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Hundreds of catalytic methods are developed each year to meet the demand for high-purity chiral

compounds. The computational design of enantioselective organocatalysts remains a significant

challenge, as catalysts are typically discovered through experimental screening. Recent advances in

combining quantum chemical computations and machine learning (ML) hold great potential to propel

the next leap forward in asymmetric catalysis. Within the context of quantum chemical machine learning

(QML, or atomistic ML), the ML representations used to encode the three-dimensional structure of

molecules and evaluate their similarity cannot easily capture the subtle energy differences that govern

enantioselectivity. Here, we present a general strategy for improving molecular representations within an

atomistic machine learning model to predict the DFT-computed enantiomeric excess of asymmetric

propargylation organocatalysts solely from the structure of catalytic cycle intermediates. Mean absolute

errors as low as 0.25 kcal mol�1 were achieved in predictions of the activation energy with respect to

DFT computations. By virtue of its design, this strategy is generalisable to other ML models, to

experimental data and to any catalytic asymmetric reaction, enabling the rapid screening of structurally

diverse organocatalysts from available structural information.
Introduction

Society's growing need for pharmaceuticals, agricultural
chemicals, and materials requires a continuous push in the
development of asymmetric catalytic methods.1,2 In particular,
enantioselective organocatalysis has emerged as a powerful
strategy for the stereocontrolled assembly of structurally diverse
molecules3–5 with constant effort placed in making chemical
transformations more selective, efficient, or generally appli-
cable.6 Although the computational design of highly selective
catalysts has long been viewed as a “Holy Grail” in chemistry,7,8

it is generally still more efficient to experimentally screen
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a range of potential organocatalysts for a given reaction than to
assess their performance in silico.9 That is because e.e. (enan-
tiomeric excess) values, estimated as the ratio between the
competitive reaction rates leading to the two enantiomeric
products,10 are relatively computationally expensive and chal-
lenging to predict accurately with standard electronic structure
computations. The energy difference between the transition
states (TSs) leading to the major and minor enantiomers can be
quite small (<2 kcal mol�1) and multiple diastereomeric tran-
sition states, stemming from the large conformational space of
exible organocatalysts, can yield the same enantiomer.7,11 As
the relation between rate constants and computed selectivity is
exponential, minor errors in computed energies can lead to
major errors in stereochemical outcome prediction. These
factors pose a monumental challenge for traditional quantum
mechanical (QM) methods, in terms of both accuracy and
cost,12,13 especially if many conformers and substrate-catalyst
combinations have to be computed. While the intrinsic error
of the quantum chemical level is oen addressed in compre-
hensive benchmark studies,10,14–17 automated toolkits,18,19 such
as AARON20 and CatVS,21 have been developed to streamline the
tedious and error-prone task of optimising hundreds of ther-
modynamically accessible stereocontrolling transition states.
Starting from user-dened libraries, multiple conformations
and congurations of TS structures are located and optimised.
Chem. Sci., 2021, 12, 6879–6889 | 6879
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Scheme 1 Library of axially chiral bipyridine N,N0-dioxide organo-
catalysts. R ¼ H or Me. Adapted from ref. 74.
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Although such accelerated prediction of selectivity is enticing
for the prospect of computational catalyst design,9 the appli-
cability of QM-based tools such as AARON remains limited
either by the cost of the quantum mechanical computations,
which quickly become prohibitive, or by the inherent difficulty
of locating all transition state structures. On the other hand,
tools using QM-derived molecular mechanics force elds
(Q2MM), like CatVS, require the development of an MM force
eld for each new reaction type considered, a major limitation
to their widespread application.11

An alternative approach pioneered by Norrby22 and Prad-
han23 and popularised by Sigman and co-workers is to t
experimental reaction outcomes to computationally- and
experimentally-derived physical organic molecular descrip-
tors.24–26 The difference in free energies at the stereocontrolling
transition states27 can be expressed as a polynomial function of
global or local steric and electronic parameters, such as Ster-
imol values, natural bond orbital charges, IR frequencies,
HOMO/LUMO energies, and polarisabilities.28–34 In principle,
the resulting statistical model allows for extrapolation to out-of-
sample examples,35,36 however, like all QSSR-type methods,37

such multivariate linear regressions are not easily transferable
and most suitable only for closely related analogues of the
training set, given that a set of appropriate molecular descrip-
tors must be redened for every new regression.21

