. At
the class level, Gammaproteobacteria (median 15.7% increase across all donors), Clostridia
(9.5%), Actinobacteria (7.2%), and Bacilli (6.9%) increased in decomposition soils (Fig. 7A); nota-
bly, these were taxa also detected in fluid samples (Fig. 4). Relative abundance of taxa in class
Verrucomicrobiae (median 7.7% decrease across all donors) and Thermoleophilia (6.1%)
decreased in decomposition-impacted soils, while Bacteroidia response was variable (n = 13
individuals increased, n = 5 decreased, and n = 1 no change). At the genus level, the soil orga-
nism Subgroup_6_ge within the phylum Acidobacteria was found before cadaver placement
and decreased (median 6.6% decrease across all donors) during active decomposition, while
Acinetobacter increased (median 8.6% increase across all donors).

FIG 6 Bacterial (A, B) and fungal (C, D) community dispersion differs during active decomposition. Beta dispersion increases with time in bacterial
communities (A) but decreases in soil fungal communities (C). Additionally, dispersion between donors differs for bacterial communities (B), while remaining
similar across donors for fungal communities (D). In panels A and C, color denotes sample time point, while in B and D color represents donor. Letters above
boxplots are the result of post hoc Tukey tests where differences denote significant differences between groups (P , 0.05). ADH, accumulated degree hours.

BMI Impacts Soil Microbiology during Human Decomposition mSphere

September/October 2022 Volume 7 Issue 5 10.1128/msphere.00325-22 10

https://journals.asm.org/journal/msphere
https://doi.org/10.1128/msphere.00325-22


FIG 7 Relative abundance of bacterial (A) and fungal (B) classes over time (x axis) for each of the 19 individuals in the study, labeled TOX001 to TOX020.
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Soil fungal community composition. Fungal community structure in decomposi-
tion-impacted soils also changed over time. Prior to placement, soil fungal communities
included the phyla Ascomycota, Basidiomycota, Mortierellaomycota, and Rozellomycota,
among others. As decomposition progressed, members of Ascomycota (median 29%
increase across all donors) and Mortierellomycota (14%) increased in relative abundance,
while members of Basidiomycota (median 11% decrease across all donors), Rozellomycota
(21%), and Chytridiomycota (21%) decreased (Fig. S5B). At the class level, the most nota-
ble change in fungal community structure was an increase in Saccharomycetes between
3,000 and 4,500 ADH (median 57% increase across donors) (Fig. 7B), corresponding with
the timing of fluid introduction to soil. Within Saccharomycetes, we observed increases in
the genera Yarrowia (median 22% increase across all donors) and Dipodascus (23%) associ-
ated with the same time period.

Saccharomycetes and BMI. Increases in Saccharomycetes, previously observed dur-
ing outdoor juvenile pig decomposition (35), in decomposition-impacted soils were
notably related to donor BMI. In particular, decomposition soils below underweight
donors displayed little to no changes in relative Saccharomycetes abundance over time
(Fig. 8) (HLM F = 3.441; P = 0.11). This included individuals 002, 015, and 018, whose
BMI ranged from 14.2 to 20.2 and had visibly little fat tissue. We also found that as do-
nor BMI increased, changes in pH over time differed (HLM F = 8.799; P = 0.009) and the
maximum relative abundance of Saccharomycetes observed in decomposition soils
during active decomposition increased (ANOVA F = 5.582; P = 0.03). None of the other
factors tested, including disease categories, season, sex, or age, were found to be
related to relative Saccharomycetes abundance in decomposition soils (Table S1).
Variation in relative Saccharomycetes abundance in decomposition soils was also posi-
tively related to heterotrophic respiration (HLM F = 3.972; P = 0.052), but not to any
other soil parameter, including pH (P. 0.05).

DISCUSSION

The main goal of this study was to assess the impact(s) of intrinsic, or cadaver-
related, factors on soil chemical and microbial patterns during human decomposition.
Specifically, we evaluated the relationships between cadaver sex, age, body mass index
(BMI), and diseases to soil chemical responses and microbial community structure and
activity in decomposition-impacted soils. Data were collected from 19 individuals, and
we were able to identify intrinsic factors, including BMI, related to variable chemical
responses and microbial activity in decomposition-impacted soil.

