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Abstract: The gut barrier is a single cell layer that separates gut micro-organisms from the host, and
gut permeability defects result in the translocation of microbial molecules from the gut into the blood.
Despite the silent clinical manifestation, gut translocation of microbial molecules can induce systemic
inflammation that might be an endogenous exacerbating factor of systemic lupus erythematosus. In
contrast, circulatory immune-complex deposition and the effect of medications on the gut, an organ
with an extremely large surface area, of patients with active lupus might cause gut translocation
of microbial molecules, which worsens lupus severity. Likewise, the imbalance of gut microbiota
may initiate lupus and/or interfere with gut integrity which results in microbial translocation and
lupus exacerbation. Moreover, immune hyper-responsiveness of innate immune cells (macrophages
and neutrophils) is demonstrated in a lupus model from the loss of inhibitory Fc gamma receptor
IIb (FcgRIIb), which induces prominent responses through the cross-link between activating-FcgRs
and innate immune receptors. The immune hyper-responsiveness can cause cell death, especially
apoptosis and neutrophil extracellular traps (NETosis), which possibly exacerbates lupus, partly
through the enhanced exposure of the self-antigens. Leaky gut monitoring and treatments (such
as probiotics) might be beneficial in lupus. Here, we discuss the current information on leaky gut
in lupus.

Keywords: leaky gut; innate immunity; systemic lupus erythematosus

1. Introduction

Systemic lupus erythematosus (SLE or lupus) is a common autoimmune disease with
the involvement of multiple organs (skin, joints, and central nervous system) due to the
deposition of the immune complexes between self-antigens and autoantibodies in the
microcirculatory networks of several organs [1]. There is multifactorial pathogenesis of
lupus consisting of the combination between genetic predispositions and environmental
factors that trigger abnormal immune responses in the innate (antigen-presenting cells)
and adaptive immunity (self-reactive T and B cells) [1]. While the hallmark of SLE is an
abnormality in the adaptive immunity resulting in the elevation of autoantibodies (mostly
against the nuclear antigens), the influence of innate immunity-induced inflammation in
lupus disease progression is well known [1]. Although the gastrointestinal (GI) symptoms
in lupus are not predominant, the immune complex deposition in the gut of patients and
mice with lupus is mentioned, partly due to the large surface area of the gastrointesti-
nal system [2]. Interestingly, the gut immune complex deposition induces inflammatory
responses and possibly facilitates gastrointestinal permeability defect with the transloca-
tion of pathogen molecules from the gut into the blood circulation, referred to as “gut
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leakage or leaky gut” [2], because (i) the reactions against pathogen-associated molecular
patterns (PAMPs) that are foreign to the host are usually more severe than the responses
toward the host antigens [3], (ii) the presence of PAMPs in blood possibly induces a potent
immune activation, especially innate immune responses [2], and (iii) acute and chronic
inflammation is an exacerbating factor of lupus activity [4]. The translocation of PAMPs or
viable organisms from the gut might be an endogenous factor to trigger inflammation or
disease flare-ups in patients with lupus. Interestingly, a defect of gut permeability could
be demonstrated without any symptoms or only subtle non-specific symptoms (fatigue,
nausea, and bloating) [5]. Hence, the flare-up of lupus activity due to the inflammatory
responses against a silent gut translocation of endogenous PAMPs might be responsible for
the fluctuation of lupus disease activity in some patients without an obvious exposure to
the exogenous exacerbating factors. However, the concerns about these silent exacerbation
factors in lupus are still too few despite the established methods for the determination of
gut leakage. It is interesting to note that patients with lupus are not only susceptible to the
exogenous environmental factors (chemical substances, organisms, and PAMPs) [6], but
also the stimulators from the endogenous factors due to gut translocation. In this review,
we discuss the possible impacts of leaky gut in SLE focusing on the activation of innate
immunity and proposed the possible treatment of gut leakage based on the improved
understanding of this topic.