Nonlinear regression models (e.g., articial neural
networks, random forest, kernel methods)38 have demon-
strated the potential to overcome some of the previous limits in
catalyst screening and constitute an alternative to multilinear
regressions with parameters derived from chemical knowledge
and mechanistic hypotheses (e.g., Hammett constants, Tolman
cone angles, percent buried volume, vibrational frequencies,
pKa values).39–45 Recently, the organic synthetic community has
exploited these articial intelligence-based approaches for
predicting DDG‡,27 e.e., the activation energy, the product
distribution, or the yield of (asymmetric) catalytic reactions.
These models rely on the identication of a large set of system-
specic molecular descriptors (e.g., physical organic descrip-
tors like Charton or Sterimol values, NBO charges, NMR
chemical shis, bond distances and angles, HOMO–LUMO
gaps, local electro/nucleophilicity, or RDKit descriptors46) used
as the input from which an algorithm can “learn” while being
“supervised” by the reaction outcome (output, i.e. DDG‡, e.e., or
yield).47–62 While the reaction outcome is oen obtained from
experiment (i.e., phenomenological models), alternatives
based on computed data are highly valuable as well.63–67

Indeed, so-called quantum (or atomistic) ML models, which
map a three-dimensional molecular structure (called molec-
ular representations, e.g. CM,68 SLATM,69 SOAP70) to a repre-
sentative target computed quantum chemically, constitute an
appealing complementary strategy owing to its broad applica-
bility and dependence on the laws of physics.69,71,72 While these
approaches provide a favourable combination of efficiency,
scalability, accuracy, and transferability for predicting ener-
getic and more complex molecular properties,71 identifying
enantioselective organocatalysts requires precise predictions
of the relative energy barriers for the stereocontrolling
6880 | Chem. Sci., 2021, 12, 6879–6889
transition states, a target currently beyond their accuracy.
Recently, SOAP features of isolated reactants were used to train
a machine learning classier and predict transition state
barriers of regioselective arene C–H functionalization. In this
work, a large number of molecular ngerprints were combined
with the SOAP features to improve the regression, and the
resulting model was outperformed in out-of-sample predic-
tions by a random forest model using chemical descriptors
with physical organic basis (PhysOrg).73

Here, we provide a stepwise route to improve such QML
approaches to reach sufficient accuracy for subtle properties
such as those associated with asymmetric catalysis (i.e., e.e.).
This objective is achieved by rationally designing a reaction-
based representation (vide infra) that is a more faithful nger-
print of the enantiodetermining TS energy. The performance of
the approach is demonstrated through accurately predicting the
DFT-computed enantiomeric excess of Lewis base-catalysed
propargylation reactions directly from the structure of the
catalytic cycle intermediates. Unlike other ML models trained
on (absolute) experimental e.e.'s,35,36 our model is able to
predict the absolute conguration of the excess product,
because it is trained on the activation energy of the enantio-
determining step for each pair of enantiomers (pro-(R) and pro-
(S) intermediates) independently.
Methods
Reaction and organocatalysts database

Asymmetric allylations75–78 and propargylations79 of aromatic
aldehydes are key C–C bond forming transformations,
providing access to optically enriched homoallylic and homo-
propargylic alcohols, respectively, which serve as valuable
building blocks for the synthesis of complex chiral molecules.80

Catalysts that are selective for allylations are generally not
highly stereoselective for propargylations, which has led to
a dearth of stereoselective propargylation catalysts.81–85 Tools to
screen dozens of allylation catalysts to nd promising
© 2021 The Author(s). Published by the Royal Society of Chemistry



Scheme 2 Catalytic cycle for the propargylation of benzaldehyde with
allenyltrichlorosilane, showing the rate-limiting and stereocontrolling
transition state. Adapted from ref. 85.
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candidates for propargylation reactions are therefore highly
valuable.9 To this end, Wheeler and co-workers have investi-
gated 76 Lewis base organocatalysts (Scheme 1)74 and used the
computational toolkit AARON20 to build a database of 760
stereocontrolling transition states to predict their
Scheme 3 Graphical overview of the workflow used to build an atomist