Our study observed interindividual variation in soil chemical and microbial
responses. Some of this variation was explained by donor BMI, the relationship

FIG 8 Relative abundance of the fungal class Saccharomycetes over time (ADH) in decomposition-
impacted soils. Relative Saccharomycetes abundance increased as decomposition progresses in soils below
normal (blue), overweight (green), and obese (yellow) donors but does not change in soils below
underweight (purple) donors. Lines represent the linear relationship between relative Saccharomycetes
abundance and time (in ADH) for each BMI category (line color), while gray shading is the 95% confidence
interval for each linear relationship.
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between an individual’s weight and height. BMI is often used as an indirect measure
of body fat in humans, since BMI and percent body fat are typically positively corre-
lated (36). However, BMI is an indirect measure and does not account for variability
in body composition (37). For example, an individual with high lean muscle mass
and low body fat may have a high BMI. While we did not measure body fat percent
in our study, we visually observed that the individuals with high BMI had a greater
amount of fat tissue as opposed to lean muscle tissue, so we can assume that BMI
generally reflects body fat content for our study sample. Additionally, BMI was calcu-
lated from cadaver measurements of height and weight as opposed to values
reported in medical history or on a driver’s license. While cadaver height may be
problematic due to inaccuracy when positioning the cadaver for measurement,
reported antemortem values may not be up to date (38). However, results by
Ferorelli et al. (38) suggest differences between antemortem and cadaver height are
minimal.

We found that soil pH response varied between individuals, with soil pH increasing for
individuals with BMI,18.5 and decreasing for those with BMI.18.5. Variable pH response
is in accordance with previous vertebrate decomposition studies in terrestrial ecosystems,
where some studies report increased soil pH (1, 3, 9), while others report decreased pH (6,
8, 10). Fancher et al. (2) observed both increased and decreased soil pH within the same
study assessing human decomposition. Further, we observed that the direction of soil pH
change (increase versus decrease) was partially explained by differences in BMI, suggesting
that BMI influences pH response during human decomposition. While BMI has not been
linked to any specific soil response during human decomposition previously, Fancher et al.
(2) and Aitkenhead-Peterson et al. (28) noted that the inclusion of BMI in models improved
the estimation of PMI from multiple soil responses, including pH. Soil pH response may
have varied due to relative ratios of fat and muscle decomposition products associated
with individuals of different BMIs. Fat tissue contains 60% to 85% lipids (39), which are
hydrolyzed into stearic, oleic, and palmitic acid, while decomposition of muscle tissue
releases ammonium (NH4

1). Therefore, a greater proportion of acidic products would be
expected in individuals with more fat tissue, resulting in decreased soil pH. Alternatively,
muscle tissue contains more nitrogen than fat tissue (40), and ammonification of proteins,
peptides, and amino acids present in muscle tissue release NH4

1. In individuals with less
fat tissue and more muscle, a greater relative proportion of NH4

1 is expected, resulting in
increased pH.

pH is arguably one of the most important environmental factors impacting soil micro-
bial communities and activities directly and indirectly (11). In this study, we observed a pos-
itive relationship between soil pH and leucine aminopeptidase (LAP) activity during
decomposition, suggesting that pH regulates LAP response during human decomposition
and/or LAP activity generates additional NH4

1 thereby increasing soil pH. LAP, a general
aminopeptidase, has been shown to exhibit optimum activity under alkaline conditions
(pH 6 to 8) (41), potentially explaining greater LAP activity in soils of individuals whose pH
increased during decomposition. Microbes produce LAP for nitrogen acquisition (42),
increasing nitrogen availability for the community. As a result, variable LAP activity may
impact the rate of microbial-mediated peptide degradation and nutrient availability for soil
microbes, leading to increased variability in microbial community composition and func-
tion between individuals. Our results are consistent with previous decomposition studies
that recorded soil LAP activity (3, 43). For example, Keenan et al. (3) reported increased pH
and LAP activity during terrestrial beaver decomposition, while Keenan et al. (43) observed
decreased pH and LAP activity in a multi-individual human grave. DeBruyn et al. (1) con-
ducted a surface decomposition experiment comparing pigs and humans and observed
that pH and LAP activity decreased in human decomposition-impacted soil but increased
under pigs. Thus, the pH-LAP relationship appears robust, and further work will be needed
to determine the mechanism behind this relationship and its implications for the fate of
decomposition products.