2. General Aspects of Gut Permeability Defects

In each person, the gastrointestinal epithelial lining approximately includes the surface
area of a small room (32 m2), and not only separates the host from the external environments
but functions as a first-line innate immune defense to safeguard the entry of foreign
antigens [2]. Interestingly, this barrier consists of only a single layer of epithelial cells with
cell junctional complexes and several humoral factors, including mucins, antimicrobial
molecules, immunoglobulins, and cytokines [7,8]. Under normal conditions, the intestinal
barrier acts as a barrier to select the entry of only some molecules mainly with two pathways:
the intestinal cell paracellular space and a transcellular passage [2]. The translocation
through the paracellular space is regulated by cell junctional complexes, including tight
junctions (TJs), adherens junctions, and desmosomes [2]. The epithelial TJs, located at the
apical end of lateral membranes, consist of four major protein complexes; occludin, claudin,
junction-adhesion molecules (JAMs), and the coxsackievirus-adenovirus receptor (CAR)
protein, which regulate the paracellular trafficking and allow the molecules that are smaller
than 3.6 A◦ (or 0.6 kDa) to pass through the normal paracellular passage [2]. This size
selectivity of the gut barrier prevents gut translocation of viable organisms and several
PAMPs which are the drivers of systemic inflammation [8–11]. As such, Gram-negative
bacteria and fungi (mostly Candida albicans) are the most and the second most prominent
organisms in the human gut and are the main source of lipopolysaccharides (LPS) and
(1→3)-β-D-glucan (BG), respectively, in the intestinal contents [2]. Both LPS, molecular
weight (MW) ranging from 10 to >100 kDa, and BG (MW 6 to >600 kDa) are the major cell
wall components of bacteria and fungi which might be the main PAMPs in gut contents
with potent immune activation properties [8–11]. Moreover, the free nucleic acid from
the microbial breakdown might be another pathogen molecule from the gut translocation
that may activate immune responses. The microbial-free DNA is rapidly naturally broken
down by several processes (depurination or deamination DNA) into smaller sizes of
less than 100 bp (65 kDa) which can cross the gut barrier [12,13] even though the intact
bacterial genome at a molecular size of 100 to 15,000 kbp (6.5 × 104–9.8 × 106 kDa) [14]
cannot pass through the gut barrier. The detection of microbial-free deoxyribonucleic acid
(DNA) in several conditions without positive bacteremia; such as coronavirus disease
(COVID-19) and obesity, and the detection of intestinal bacterial ribosomal RNA (rRNA)
in the lungs of patients with acute respiratory distress syndrome (ARDS), and leaky gut
measurement in patients with the post-abdominal operation, imply gut translocation of
microbial nucleic acids [9,15–17]. During gastrointestinal translocation, PAMPs could
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enter the body’s circulatory system through the lymphatics (mesenteric lymph nodes and
thoracic lymph duct) and portal circulation (portal vein) [2]. Furthermore, the attachment
of LPS to lipoproteins/chylomicrons from the gut during routine lipid absorption may
physiologically enhance LPS levels in systemic circulation [18]. Because the gut barrier
consists of only a single layer of enterocytes in a very large surface area, silent gut leakage
without the detectable PAMPs in the blood circulation might be a normal physiologic
condition [19]. Indeed, several host mechanisms regulate PAMPs from gut translocation,
mostly from neutralization using innate immunity, for example, the LPS binding protein,
soluble cluster of differentiation (CD)-14, cell surface receptors (toll-like receptor (TLR)-
4, dectin, and scavenger receptors), complement receptor 3, and some enzymes such as
acyl-oxy-acyl hydrolase (AOAH), alkaline phosphatase, and DNAase or RNAase [2,20,21].
Hence, the detection of PAMPs in blood indirectly indicates gut translocation of a significant
abundance of PAMPs beyond the capacity of host neutralization mechanisms possibly due
to the significant intestinal mucosal damage despite asymptomatic clinical presentation in
some cases.