© 2021 The Author(s). Published by the Royal Society of Chemistry
enantioselectivity in the propargylation of benzaldehyde
(Scheme 2).14,74,86 Large databases of kinetic data for asymmetric
catalysis generated in silico are scarce.63 Therefore, this library
constitutes an ideal training and validation set for the devel-
opment of an atomistic ML model with reaction-based repre-
sentations capable of predicting the e.e. of organocatalysts
readily from the structures of intermediates. Note that the
workow presented below would improve the ML performance
independently of the size of the training data. The target of the
ML model is the DFT-computed relative forward activation
energy (Ea, i.e., the energy difference between the TS and the
preceding intermediate) associated with each of the 10 (R)- or
(S)-ligand arrangements (see Fig. S1†) of the enantiodetermin-
ing TS in Scheme 2 for the 76 catalysts in Scheme 1 (11 catalysts
of type 1, 16 of type 2, 15 3, 11 4, 13 5, and 10 catalysts of type 6),
yielding a total of 754 Ea values.87 e.e. values are computed from
Ea (vide infra), thus accurate predictions of Ea lead to accurate
e.e. predictions.
General ML workow

The general workow exploited and improved herein relies on
a physics-based ML model for the prediction of the e.e. of the
asymmetric catalytic reactions, as illustrated in Scheme 3 and
described hereaer. It comprises two parts: part (1) is a training
procedure that relies on the following steps:

(1) Database construction: a library of 3D geometries and
energies of catalytic cycle intermediates is curated. Here, the
structures of 754 pairs of intermediates 2 and 3 are optimised
with DFT (see the next section) and used to train the ML model.
As shown in our previous work,43 accurate geometries are not
necessarily needed as inputs for atomistic ML models; thus,
rough-coordinate estimates (e.g., obtained directly from SMILES
ic ML model for e.e. prediction.

Chem. Sci., 2021, 12, 6879–6889 | 6881
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strings) or low-cost DFTB structures could potentially be used to
generate suitable molecular representations.

(2) Generation of molecular representations: information
intrinsically contained within the 3D structure of each inter-
mediate is transformed into a suitable molecular representa-
tion. Here we build different variants based on the Spectral
London and Axilrod-Teller-Muto (SLATM)69 representation.
SLATM is composed of two- and three-body potentials, which
are derived from the atomic coordinates and contain most of
the relevant information to predict molecular properties.70,88–94

(3) Training of the model: input representations are mapped
onto the corresponding target values (Ea, computed at the DFT
level, see the next section) using Kernel Ridge Regression
(KRR)95 with a Gaussian kernel. Note that even if target values
based on DFT are used here to train the ML model, the strategy
proposed hereaer is expected to perform equally well on
experimental or more accurate quantum chemical data.

(4) Hyperparameter optimisation and cross-validation: the
full dataset is split randomly 100 times into 90/10 training/test
sets (678/76 datapoints) to optimise the KRR hyperparameters
and obtain the learning curves.

In part (2), the trained ML model is used to predict the
activation energy of out-of-sample organocatalysts. The model
requires as input the 3D structures of 2 and 3 and delivers the
corresponding Ea value. Using the energy of 2 as reference, the
relative energies of the enantiodetermining (R)- and (S)-TSs can
be calculated, and the e.e. of the catalyst under investigation
computed (vide infra).