We also observed that the relative abundance of Saccharomycetes in decomposition
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soils was related to donor BMI. While Saccharomycetes relative abundance increased in
decomposition soils below normal, overweight, and obese donors, underweight individuals
displayed no such trend. Taylor (44) also identified the fungal class Saccharomycetes as one
of the main taxa responsible for fungal community compositional shifts in decomposition
soils below donors ranging in BMI from 24.6 to 29.6 (BMI categories: normal and over-
weight). Yarrowia, a Saccharomycete, has also been shown to increase in soils during juve-
nile pig decomposition (35). The relationship between Saccharomycetes relative abundance
and BMI may be due to differences in proportions of fat and muscle tissue between indi-
viduals. The dominant Saccharomycetes genera we observed (Yarrowia and Dipodascus) are
found in a variety of environments, including insects and humans, and display diverse met-
abolic capabilities (45). Specifically, the Yarrowia species are known for their ability to
metabolize lipids (45), suggesting that high BMI individuals with more fat provide a favor-
able substrate, giving Yarrowia a competitive advantage over other fungi.

As BMI was related to soil pH changes and pH can impact microbial communities,
we thought that the variable soil Saccharomycetes response may be related to pH
response during decomposition. However, we did not observe a linear relationship
between soil pH and Saccharomycetes relative abundance in our data set, suggesting
the response of Saccharomycetes was not due to an altered pH. While many members
of Saccharomycetes, including Saccharomyces cerevisiae, prefer low pH, Yarrowia lipoli-
tica has been suggested to adapt to a wide range of pH conditions (45, 46). As
Yarrowia and Dipodascus were the dominant Saccharomycetes genera present in our
communities, this adaptability to variable pH conditions may explain why soil pH was
not significantly related to Saccharomycetes relative abundances in decomposition
soils. Interestingly, we noted that relative abundances of Acidobacteria also did not
appear to have a relationship to the pH changes observed, despite the fact that this
group is often reported as increasing relative abundances in low pH soils (47). This
could be due their oligotrophic/K-selected growth habits or sensitively to other abiotic
or biotic changes occurring in decomposition soils.

The observed relationships between BMI and microbial community composition
may be partially explained using ecological stoichiometry theory, which posits that mi-
crobial community composition and activity is driven by the balance of the organism’s
nutritional requirements and nutrient content of available resources (i.e., C:N) (48, 49).
Within this framework, individual taxon responses to disturbance may be predictable
when the difference between organismal C:N:P requirement and C:N:P of resources is
considered. Release of nutrient-rich fluids from the cadaver into the surrounding soil
alters carbon and nitrogen pools during decomposition (9, 50, 51). Yet, C:N of various
body tissues differs. Specifically, muscle tissue contains more nitrogen and thus a lower
C:N than fat. For example, Keenen et al. (40, 50) recorded a C:N of 49 and 3.3 for fat
and muscle tissue, respectively, in beavers (Castor canadensis). This difference in C:N
between tissue types may have important implications when considering the nutrient
composition of different individuals. For example, we can consider two individuals
with the same weight and muscle mass, but different body fat percentages (15% ver-
sus 30%). Assuming similar elemental composition of fat and muscle across verte-
brates, we can use values from Keenan et al. (40, 50) to calculate that the C:N ratio of
the fat and muscle fraction of these individuals would be 4.07 and 4.83, respectively
(Fig. S6). For a 93-kg individual, this roughly equates to 4.62 kg more carbon for a 30%
body fat individual, compared to the 15% body fat individual. While these are clearly
rough estimates based on several assumptions, they illustrate that differences in body
composition (fat, muscle, and bone) between individuals may alter resource pools and
proportions of breakdown products, both of which may impact microbial decomposer
presence and activity.