3. Gut Permeability Defects in Lupus

In lupus, the immune complex in the vascular networks is the main multi-organ
pathogenesis that can deposit throughout the gut from mouth to rectum, due to the enor-
mous surface area of the organ, in different intensities, including asymptomatic deposition,
mucosal injury, or bowel ischemic vasculitis [22,23]. The autopsy and endoscopic studies
exhibited abdominal injury in approximately 70% of patients with SLE, although only 10%
of these patients show GI symptoms [24,25]. Indeed, the immune-complex deposition in
the GI tract during the active lupus nephritis without the observed clinical GI abnormalities
(diarrhea or weight loss) in the lupus rodent model from the deletion of Fc gamma receptor
IIb (FcgRIIb-/- mice) [26,27] with the defects on intestinal tight junctions (Figure 1) are
demonstrated. Notably, FcgRIIb is the only inhibitory receptor among the Fc gamma
receptor (FcgR) family, and the loss of FcgRIIb facilitates immune responses resulting in the
spontaneous development of full-blown lupus nephritis (serum anti-dsDNA, proteinuria,
and uremia) after 6 months in FcgRIIb-/- mice.
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Figure 1. The representative picture of zona occludens-1 (ZO-1, green fluorescent color), a tight junction
protein, in enterocyte of the colon from 8-week-old mice of wild-type control and FcgRIIb-/- lupus
mice are demonstrated (original magnification 630×) [26]. The blue color is the staining of the nucleus
using DAPI (4′,6-diamidino-2-phenylindole), a blue-fluorescent DNA stain (Alexa Fluor 488, Abcam,
Cambridge, MA, USA). The samples were prepared in Cryogel (Leica Biosystems, Richmond, IL, USA)
and photographed by a ZEISS LSM 800 (Carl Zeiss, Germany). Notably, there is a well-defined green
color border in wild type versus the unclear borders of ZO-1-stained colon in FcgRIIb-/- lupus mice at
8 weeks old (full-blown lupus).
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Despite the non-GI symptoms, gut leakage during active lupus is indicated by the
elevation of PAMPs in serum (LPS and BG) and the tight junction protein level in blood cir-
culation in either patients or mice with lupus [26,28–31]. Moreover, gut permeability defects
might be severe enough for the translocation of viable bacteria. As such, gut translocation
of Enterococcus gallinarum, one of the pathobiont in some situations, to the liver and other
organs trigger anti-dsDNA (the major autoantibody in lupus) through TLR-7/8 activation
in New Zealand White (NZW)/F1 lupus mice (and also possibly in patients), which is
attenuated by antibiotics, has been demonstrated [28]. Nevertheless, gut permeability dam-
age in lupus is not only due to immune-complex deposition in the gut, but also from the
adverse effects of some medications used in autoimmune diseases, including nonsteroidal
anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying antirheumatic
drugs (DMARDs) [32–35]. As such, the long-term use of NSAIDs induces GI lesions (in the
stomach and intestines) [33,36,37] and disrupts gut integrity partly through cell apoptosis
induction [34], which possibly exacerbates lupus progression in a lupus mouse model [27].
It is interesting to note that gut translocation of PAMPs after NSAIDs use possibly facilitates
lupus activity through a significant systemic inflammation as indicated by increased serum
cytokines, despite the anti-inflammatory property of NSAIDs [27]. Similarly, the induction
of gut leakage by a low dose of dextran sulfate solution (direct damage to enterocyte tight
junction) induces lupus disease activity without diarrhea [26], implying that the silent leaky
gut without GI symptoms is a possible exacerbating factor of lupus. Additionally, infection,
including intestinal and systemic infection, is a major complication in patients with lupus
due to immunosuppressive drugs [38–41] or defects in the pathogen control from lupus
itself, as the infection is a common cause of death even before the era of immunosup-
pressive drugs [42–44]. Perhaps a possible leaky gut during enterocolitis or diarrhea in
patients with lupus should be a concern. While gut translocation of PAMPs in intestinal
infection is easily explained through the enterocyte tight junction injury, leaky gut in sys-
temic infection is possibly a result of systemic inflammation-induced enterocyte damage [2].
Indeed, diarrhea in some patients with systemic infection (primarily non-gastrointestinal
infections) [45] and endotoxemia in severe viral infection [17,46] support a possibility of
leaky gut during systemic infection. Although diarrhea is not a good biomarker for leaky
gut, as diarrhea is not demonstrated in sepsis or asymptomatic Clostridium difficile infection
in mouse models [47], diarrhea in lupus might be associated with leaky gut and, at least,
a subtle systemic inflammation. Despite the well-known systemic inflammation during
active lupus (especially endotoxemia without systemic infection), data on the consequence
of gut leakage as an endogenous exacerbation factor of lupus is still lacking. Hence, all of
the evidence mentioned above suggests that leaky gut in lupus is possible and might be
clinically important.

4. Gut Dysbiosis in Lupus

Several studies demonstrated that the healthiness of intestinal mucosa [48,49] and
the proper immune maturation [50–53] depended on gut microbiota [49,54,55]. Germ-free
mice show decreased secreting IgA plasma cells with the thinner mucus layer and Peyer’s
patches when compared with regular mice [56,57]. An increase in pathogenic organisms
(pathobionts) in the gut, referred to as “gut dysbiosis”, is one of the possible causes of
leaky gut [58] that are demonstrated in several diseases, including obesity, inflammatory
bowel disease (IBD), and autoimmune diseases [59–61]. Notably, gut dysbiosis can be a
cause or a consequence of gut leakage. As such, oral administration of bacteria or fungi
caused leaky gut from an increase in pathobionts [62,63], while leaky gut by dextran sulfate
induces dysbiosis [26]. Gut dysbiosis in SLE might be a result of a combination of (i) the
genetic defects in the immune responses against some gut organisms that selectively allow
some group of organisms to survive in the gut, together with (ii) the gut environmental
factors from the host behaviors (diets, alcohol, smoking, and medications). For example,
fecal transfer from triple congenic lupus-prone mice during active lupus to germ-free mice
induces autoantibodies and autoimmune phenotypes [64]. Lupus caused by complement
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deficiencies (C1q, C2, C3, and C4) [65,66] might be associated with gut dysbiosis due to
a defect in the control of some organisms as indicated by the dysbiosis in C3 deficient
mice [67]. However, the environmental factors are more important than host genetics in the
alteration of gut microbiota from a study of 1,046 healthy individuals [68].