Computational details
Quantum chemistry

Catalytic cycle intermediates 2 and 3 were optimised at the B97-
D/TZV(2p,2d) level of theory,96–98 accounting for solvent effects
(dichloromethane, 3 ¼ 8.93) using the polarizable continuum
model (PCM)99–101 with Gaussian16,102,103 in analogy with the
study by Wheeler and co-workers.74 Density tting techniques
were used throughout. The structures of 1508 intermediates
were obtained via intrinsic reaction coordinate calculations
(IRC)104 from the TS database curated by Wheeler et al.74 754
target Ea values (11 catalysts of type 1, 16 type 2, 15 3, 11 4, 13 5,
and 10 of type 6, each in 5 distinct pro-(R) and pro-(S) ligand
arrangements)87 were computed (relative to the lowest-lying
intermediate 2 ligand arrangement) at the same level, which
was shown to provide the best compromise between accurate
predictions of low-lying TS energies and stereoselectivities for
allylation and propargylation reactions.14 e.e. values were not
predicted from Gibbs free energy barriers, but rather from
relative energy barriers (i.e., electronic energies plus solvation
free energies), since they have been found to be more reliable
than those based on either relative enthalpies or free energy
barriers for this reaction.14 The symbol Ea was therefore used to
indicate the energy (electronic plus solvation) difference
between the TS and the preceding intermediate. For each C2-
symmetric catalyst (Scheme 1), 10 distinct ligand arrangements
around a hexacoordinate Si centre are possible (BP1–5, (R)- and
(S)-, Fig. S1†).84–86 Since each of these can lead to
6882 | Chem. Sci., 2021, 12, 6879–6889
thermodynamically accessible reaction pathways, and the ster-
eoselectivity is largely a consequence of which ligand arrange-
ment is low-lying for a particular catalyst, all diastereomeric TSs
were considered viable and the e.e. calculated from a Boltz-
mann weighting of the relative energy barriers.74 In eqn (1)–(3),
DEa,eff is the relative Boltzmann-weighted activation energy of
each (R)- or (S)-species, DDE‡ is the difference between the (R)-
and (S)-Boltzmann-weighted activation energies, R is the ideal
gas constant, and T is the propargylation reaction temperature
(195 K).

DEa;eff ¼ �RT ln

 XBPi
i

e�ðEBPi
a =RTÞ

!
(1)

DDE‡ ¼ DE(R)
a,eff – DE(S)

a,eff (2)

e.e. (%) ¼ 100 � (1 � eDDE‡/RT)/(1 + eDDE‡/RT) (3)
Machine learning

The Python package QML105 was used to construct standard
SLATM representations. Feature selection and the construction
of the reaction-based representations SLATMDIFF and
SLATMDIFF+ were done using the Python package Scikit-learn.106

To generate the learning curves and the e.e. predictions, a cross-
validation scheme was used with 100 different 90/10 training/
test sets (678/76). The KRR hyperparameters (the width of the
Gaussian kernel s and the ridge regularization l) were opti-
mised for each train/test split, systematically obtaining essen-
tially the same results for each split (see the ESI†). From the 100
train/test splits, the Ea of each intermediate pair (2 and 3) was
predicted approximately 10 times; these test predictions were
then averaged to obtain one nal prediction. The standard
deviation from the �10 test predictions were used to generate
the error bars. The nal average prediction of the Ea value was
used to calculate the Boltzmann-weighted DEa,eff values (eqn (1))
and the DDE‡ of each (R)- and (S)-pair (eqn (2)), and so the e.e.
value of each organocatalyst (eqn (3)). The out-of-sample
predictions were done with the same SLATMDIFF+ models
trained in the cross-validation scheme. Additionally, out-of-
sample predictions were done re-training the model on the
entire dataset (see Fig. S6†), although this did not lead to
noticeable improvement. While simpler representations (e.g.,
CM,68 BoB107) were tested, SLATM performs signicantly better
(see Fig. S2†).
Results and discussion
Molecular representations

The key step of the workow presented above is generating
a molecular representation, which is mapped onto the target
value (i.e., the activation energy Ea) and used as a ngerprint of
the enantiodetermining TS. Representations can be constructed
from single molecules and more recently as “ensemble repre-
sentations”: instead of associating one xed conguration of
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 2 Predictions of DDE‡ vs. DFT reference for the three approaches
discussed. Mean Absolute Errors (MAE) are reported in kcal mol�1.
These predictions are obtained by averaging the predictions obtained
from the cross-validation scheme with 100 different random train/test
splits. The error bars indicate the standard deviation of ML DDE‡,
derived from the standard deviations in the Ea prediction of the 100
different random train/test splits.
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atoms to a single-point geometry energetic target value, infor-
mation from multiple structures can be combined to generate
a representation for an ensemble property, such as the free
energy of solvation (DGsol).108 This has recently been achieved by
calculating the ensemble average of the FCHL19 representa-
tions109,110 of a set of congurational snapshots obtained
through MD sampling.108 Here, we propose an alternative
approach that goes beyond standard QML representations (i.e.,
KRR using one given gas-phase geometry)108 by describing the
chemical transformation occurring during the enantiode-
termining step of an asymmetric reaction through the
comparison of the representations of the two catalytic cycle
intermediates preceding and following the stereocontrolling TS.
This allows us to generate a “reaction-based” representation,
which can be closely mapped to the activation energy of the
enantiodetermining step, as discussed later. We rely on
“dissimilarity” plots as a diagnostic tool to determine whether
a particular representation can adequately characterize the
stereocontrolling step. By dissimilarity plots, we refer to histo-
grams of the Euclidean distance between any two representa-
tions vs. the difference in their target property, which in this
case is Ea. For a particular representation to be effective, small
distances between structures must correspond to small differ-
ences between target properties, as the Euclidean distance is
used to measure the similarity of two molecular representa-
tions. Similar plots have previously been exploited to analyse
the behaviour of molecular representations,70,111 but only
parenthetically. Here, we highlight their importance as
a fundamental analytical tool to understand the performance of
molecular representations in kernel methods for asymmetric
catalysis and demonstrate their utility for constructing reliable
ML models.