In addition to a relationship with BMI, we also identified some potential relation-
ships between reported diseases contributing to the individual’s cause of death and
soil responses. Donors with cancer at time of death had altered microbial decomposer
communities with lower diversity and respiration rates compared to donors without
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cancer. This could be due to differences in body tissues due to disease or the presence of
chemotherapeutics and other drugs (e.g., morphine) in the system. It could also be an indi-
rect effect of an altered microbiome due to the disease and/or therapeutic interventions
(e.g., radiotherapy). For example, cancer has been associated with altered gut microbiome
composition (18), with some cancer patients having a greater proportion of Firmicutes
relative to Bacteroides (52). Wang et al. (52) observed lowered diversity and decreased
Firmicutes:Bacteroides ratio after radiotherapy, suggesting cancer treatments and therapeu-
tics alter gut communities further. Thus, cancer may lead to different microbiome composi-
tion at time of death, altering decomposer communities and impacting decomposition
patterns. Notably, we did not observe differences in bacterial or fungal community compo-
sition of fluids released from the body during decomposition between disease categories.
This could be because we pooled the collected decomposition fluids throughout decom-
position to make a composite sample for each individual, which may have masked any ini-
tial variability in microbiomes between individuals. Additionally, because we used a
donated population, we had low replication in some of the disease categories, which low-
ered the statistical power we had to detect potential effects. A further complicating factor
is that drugs and therapeutics used were likely not identical between donors with the
same diseases. To see if decomposer communities do indeed differ due to disease,
increased sample sizes, toxicological screens of donors, characterization of the initial micro-
biome at time of death, noting length of time to initial fluid release, and time-series analy-
sis of fluid communities would be informative.

One interesting observation we noted was the variation in soil bacterial and fun-
gal community structures during human decomposition. During active decomposi-
tion soil fungal community composition shifted, becoming more similar in composi-
tion between individuals. In contrast, soil bacterial community composition did not
become more similar, suggesting that the soil bacterial community response is more
variable than soil fungal response during active decomposition. Additionally, we gen-
erally observed greater interindividual variability in bacterial communities compared
to fungal communities and seasonal differences in bacterial communities that were
not seen in fungal communities. These differences may result from distinct responses
to environmental stressors caused by the release of decomposition products due to
overall diversity differences between bacterial and fungal groups. This study and
others have shown that the soil chemical environment is heavily impacted by verte-
brate decomposition (2, 3, 7, 50, 53). In our study, soil EC (correlating to salinity)
increased up to 48 times higher than background conditions. This level of disturb-
ance impacts soil microbial communities, altering their structure and activity. Both
bacterial and fungal communities make up soil microbial communities; however, dif-
ferences in their diversity can impact their resistance (i.e., ability to withstand
change) and/or resilience (i.e., rate of community recovery) to disturbance events
(54). In this study, bacterial diversity was much higher than fungal diversity in our
predecomposition soils. As higher diversity can be associated with greater resistance
to disturbance events (54), this may explain why bacterial communities did not
become more similar during active decomposition. In contrast, fungal communities,
with lower diversity, were less resistant to disturbance, resulting in the filtering of
those species in unfavorable conditions.

Limitations/future directions. There are several aspects of this study that limit our
interpretation and provide avenues for future research. First, while our results show a rela-
tionship between BMI and soil pH response, it is important to note that BMI is an indirect
measure based solely on an individual’s height and weight and does not account for differ-
ences in fat proportion or distribution due to sex and age (37). This may explain some of
the variability we observed in moderate BMI individuals. A more direct measure of body
composition (percentages of fat, muscle, and bone), such as dual-energy X-ray absorptiom-
etry (36), would be needed to evaluate relationships between elemental stoichiometry and
microbial responses in future decomposition studies. Second, while we were able to inves-
tigate relationships with some individual intrinsic factors, there are other intrinsic factors
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(e.g., diet, ancestry, and drugs in the system at time of death) that were not considered
that may impact decomposition patterns. Additionally, our observations were likely limited
by the demography of our sample population: all donors had a mean age of 71. Finally,
while we investigated the general effects of disease states, as they contributed to the cause
of death, we were not able to look at interactions between diseases or address seasonal
effects due to the size of our data set and distribution of donors within disease categories
across seasons. As a result, we reported trends that should be investigated further with a
restrained and/or larger study population and followed up with a controlled, targeted
study to identify the effects of diseases and their therapeutics on decomposition patterns.