Nevertheless, the increased Bacteroidetes with decreased Firmicutes was demonstrated
in patients with lupus in different regions of the world [69–72], and in various lupus
models [28,31,58,71,73,74]. Indeed, Firmicutes, mostly Gram-positive bacteria with obligate
aerobes or facultative anaerobes, are the major gut microbes that alter complex carbohy-
drates into short-chain fatty acids (SCFA), particularly butyrate, which serve as growth
factors for gut epithelium [75]. Meanwhile, Bacteroides, mostly Gram-negative anaerobes,
are pathogenic bacteria in some situations [76]. Normal gut microbiota also maintains gut
epithelial integrity using other substances. For example, tryptophan metabolites (indole and
tryptamine) upregulate Muc2 (mucin production), through the pregnane X receptor (PXR)
and aryl hydrocarbon receptor (AhR), and induce glucagon-like peptide 1 (GLP-1; an ente-
rocyte growth factor) from enteroendocrine L-cells [77,78]. Leaky gut with reduced Muc2
in PXR-deficient mice has been demonstrated [79,80]. Although the Firmicutes/Bacteroides
ratio is increased and decreased in IBD and obesity, respectively, the clinical use of this
ratio, including in lupus, is still unclear. It is possible that inflammatory responses from
leaky gut, possibly due to the reduced Firmicutes, might initiate or exacerbate lupus in some
patients who are already prone to lupus, or gut inflammation during active lupus might
decrease Firmicutes bacteria. Despite the unclear role of gut dysbiosis in lupus, healthy gut
integrity prevents gut translocation of PAMPs that might possibly be helpful for the control
of lupus exacerbation. Despite inconclusive pathogenesis, gut dysbiosis in lupus is well
known and might be associated with leaky gut, which can be a cause or a consequence
of lupus.

5. Leaky Gut-Induced Innate Immunity and Cell Death in Lupus

Innate immunity is the first-line recognition of PAMPs and damage-associated molec-
ular patterns (DAMPs) from microbes and host cells, respectively. Although the abnormali-
ties in the adaptive immunity are dominant in SLE as indicated by the immune-complex
formation, lupus exacerbation by innate immunity-induced inflammation and innate im-
munity dysfunction in lupus is well known [1,81]. For example, the defect of macrophages
in clearing apoptotic cell debris induces prolonged exposure to autoantigens [82,83] and
abnormal adaptive immunity due to the antigen processing property of dendritic cells
(DCs) in lupus [84–86]. Accordingly, LPS and BG from gut translocation mainly activate
several innate immune cells through TLR-4 and dectin-1, respectively, and the co-presence
of LPS and BG induces the synergy of pro-inflammatory responses. Additionally, there is
a dramatic decrease in glomerular IgG deposition and mesangial cell proliferation with
reduced autoantibody titers in TLR-2- or TLR-4-deficient MRL lymphoproliferation strain
(MRL/lpr) lupus mice [87]. Despite a limited exploration of leaky gut in lupus models,
gut dysbiosis and the correlation between gut microbiota and systemic inflammation in
lupus is well established [58,88,89]. During the gut permeability defect in lupus, PAMPs
and DAMPs enhance systemic inflammation and induce lupus disease progression via the
activation of several innate immune cells including neutrophils, macrophages, and DCs.
Despite the diverse pathogenesis of lupus, defect in inhibitory FcgRIIb is one of the causes
of lupus and hypofunctional FcgRIIb polymorphisms are frequently reported in the popula-
tion in Asia and East Asia partly due to the selection by malarial infection in the region [90].
Defect in inhibitory FcgRIIb causes hyper-responsiveness against malaria in these regions,
while enhancing the incidence of lupus [90]. Because FcgRIIb is detectable in neutrophils,
macrophages, DCs, and B cells (but not T cells), FcgRIIb-/- mice have been used to explore
both innate and adaptive immune cells in lupus [91,92]. Because of the possible cross-talk
between the Fc gamma receptor and TLR-4, which is a pattern recognition receptor against
several ligands [46], both the endogenous human molecules (DAMPs; such as heat-shock
protein, beta-amyloid, and cell-free DNA) and exogenous microbial or environmental
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molecules (such as LPS, mannan, and particle matter 2.5) [93], the co-presence of these
TLR-4 ligands together with activation of the activating-FcgRs (non-FcgRIIb), perhaps
by the natural immunoglobulin, might induce synergistic pro-inflammatory responses
through the FcgR-TLR-4 cross-talk [94]. Although the FcgRIIb defect is only a part of the
genetic abnormalities in lupus, FcgR-TLR-4 cross-talk might be responsible for the hyper-
immune responses against several conditions in patients with lupus through macrophages
and neutrophils, and the blockage of spleen-tyrosine-kinase (Syk, a shared downstream
signaling molecule of both FcgR and TLR-4) attenuates lupus-induced inflammation both
in mice and in patients [31,95]. This information supports the impact of innate immunity
in lupus.