Before discussing our proposed representation variants, we
report in Fig. 1a the performance of the standard SLATM
representation using the structure of a single intermediate (e.g.,
2). Due to the structural similarities between 2 and the enan-
tiodetermining TS (in both, the Si atom has 6 coordination sites
Fig. 1 (a) Learning curves with MAE in test sets predictions of Ea for the t
deviations and are computed from the results of 100 different random tra
Euclidean distance between representations for each pair of points in t
distance between points). When the difference in Ea values tends to zero
dotted straight lines (ideal behaviour).

© 2021 The Author(s). Published by the Royal Society of Chemistry
occupied, whereas the coordination number is only 5 or 4 in
intermediate 3), intermediate 2 was rst chosen to construct the
input representation. The learning curve for the prediction of Ea
using SLATM (blue) of intermediate 2 (denoted SLATM2) rea-
ches a Mean Absolute Error (MAE) of 0.54 � 0.06 kcal mol�1 for
the prediction of Ea with 90% of the data used for training (i.e.,
680 structures). Considering the exponential relationship
between relative activation energies and e.e. values, which
implies a dramatic propagation of errors, the accuracy of this
approach is insufficient. This is further demonstrated in Fig. 2,
which shows the correlation between the predicted and refer-
ence DDE‡ values (MAE ¼ 0.96 kcal mol�1), and in Fig. 3, where
the e.e. values obtained from SLATM2 are compared to the
hree approaches discussed. The error bars correspond to the standard
in/test splits. (b) Dissimilarity plots i.e., difference in target values (Ea) vs.
he dataset (the Euclidean distances have been divided by the average
, the corresponding points should lie in the area delimited by the two

Chem. Sci., 2021, 12, 6879–6889 | 6883



Fig. 3 e.e. values obtained from DFT computations (top left) and from the ML predictions of Ea using the three approaches discussed. These
predictions are obtained by averaging the predictions obtained from the cross-validation schemewith 100 different random train/test splits. Cells
are coloured according to their accuracy with respect to the reference, ranging from dark green (best) to dark red (worst). Positive e.e. values
correspond to excess (R)-alcohol formation, negative values to excess (S)-alcohol formation.
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reference quantities: the large number of red-coloured cells
indicates large deviations between ML-predicted and DFT-
computed e.e. values. The rather poor mapping between
SLATM2 and the Ea of the stereocontrolling step (associated
with the key 2 / 3 transition state) is evident from the visual
inspection of Fig. 3, where the large number of red-coloured
cells associated with catalysts bearing substituents a, d, e, g, f
and j indicates inaccurate predictions of e.e. values, and from
the analysis of the corresponding dissimilarity plot in Fig. 1b
(le). In the latter, the large scattering of points lying outside
the area delimited by the dotted lines, particularly when the
Euclidean distance tends to zero, means that two different
structures might be considered equal by the kernel (distancez
0) albeit leading to very different Ea values. Thus, the shape of
the dissimilarity plot of SLATM2 deviates considerably from
ideal one, indicated by the dotted straight lines.70 Note that the
MAE for Ea increases up to 0.77 � 0.05 kcal mol�1 (see Fig. S2†)
6884 | Chem. Sci., 2021, 12, 6879–6889
if starting from the SLATM representation of 3, the intermediate
following the enantiodetermining step in the catalytic cycle
(Scheme 2). The higher accuracy achieved using the represen-
tation of 2 vs. 3 could be attributed to the reaction step being
exergonic and, according to the Hammond Postulate,112 the
enantiodetermining TS resembling 2 more closely. In any case,
neither the structure of 2 or 3 provides sufficiently good
ngerprints of Ea on their own.