Conclusions. The goal of this research was to assess the impact(s) of sex, BMI, and
disease status at time of death on the soil decomposition environment and micro-
biome. Our results suggest an individual’s BMI can influence decomposition patterns,
leading to interindividual variability in soil chemical and microbial responses during
human decomposition. We also observed that the preliminary effects of diseases on
decomposition, notably cancer (and/or its therapeutic interventions), may have a
potential inhibitory effect on microbial decomposers. Together these results indicate
that intrinsic factors, such as BMI, likely play a role in driving decomposition rates and
patterns and should be considered in taphonomy studies. Further, our results may
have implications for postmortem interval estimation methods that rely on bacterial
community data. In particular, even in our demographically narrow study, the decom-
poser microbiome (or necrobiome) varied between individuals suggesting successional
patterns may not be universal when larger sample sizes and more diverse populations
are considered. Intrinsic factors helped explain some of this variability, so the inclusion
of intrinsic and environmental data may help improve postmortem interval models.

MATERIALS ANDMETHODS
Study design. A series of human decomposition studies were conducted at the University of Tennessee

Anthropology Research Facility (ARF), located in Knoxville, TN (35° 56' 28” N, 83° 56' 25” W). The ARF is a
roughly 2-acre area of temperate mixed deciduous forest dedicated to studying human decomposition (43).
The soil type at ARF consists of clay loam and channery clay loam overlaying a bedrock of limestone, shale,
and sandstone. These soils are classified as Coghill-Corryton complex (CcE), containing 25 to 65% slopes and
described as rocky and well drained (https://websoilsurvey.sc.egov.usda.gov/).

Nineteen deceased human individuals (herein called “donors”) were selected from those donated
through the ARF body donation program. Donors were selected independent of age, weight, ancestry,
or sex. Donors without open wounds were selected to avoid altering insect behavior and/or microbial
activity during decomposition. Medical histories and known prescribed medication lists were obtained
for all individuals enrolled in the study. Donors ranged in age from 40 to 91 years and were near evenly
distributed by sex (Table 2). All donors identified as White. BMI (kg/m2) was calculated using cadaver
height (m) and weight (kg) recorded upon arrival at the Forensic Anthropology Center (FAC). From this,
BMI of donors ranged from 14.2 to 55.1 and was used to group donors into BMI groups using Centers
for Disease Control (CDC) categories (Underweight, ,18.5; Normal, 18.5 to 24.9; Overweight, 25 to 29.9;
and Obese, $30). Donors were also categorized by the presence or absence of six broad disease catego-
ries, determined by conditions reported as contributing to cause of death. We recognized that categoriz-
ing by disease encompasses altered physiology or microbiome due to disease, as well as medications
and other therapeutic interventions used to treat the disease. Disease categories included diabetes, can-
cer, cardiovascular diseases, respiratory diseases, neurological diseases, and pneumonia (Table 2). In
most cases, more than one condition was reported as contributing to cause of death; therefore, some
donors were attributed multiple conditions.

Donors were placed within the facility to decompose as they were received between February 2019 and
March 2020 (Table 2). Before placement, all individuals were kept at 4°C for no longer than 1 week following
death. Each individual was placed supine on the soil surface without clothing. Individuals were placed on
soils that had not been exposed to decomposition for at least 6 months. For every donor site, a control site
was identified at least 1 m away from the donor and either upslope or at the same elevation. Hourly temper-
ature was monitored using TinyTag temperature and humidity loggers (Gemini Data Loggers, UK) placed
within 0.5 m of the donor and 1 m above the ground. Temperature readings were taken every hour from
time of placement until the donor was unenrolled from the study at the end of active decomposition. Active
decomposition is the decomposition stage characterized by the release of gasses and fluid from the remains,
the cessation of fluid purge, and complete collapse of the abdomen (55), all of which were used as indicators
of the end of active decomposition here. Accumulated degree hours (ADH) were calculated by summing the
hourly temperature (°C) above a threshold over time. In this study, 0 ADH was defined as time of placement
within the ARF, and a threshold temperature of 10°C was used for ADH calculations to keep our results con-
sistent with additional insect data collected from these donors.
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Soil sampling. Soil samples were collected at approximately 0, 100, 250, 500, 750, and 1,000 and
thereafter at 500 accumulated degree hour (ADH) intervals until the end of active decomposition when
donors were unenrolled from the study. Sampling ADH values were within 50 ADH for time
points ,1,000 and within 100 ADH for time points .1,000 ADH. For each soil sample, a sterile 10-ml sy-
ringe with the tip end cut off (Norm-Ject Henke-Ject syringe) was used to collect five to eight soil cores
of 5 cm depth. At each time point, soils were collected from within the area of visibly saturated soils
around decomposing donors (#15.2 cm or 6 in. from the body) and at the control site. Soils were then
homogenized by hand and debris larger than 2 mm was removed (i.e., rocks, roots, insects, etc.). A 20-g
subsample was weighed into a 4 oz. Whirl-Pak bag (Nasco), flash frozen in liquid nitrogen, and stored at
280°C before DNA extraction. The remaining soil was stored at 4°C before soil physiochemical analyses.