Furthermore, several processes of cell death, such as cell apoptosis and necrosis, are a
common consequence of inflammation that could exacerbate lupus activity partly through
the presentation of DAMPs, possibly due to inadequate clearance of these molecules during
overwhelming cell death [96]. The hyper-inflammatory responses of immune cells (both
innate and adaptive immunity) and the immune-induced cell injury in several organs by
several stimuli (such as cytokines, PAMPs, and mitochondrial DNA) induce both apoptosis
and necrosis of immune cells and parenchymal cells in lupus. Subsequently, the extracellu-
lar nucleic acids from host cells and mitochondria and nucleoproteins from the damaged
cells might be the autoantigens that facilitate the autoantibody production and circulating
immune-complex (CIC) deposition, which highlights the importance of cell death and
DAMPs in lupus [97,98]. Although CIC deposition is a possible continuous process in
lupus, an alteration in the abundance of CIC is possible which might be responsible for
the variation of lupus activity (exacerbation versus inactivity) [99]. In lupus, the produc-
tion of CIC and lupus exacerbation possibly depends on the increase in abundance of
self-antigens from cell death [100,101] and autoantibody production, possibly through the
non-specific activation of B cells (or plasma cells) by a viral infection, vaccination, or some
medications [102,103]. For the enhanced self-antigen exposure, immune responses against
pathogen molecules in blood during leaky gut might increase cell apoptosis as the spleen is
responsible for the recognition of foreign molecules in the blood, and profound or chronic
activation of some cells in the spleen (such as in the splenic marginal zone) may cause cell
apoptosis [104]. For example, LPS during lupus-induced leaky gut might enhance spleen
apoptosis, as demonstrated in LPS injection [105] and colitis mouse models [26]. The lupus
exacerbation from the enhanced exposure to the self-antigens due to the increased apopto-
sis is also indicated in cancer treatment by anti-program cell death (PD)-1 (an apoptosis
inhibitor) [106]. Moreover, a leaky gut also possibly facilitates autoantibody production.
Accordingly, while infection and vaccination induce some specific clones of B cells using
some growth factors, such as interleukin (IL)-2, and the pro-inflammatory processes (similar
to the role of adjuvants), these factors might non-specifically stimulate self-reactive B cells
clones in the host with lupus. Hence, the non-specific inflammatory responses against
pathogen molecules during leaky gut might increase self-antigen exposure and accidentally
facilitate autoantibodies.

Then, gut leakage that is severe enough to induce systemic inflammation might ac-
celerate immune cell apoptosis, especially in spleens and livers, which exacerbates lupus
activity [26] as demonstrated in the working hypothesis diagram (Figure 2). Likewise,
cell death by neutrophil extracellular traps (NETs), referred to as “NETosis”, is a form
of neutrophil death triggered by PAMPs (including LPS and BG) to release extracellular
nuclear chromatin [107,108], which is a direct anti-organismal mechanism together with the
stimulation of innate and adaptive immunities [101,109]. However, NETosis also induces
the exposure of nuclear antigens that accelerate autoantibodies and lupus activity through
several mechanisms, including (i) interferon (IFN) type I production from peripheral blood
mononuclear cells and DCs through TLR-9 activation [109,110], (ii) the post-translational
modifications (histone acetylation and citrullination) of some proteins, (iii) the impaired
NET degradation through DNase deficiency [109,110], and (iv) the complex of anti-NET
antibodies with NETs that block DNase and enhance the cells positive for TLR-9 and CD32
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(DCs, monocytes, B cells, and GM-CSF-induced neutrophils) [96]. Because both LPS and
BG from lupus-induced gut translocation induce NETosis that is possibly synergized by
activating-FcgRs, gut leakage can enhance NETosis in lupus [111]. Moreover, pyropto-
sis [112], canonically dependent cell death through the plasma membrane pores using
inflammasome-caspase 1-gasdermin-D that causes osmotic lysis, might also enhance the
presentation of self-nucleic acids in lupus [113,114]. Pyroptosis also increases high-mobility
group box 1 (HMGB1), a nuclear DNA binding protein ubiquitously expressed in eukaryotic
cells, that increases in patients with SLE [115,116], and then, HMGB1 binding DNA complex
can stimulate type I IFN release from DCs through TLR-9 [115,117] and activates B cells via
the advanced glycation end-products (RAGE) receptor [118]. Hence, gut leakage in lupus
possibly activates inflammatory responses in several types of immune cells severe enough
to induce death of these immune cells and cells in several organs that are responsible for
the exposure of self-antigens, autoantibody production, and lupus exacerbation.
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Figure 2. The working hypothesis diagram demonstrates the possible mechanism of leaky gut-
exacerbated lupus through the elevated circulating immune complexes, from (i) increased exposure
to the self-antigens from overwhelming apoptosis (such as splenocytes and hepatocytes) and (ii)
enhanced autoantibody production from inflammatory mediators, due to the activation by PAMPs
from leaky gut.