Unlike other intrinsic molecular properties that depend on
the structure of a single molecule,108 enantioselectivity is
determined by electronic and/or steric effects stabilising or
destabilising one enantiomeric TS to a greater or lesser degree
than the other. In that sense, it is to be expected that our target
accuracy for Ea, well below 1 kcal mol�1, cannot be reached
using only one structure that does not adequately describe the
stereocontrolling transition state as an input. To improve the
model performance, an alternative representation is
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 4 Variance and correlation coefficient with the target value for
each of the 27 827 features of the SLATMDIFF representation in the
dataset.
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constructed by comparing the representations of both inter-
mediates. Knowing that neither the structure of 2 or 3 are
uniquely related to the corresponding activation energies, we
can generate such a “reaction-based” representation that draws
information from both structures, subtracting the global
SLATM of 2 from 3. This is reminiscent of binary reaction
ngerprints (obtained by subtracting the products' from the
reactants' RDKit46 ngerprints), which reect changes in
molecular features over reaction processes.113 The resulting
representation (denoted SLATMDIFF) accounts for the differ-
ences between the two intermediates and is thus more sensitive
to the structural changes occurring during the enantiode-
termining step. By subtracting “reactant” from “product”, the
global features that do not change during the catalytic cycle step
are eliminated from the representation, and the structural
changes between intermediates are highlighted. In this way, we
obtain a more faithful representation of the reaction step,
which corresponds to a more unique ngerprint of Ea. Although
the construction of SLATMDIFF requires the SLATM represen-
tations of both intermediates (2 and 3), the computational cost
associated with its generation is negligible.

As depicted in the dissimilarity plot (Fig. 1b, middle), the
reaction-based representation (SLATMDIFF) is signicantly
better than SLATM2: the difference in Ea values tends to zero as
the Euclidean distance between their representations tends to
zero. In line with this observation, the learning curve (shown by
the orange line in Fig. 1a) is signicantly improved. The MAE of
SLATMDIFF is reduced to 0.31 � 0.2 kcal mol�1, roughly 50%
better than SLATM2 and up to 60% better than that of SLATM3

using 90% of the data for training (i.e., 680 structures) in the
train/test splits of the cross-validation scheme. Given the
rationality of the approach leading to the construction of
SLATMDIFF, its gain in accuracy is encouraging. As shown in
Fig. 2 and 3, the halved MAE leads to a very notable improve-
ment in the prediction of e.e. values. Nevertheless, we note
again that very small errors in Ea are amplied when e.e. values
are calculated, and therefore even a small accuracy gain can be
signicant.

The high probability density of normalised Euclidean
distances between 0.5 and 0.75 seen in Fig. 1b (middle,
SLATMDIFF) indicates that the shape adopted by the dissimi-
larity histogram of SLATMDIFF is not yet ideal, and that further
improvement is possible. To achieve higher accuracy, we focus
on improving the shape of this dissimilarity plot. Notice that in
our ML model, the Euclidean distance is used as a measure of
similarity between representations. This means that features
with high variance (i.e., that change the most between mole-
cules) dominate the notion of similarity, as they contribute the
most to the Euclidean distance between representations. By
feature, we mean each of the terms in the molecular represen-
tation, which, for SLATM, consist of two- (London dispersion)
and three- (Axilrod–Teller–Muto) body potentials computed on
groups of atoms closer than a certain cut-off (here, 4.8 Å). The
results of these potentials are averaged over their atom-type sets
(e.g., all C–C interactions for the two-body terms, all the C–C–C
for the three-body terms), which are then concatenated to
generate the SLATM vector. The size of the SLATM
© 2021 The Author(s). Published by the Royal Society of Chemistry
representation depends on the existing atom-type sets in the
database. Given that our dataset contains the elements C, H,
O, N, F, Cl and Si, the total number of features of the SLATM
representations is 27 827.