Decomposition fluid sampling. Decomposition fluids emitted from the donors were collected as
they pooled on the surface of the soil surrounding the donor. Fluid was collected using a sterile 30-ml
syringe (BD 30-ml Luer-Lok tip syringe). The tip of the syringe was carefully inserted into the surface of
pooling fluid and slowly drawn up. This process was repeated until;10 ml of fluid was collected. The sy-
ringe was then carefully inverted two to three times to homogenize, and fluid was evenly dispensed
into four 2-ml cryovials. Cryovials were flash frozen in liquid nitrogen and stored at 280°C before DNA
extraction.

Soil physiochemical analyses. Soil physiochemical analyses were conducted within 4 days of collec-
tion using soils stored at 4°C. Soils were acclimated to room temperature for at least 30 min before all
measurements. Soil electrical conductivity (EC) and pH were measured on a 1:2 soil to deionized water
mixture by weight using an Orion Star A329 pH/ISE/Conductivity/Dissolved Oxygen portable multipara-
meter meter (ThermoFisher). Soil gravimetric moisture was calculated after determining the water
weight of soil by oven drying duplicate 2- to 3-g soil aliquots at 105°C for 72 h.

Soil biological activity. After soil samples acclimated to room temperature, respiration rates were
measured via the accumulation of CO2 over 24 h as described previously (43). Briefly, 6 g of soil was
sealed in 60-ml serum bottles and CO2 was measured with duplicate injections, immediately after cap-
ping and after 24 h, into a LI-820 CO2 analyzer (LI-COR) with manual injection. Incubations were con-
ducted in the dark at room temperature (;20°C).

Measurement of extracellular enzyme activities and 16S rRNA gene amplicon sequencing were per-
formed for all donors on a subset of soil samples. For most donors, 10 soil samples corresponding to the
control and decomposition samples at 0, 1,500, 3,000, and 4,500 ADH plus the final (Tf) sample were
used for enzyme assays and DNA extraction, as these ADH values were the median 25, 50, and 75 per-
centiles across all donors. Some donors completed active decomposition at/or before 4,500 ADH or
extended longer (i.e., TOX010 Tf = 17,500 ADH), therefore fewer or additional time points were assessed.

The activity of four common soil extracellular enzymes were evaluated: b-glucosidase (BG; sugar
degradation), phosphatase (PHOS; phosphorous mineralization), N-acetyl-b-glucosaminidase (NAG; chi-
tin degradation), and leucine amino peptidase (LAP; protein degradation). Enzyme assays were con-
ducted in triplicate for all donors as previously described in Bell et al. (56), with some modifications.
Briefly, 2.75-g subsamples were weighed from soils stored at 280°C and held at 220°C before assays.
Soil samples were then thawed at room temperature and slurried in 50 mM Tris buffer at pH 6.7 (average
pH of our soil samples) in a blender (Waring commercial blender, model WF2212114). Assays were con-
ducted using 800 ml of slurry and 200 ml of enzyme substrate (1,500 mM). Optimum substrate concentra-
tions were determined before conducting assays on soil samples and were found to be 1,500 mM for all
enzymes. Additionally, standard curves were conducted using MUB and MUC concentrations ranging
from 0 mM to 200 mM. All standard curves and soil samples were assessed in triplicate and included
blanks for each sample to evaluate background concentrations. All metadata, including soil chemistry,
sample information, and corresponding donor information and code for analysis, can be found (https://
github.com/jdebruyn/TOX-microbiology).