6. Leaky Gut-Induced Inflammation and Molecular Mimicry in Lupus

Inflammation not only exacerbates lupus through the induction of cell death and
the non-specifically enhanced autoantibody production but also mediates lupus activity
through other pathways. Interestingly, some lupus-associated pathogenesis cytokines can
be induced by pathogens or gut microbial translocation. For example, interferon (IFN)
type I is an important cytokine that augments adaptive immunity through enhanced anti-
gen presentation and promotes the high-affinity antigen-specific T and B cells in lupus
pathogenesis [119]. It is also induced by CD11c positive DCs in the intestinal laminar
propria during bacterial colitis [119–122] to prevent enterocyte disruption [123,124]. Ad-
ditionally, extracellular DNAs exacerbate lupus activity through type I IFN activation
from DCs in the intestinal laminar propria through TLR-9 [111]. Then, IFN type I during
some bacterial colitis might be responsible for the lupus exacerbation [125]. Moreover,
TNF-α and IL-6 are also important for lupus exacerbation as the potent pro-inflammatory
cytokines in macrophage and neutrophil activation. As such, gene expression profiles in
myeloid-derived macrophages from patients with SLE demonstrate increased gene expres-
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sion of pro-inflammatory macrophages (M1 polarization), including signal transducer and
activator of transcription (STAT)-1, suppressor of cytokine signaling (SOCS)-3, CD80, and
CD86, and a decrease in the genes of alternatively anti-inflammatory macrophages (M2
polarization) (STAT-3, STAT-6, and CD163) [126–128]. Not surprisingly, studies in patients
and lupus mice also exhibit an increasing baseline of TNF-α and IL-6 compared to healthy
volunteers, which correlates with lupus disease severity [31,129,130]. In FcgRIIb-/- lupus
mice, LPS from gut leakage in synergy with BG induces prominent M1 pro-inflammatory
macrophages partly through the induction of TNF-α and IL-6 [131–135]. At the same time,
TNF-α also directly induces programmed cell death including apoptosis and necroptosis,
which accelerates the excess of auto-nuclear antigens [136]. Mice with a chronic overproduc-
tion of TNF-α (TNFdeltaARE mice) spontaneously develop Crohn’s disease-like inflammation
in the small intestine [137], suggesting that TNF-α may directly induce leaky gut. Due to
the possible dual impacts in lupus pathogenesis and the responses against gut organisms
and leaky gut of some cytokines, these cytokines might be responsible for the correlation
between lupus exacerbation and intestinal inflammation. Furthermore, molecular mimicry
is a process that non-self-peptides, mainly from microbial origins, share sequence homology
with self-peptides, eliciting cross-reactive recognition between foreign and self-antigens,
leading to activation of autoreactive T cells in several autoimmune diseases, including
lupus [138]. Both DCs and macrophages are well known as professional antigen-presenting
cells (APC) which are found in many tissues, along with the gastrointestinal tract. Inter-
actions between APC and T cells are a direct link between innate and adaptive immunity
through the process of antigens on major histocompatibility complexes (MHC) class II.
Thus, organismal molecules from gut translocation might enhance the autoantibody pro-
duction in lupus due to the molecular mimicry between some microbial and self-antigens.
As such, the intestinal expansion of Ruminococcus gnavus (RG2strain) is associated with
lupus nephritis along with the detection of antibodies against lipoglycans (a molecule in
the cell wall of R. gnavus) with increased anti-dsDNA (a specific lupus antibody) and the
extract of R. gnavus RG2 cross-reacts with anti-dsDNA antibodies, suggesting the molecular
mimicry between RG2 cell wall moieties and native DNA molecules [73]. Additionally, the
antibody against Ro protein (Ro60, a 60 kDa self-antigens) that is commonly found in lupus,
cross-reacts with the Ebstein–Barr virus nuclear antigen-1 (EBNA-1), and the ortholog
Ro60-containing is demonstrated in Bacteroides thetaiotaomicron (gut commensal bacteria)
in microbiome analysis from patients with SLE [138,139]. These data suggest that lupus
humoral autoimmunity might be initiated via molecular mimicry between PAMPs from gut
translocation and self-antigens highlighting another correlation between gut permeability
defect and lupus exacerbation or initiation.