In SLATMDIFF, features with high variance dominate the
notion of similarity, measured through the Euclidean distance.
However, we are using SLATM to predict a property that is very
different from the single-molecule properties for which it was
originally designed. Consequently, features with high variance
in SLATM are not necessarily the most important ngerprints of
Ea. In pursuit of the best possible ngerprint of the activation
energy, we assign importance scores to each feature and
attempt to focus on the most relevant ones. The linear corre-
lation coefficient (r2) between each feature and the target
property is used as an estimate of the importance of the
different terms in the representation. The results, presented in
Fig. 4, show that in SLATMDIFF there are only a few high-
variance features, while the computed importance scores are
spread over many other features that have relatively small
variances. Simply put, the variances in the features of the
SLATMDIFF representation are not well correlated with their real
importance in this application.

Based on this observation, an improved representation,
labelled SLATMDIFF+, is generated by selecting only the Nf most
important features of SLATMDIFF (specically, Nf ¼ 500) and
discarding the rest. This feature selection was done using only
the training data at each train/test split of the cross-validation
step, as otherwise it could lead to severe overtting. Neverthe-
less, the importance scores were consistent across the cross-
validation splits thanks to the robustness of the linear regres-
sions. An improved relationship between representation and
target distances (Fig. 1b, right) is obtained with the SLATMDIFF+

representation, in spite of its reduced size. This simple feature
selection leads to a noticeable improvement in accuracy, with
a cross-validated MAE of 0.25 � 0.4 kcal mol�1 (see the green
curve in Fig. 1a). Using the SLATMDIFF+ representation, the
resulting cross-validated correlation coefficients for the
Chem. Sci., 2021, 12, 6879–6889 | 6885



Fig. 5 Out-of-sample predictions on terpene-derived atropisomeric
organocatalysts 7j and 7k. 10 distinct TSs were computed for each
catalyst (BP1–5, (R)- and (S)-). The error bars are the standard deviation
of the 100 predictions from each trained model from the cross-vali-
dation scheme.
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difference between (R)- and (S)-activation energies (DDE‡, Fig. 2)
in the test set are greatly improved (r2 > 0.95). The quality of our
tted model far supersedes previously reported approaches.
Good qualitative and even quantitative agreement is achieved
between predicted and reference e.e. values computed using the
test data splits from the cross-validation runs (Fig. 3).

Since linear correlation constitutes a very limited notion of
relevance, other methods, such as nonlinear mutual informa-
tion criteria,114 were tested as feature importance estimators,
but the resulting models showed similar or even worse perfor-
mance (see the ESI†). Similarly, methods based on metric
learning111,115 did not lead to any improvement, as the high
dimensionality of the problem led to severe overtting. Ceriotti
et al.116 suggested the use of principal covariates regression
(PCovR) to solve similar issues.117 PCovR is a supervised feature
selection method that interpolates between principal compo-
nent analysis (PCA) and linear regression. Herein, because the
variance of the features is completely unrelated to the impor-
tance scores, the addition of PCA would not offer any advantage.
Nevertheless, these ndings highlight the importance of
adapting molecular representations to the application at hand,
while still preserving the overall generality of the approach.
Chemical insight on asymmetric propargylation catalysts

The ML model is able to reproduce the main trends in e.e.
observed across the different catalysts from the 100 different
random train/test splits (Fig. 3, top le table). For example,
using SLATMDIFF+ (Fig. 3, bottom right table), which gives the
best predictions with respect to the reference data, catalysts
built on scaffold 4 (Scheme 1) are revealed to be outliers,
yielding e.e.'s that are signicantly different to those obtained
with other scaffolds, for a given substituent a–j. This is due to
the different placement of the substituent X on the organo-
catalysts' scaffold. Excluding 4, the effect of different substitu-
ents on the e.e. is qualitatively the same across all scaffolds,
with the exception of f (iPr) and j (Ph). The introduction of
a phenyl group on the organocatalysts' scaffold leads to highly
varied e.e. values, from�97 (S) to 91 (R). This variation, which is
due to the presence of favourable p-stacking and CH/p inter-
actions stabilising some (S)-TSs and degrading the enantiose-
lectivity,74 is nicely captured by SLATMDIFF+. Overall, the high
enantioselectivity displayed by (most) catalysts in the library can
be attributed to the favourable electrostatic interaction between
the formyl C–H of benzaldehyde and one of the chlorines bound
to Si, which is present in the lowest-lying (R)-ligand arrange-
ment, and absent in the (S)-structures.74