DNA sequencing. DNA was extracted from all soil and decomposition fluid samples using the
DNeasy Powerlyzer PowerSoil kit (Qiagen Inc.). Extractions were conducted according to manufacturer’s
instructions with the following modifications. Briefly, 0.25 g of soil/fluid was used for all extractions and
homogenized (MO BIO PowerLyzer Bench Top Bead-Based Homogenizer) using settings suggested for
high organic soils (2,500 RPM for 45 s). DNA was eluted in 100 ml of 10 mM Tris buffer and stored at
220°C prior to sequencing. Total DNA concentrations were determined using the Quant-iT PicoGreen
dsDNA assay kit (Invitrogen) using an assay volume of 200mL and 1mL of DNA. Each donor’s control soil
extracts were pooled, ensuring equal amounts of DNA were added, with the rationale that the pooled
extract would capture natural variability over the course of the study. Similarly, each donor’s decomposi-
tion fluid extracts were pooled. DNA extracts were sent to the University of Tennessee Knoxville
Sequencing Core Facility (Knoxville, TN) for library preparation and sequencing. Both bacterial and fun-
gal communities were sequenced; the primer set 515F (57)/806R (58) was used to amplify the V4 region
of the 16S rRNA gene, the ITS2 region in fungi was amplified using primers described previously (59).
Libraries were prepared using the Nextera XL DNA library preparation kit (Illumina) and sequenced on
the Illumina MiSeq platform to generate paired-end reads. Raw sequences have been deposited to
NCBI’s Sequence Read Archive (SRA) under BioProject PRJNA817528.

Reads were processed using Mothur (60) (v.1.43.0). Briefly, low-quality sequences (16S: Q . 20,
bp # 50; ITS Q . 20, bp , 200), sequences containing ambiguous bases ($1), and nonbiological (pri-
mers and adapters) sequences were removed. 16S reads were aligned to the SILVA nonredundant data-
base (v132), while ITS was not aligned. VSEARCH was used to remove chimera sequences. Bacterial and
fungal sequences were classified using the SILVA nonredundant database (61) (v132) and UNITE RefS
database (62) (version 02.02.2020), respectively. Bacterial sequences were then clustered into operational
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taxonomic units (OTUs) based on $97% sequence similarity and the default opticlust method, while fun-
gal sequences were clustered using abundance-based greedy clustering.

Statistics. To account for natural variation in soil parameters over time and space and allow for com-
parison between donors, we normalized measured soil parameter values by calculating the log response
ratio (LRR = ln[treatment value/control value]) (63). LRR values greater than 0 were higher in decomposi-
tion-impacted soils compared to control soils, while values less than 0 were lower in decomposition-
impacted soils compared to control soils.

The effects of time (as ADH), season, BMI, sex, and diseases on the soil parameter’s response dur-
ing decomposition were assessed with hierarchical linear mixed-effects models, allowing for random
slopes and/or intercepts by donor. Random effects terms were chosen for each response variable
based on best fit (determined by Akaike information criterion [AIC]). Due to small sample sizes, the
effects of diabetes (n = 2) and pneumonia (n = 2) were not evaluated. Statistical differences were then
assessed using a type III analysis of variance (ANOVA) with Satterthwaite’s method. All models were
run in R using the lmer() function (R package lme4 version 1.1.25) and statistically analyzed using the
anova() function from lmerTest (version 3.1.3) package. Due to differences in ADH to complete active
decomposition, patterns of soil chemical responses differed between donors with some exhibiting lin-
ear patterns and others displaying saturating trends. Thus, only data points #5,000 ADH were used in
hierarchical linear mixed-effects models to capture the linear response period (436 samples across all
donors).

Alpha (Chao1 richness and inverse Simpson) and beta (Bray-Curtis dissimilarity) diversity of soil and
fluid communities, respectively, were calculated in R and beta diversity was visualized using principal
coordinate analysis (PCoA) within the R package phyloseq (version 1.32.0). Changes in alpha diversity
within soil communities were assessed using hierarchical linear mixed-effects models and statistical dif-
ferences assessed using type III analysis of variance (ANOVA) with Satterthwaite’s method. Differences in
soil community structure were evaluated with permutational analysis of variance (PERMANOVA), via the
adonis() function in the R package vegan (version 2.5.6). The functions betadispr() and permutest(), both
from vegan (version 2.5.6), were used to evaluate multivariate homogeneity of dispersions between
specified groups (i.e., Donor, ADH) from Bray-Curtis dissimilarity values.

Data availability. Raw sequences have been deposited to NCBI's Sequence Read Archive (SRA) under
BioProject PRJNA817528. All R code used for this research is available: https://github.com/jdebruyn/TOX
-microbiology.
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