7. Monitoring of Gut Leakage in Lupus

Interestingly, several methods might be suitable for the detection and monitoring of
leaky gut in lupus. The direct measurement of gut integrity is based on (i) the detection of
non-absorbable carbohydrates or other probed molecules in urine (or in the blood) after an
oral administration [19] and/or (ii) the recognition of PAMPs in blood without an obvious
source of infection, such as endotoxemia and glucanemia, as an indirect biomarker of gut
translocation of pathogen molecules with large MW [47]. Although there are several molec-
ular probes for leaky gut, such as (i) LPS detection assays, including Limulus amebocyte
lysate (LAL), endotoxin activity assay (EAA), and ELISAs, (ii) BG tests, and (iii) an oral
administration of a non-absorbable carbohydrate (before detection of the carbohydrate in
blood or in urine) with several benefits and limitations [140,141], the use of these strate-
gies for monitoring leaky gut in lupus is less common. Notably, the detection of serum
zonulin (a regulator of epithelial and endothelial barrier functions) [142] is another possible
indicator of gut integrity damage; however, the association between gut barrier defect and
serum zonulin is still inconclusive [143–145]. Due to (i) the clinical availability and the
convenience of the indirect leaky gut parameters (serum LPS and/or BG), and (ii) the safety
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of a single oral carbohydrate administration (mannitol with lactulose or sucralose), we
propose to use these parameters for leaky gut monitoring in patients with lupus.

8. Therapeutics Targeting Gut Leakage in Lupus

Because gut dysbiosis, gut leakage, and the translocation of PAMPs might be asso-
ciated with lupus disease activity, gut dysbiosis attenuation, gut integrity improvement,
and the neutralization of PAMPs are potential methods for slowing SLE progression in sus-
ceptible individuals. Among several proposed interventions, probiotic administration and
fecal transplantation are frequently mentioned [146]. Accordingly, probiotics are beneficial
microbes that colonize the GI tract and confer beneficial effects on the host through several
mechanisms including competition, anti-bacterial effects, protection of the GI barrier, and
modulation of immune responses. The clinical implication of probiotics with the diverse
bacterial species was firstly described in 1954 [147] in several diseases [146]. In SLE, several
beneficial probiotics, particularly Lactobacillus spp., have been reported (Table 1). However,
probiotics with mixed organisms are usually used, despite an uncertain benefit, over the sin-
gle strain probiotic products [148]. Hence, fecal transplantation, an administration of feces
from healthy donors that consist of several organisms, might be even more beneficial than
multi-bacterial probiotics. Although fecal transplantation is never been tested in patients
with lupus, the fecal microbiota transplantation (FMT) of feces from patients with lupus
into germ-free mice induces some lupus-like characteristics, including increased autoanti-
bodies, cytokines, altered immune cell distribution (in mucosa and blood), and upregulated
SLE-related genes [149]. Due to a possible causal role of aberrant gut microbiota in lupus
pathogenesis, FMT of feces from healthy individuals might be beneficial in patients with
lupus and a clinical trial of FMT in patients with active SLE effectively modified the gut
microbiota [150]. More studies on this topic are ongoing [151–154]. On the other hand, the
strategies of the direct attenuation of intestinal integrity by the protective molecules from
probiotics (such as the epithelial cell growth factors and short-chain fatty acids) with neu-
tralization of PAMPs from gut translocation are also interesting. Surprisingly, an alteration
of free fatty acids (FFA) in serum and feces of patients with lupus is common and partially
associated with gut dysbiosis [72]. The administration of butyrate in MRL/lpr lupus-prone
mice ameliorates gut microbiota dysbiosis [155] which might be even more interesting
than probiotics due to the possible easier preparation and storage of FFA as a chemical
drug. Nevertheless, probiotics are the current strategy to improve gut integrity and gut
dysbiosis with the most intensive studies with an adverse effect (systemic dissemination)
in patients with potent immunosuppression [156]. However, the disseminated probiotics
are easily eradicated by a simple antibiotic because of the facultative anaerobic nature
of the organisms. Hence, the additional indicators of gut dysbiosis, gut leakage, and the
monitoring biomarkers might be beneficial for lupus. More studies are warranted.
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Table 1. Beneficial probiotics in SLE.