In their computational screening with AARON,74 Wheeler
and co-workers identied derivatives of 6 as promising candi-
dates for propargylation reactions. However, these catalysts are
difficult to synthesize stereoselectively.81,118 Recently, Malkov
et al. reported the synthesis of a set of terpene-derived atropi-
someric bipyridine N,N0-dioxides 7 (Fig. 5) as easily-separated
diastereoisomers.119 Aromatically-substituted catalysts 7j and
7k were shown to be highly active and selective (e.e. of 96 and
97, respectively); additionally, the TS structures for 7 were
computationally shown to be nearly identical to the
6886 | Chem. Sci., 2021, 12, 6879–6889
corresponding substituted forms of 6.119 Prompted by these
results, we decided to test the ML model with SLATMDIFF+ to
predict the activation energy of the 10 distinct ligand arrange-
ments afforded by 7j and 7k. The out-of-sample results are
shown in Fig. 5. Despite scaffold 7 and substituent k not being
in the original training set, excellent correlation between pre-
dicted and reference Ea values is obtained (r2 ¼ 0.97). Thus, the
enantioselectivity of these out-of-sample catalysts is qualita-
tively reproduced, despite not achieving exact quantitative
agreement between DFT andML predicted DDE‡ values (1.2 and
1.3 for 7j and 7k, respectively, vs. 0.2 and 0.5 kcal mol�1).

In summary, we provide a logical route to improve atomistic
ML methods for enantioselectivity prediction of asymmetric
catalytic reactions, which are limited by both the required
accuracy and the small amount of data generally available.
Firstly, the intermediates associated with the enantiode-
termining step (2 and 3 in Scheme 2) must be identied, and
their SLATM representations generated. Secondly, using the
difference between the two SLATM representations (SLATMDIFF)
as input, a set of features that map the activation energy accu-
rately can be obtained. Finally, feature engineering can be used
to improve SLATMDIFF, keeping only the most relevant features
that relate to the target property. The results show that the ML
workow presented herein is able to accurately predict enan-
tioselectivity from the molecular structures of catalytic cycle
intermediates.
Conclusions

In this work, we have developed an atomistic machine learning
model to predict the DFT-computed e.e. of Lewis base-catalysed
propargylation reactions (Scheme 2). The use of dissimilarity
© 2021 The Author(s). Published by the Royal Society of Chemistry
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plots allowed us to rationally develop and progressively improve
a reaction-based representation that can be adequately mapped
onto the activation energy of the stereocontrolling step. We
identied two fundamental limitations of many standard
physics-based molecular representations for subtle catalytic
properties. First, we have shown that neither the structure of the
preceding nor that of the following catalytic cycle intermediate
is a ne ngerprint of the energy of the stereocontrolling tran-
sition state. This issue can be circumvented by using a reaction-
based molecular representation derived from both structures.
Finally, we have demonstrated how feature selection can be
used to ne-tune this representation.

The resulting model can accurately predict the DFT-
computed enantioselectivity of asymmetric propargylations
from the structure of catalytic cycle intermediates. Thus, it
constitutes a valuable tool to quickly identify potentially selec-
tive propargylation organocatalysts. By design, the model is
well-balanced between computational cost, generality and
accuracy. It is easy to implement for a wide region of chemical
space and seamlessly compatible with experimental (e.g., X-ray
structures of stable intermediates) and computational data
alike. Our results prove that semi-quantitative predictions of
e.e. values in asymmetric catalysis can be achieved by accurately
predicting Ea.

We conclude that atomistic ML models with adequately
tailored molecular representations can be a practical and
accurate alternative to both traditional quantum chemical
computations of relative rate constants and multivariate linear
regression with physical organic molecular descriptors. The
stepwise improvement to the model described in this work
opens the door to more complex reaction-based and catalytic
cycle-based representations. Indeed, ensemble representa-
tions, which were recently introduced for properties very
sensitive to conformational freedom, such as the free energy of
solvation DGsol,108 are a promising path to go beyond the single
structure-to-property paradigm and allow for further general-
isation, once combined with the approach discussed herein.
Such methodologies will be explored in future work for the
accurate screening of enantioselective catalysts in asymmetric
reactions.
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