Probiotic Effect To Attenuate Leaky Gut
Studying in SLE Human or Lupus Murine Model

Ref.
Strain Models/Observed Effect

Lactobacillus rhamnosus

- Secrete metabolites to contribute intestinal homeostasis and
barrier function [157,158]

- Improve gut permeability and modulate gut dysbiosis
[159,160]

- Prevent DNBS- [160] and DSS- [161] induced colitis

GG ATCC 9595
Pristine-induced murine model: anti-dsDNA
↓, IFNγ ↓, Th1-Th17 polarization ↓, Treg cell ↑ [162,163]

Patients with SLE: miR-181a ↓, miR155 ↓ [154]

LMS 201 MRL/lpr murine model: attenuate lupus
nephritis, IL-6 ↓, IL-10 ↑, IgG2a ↓ [58]

Lactobacillus delbrueckii
- Promote intestinal integrity and upregulate tight junction

protein in LPS-challenged piglets [164] PTCC 1743 Pristine-induced murine model: anti-dsDNA
↓, IFNγ ↓, Th1-Th17 polarization ↓, Treg cell ↑ [154,163]

Lactobacillus Plantarum

- Prevent spontaneous colitis in IL-10 knockout mice [165]
- Prevent methotrexate induce enterocolitis [166]
- Attenuates phorbol ester-induced redistribution of ZO-1 and

occludin in vivo [167]
- Improve gut dysbiosis and oxidative status in diabetic rats

[168]

LP299v NZB/W F1 murine model: anti-inflammatory
phenotype of BM-DCs ↑, IL-10 ↑, IL-12 ↑ [169]

LC40

NZB/W F1 murine model: improve gut
dysbiosis, renal injury ↓, plasma LPS ↓,

occludin and ZO-1 expression ↑, TNF-α ↓,
Th1-Th17 polarization ↓, Treg cell ↓

[74]

Lactobacillus reuteri
- Prevent methotrexate induce enterocolitis [166]
- Improve gut dysbiosis and prevent gut barrier disruption in

antibiotic-induced leaky gut [170]
- Increase production of indole and IL-22 in lumen [171]

GMNL-263
NZB/W F1 murine model: IL-6 ↓, TNF-α ↓,

MMP-9 ↓, CRP ↓, TLR-4 ↓, TLR-7 ↓, TLR-9 ↓,
Treg cell ↑

[153,172]

GMNL-89 NZB/W F1 murine model: hepatic apoptosis
↓, IL-6 ↓, TNF-α ↓, MMP-9 ↓, CRP ↓ [153]

DSM 17509
NZB/W F1 murine model: survival rate ↑,

anti-inflammatory phenotype of BM-DCs ↑,
IL-10 ↑, IL-12 ↑

[169]

Lactobacillus Casei
- Prevent TNF-α induced epithelium dysfunction in vitro [173]
- Reduce severity of DSS-induced colitis [174]

B255
NZB/W F1 murine model: survival rate ↑,

anti-inflammatory phenotype of BM-DCs ↑,
IL-10 ↑, IL-12 ↑

[169]

shirota
MRL/lpr murine model: B220 positive T cell

in spleen and MLN ↓, IL-6 expression in
macrophage ↓

[175]

Lactobacillus
Paracasei

- Prevent age-related leaky gut and inflammation [176] GMNL-32 NZB/W F1 murine model: cardiac apoptosis
↓, hepatic apoptosis ↓, IL-6 ↓, TNF-α ↓ [153,177]
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9. Conclusions

The summary of our working hypothesis is presented in Figure 3. As such, gut leakage
caused by immune-complex deposition, gut dysbiosis, infection, and medications might
be a silent exacerbating factor of lupus activity. Gut translocation of PAMPs, especially
LPS and BG, into blood circulation may induce systemic inflammation and enhance lupus
activity through induction of several cytokines and several types of cell death from innate
immune cells. Moreover, the molecular mimicry between gut pathogens and self-antigens
might possibly increase the autoantibodies and lupus flare-ups. Because probiotics could
attenuate gut dysbiosis and strengthen gut integrity without serious adverse effects, pro-
biotic treatment in the selected patients with leaky gut in lupus using several biomarkers
is interesting.
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Figure 3. The hypothesis diagram demonstrates gut permeability defects in lupus through sev-
eral mechanisms (microbiome alteration, drugs, and lupus-induced inflammation) facilitate the
translocation of microbial molecules that induce the death of immune cells (apoptosis, NETosis, and
pyroptosis), the release of cytokines (type I IFN and IL-6), and molecular mimicry, results in extracel-
lular DNA exposure, autoantibody production, and cross-reactive antibodies. Hence, leaky gut might
enhance pathogen molecules in the blood, such as lipopolysaccharides (LPS) from Gram-negative
bacteria and (1→3)-β-D-glucan (BG) from gut fungi, autoantibody production, and the circulating
immune complex.
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