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Background. Pulmonary complications of systemic sclerosis (SSc), including pulmonary arterial hypertension (PAH), are the
leading causes of patient death. However, the precise molecular mechanisms of its etiology are unclear. This study’s objective
was to identify the candidate genes involved in the progression of SSc-PAH and investigate the genes' function. Methods. The
gene expression profiles of GSE33463 were obtained from the Gene Expression Omnibus (GEO) database. A free-scale gene
coexpression network was constructed using the weighted gene coexpression network analysis (WGCNA) to explore the
association between gene sets and clinical features and identify candidate biomarkers. Then, gene ontology analysis was
performed. A second dataset was used, GSE19617, to validate the hub genes. The verified hub genes’ potential function was
further explored using gene set enrichment analysis (GSEA). Results. Through average link-level clustering, a total of seven
modules were classified. A total of 938 hub genes were identified in the key module, and the key module’s function mainly
enriched was related to chemokine activities. Subsequently, four candidate genes, BTG3, CCR2, RAB10, and TMEM60, were
filtered. The expression levels of these four hub genes were consistent in the GSE19617 and GSE33463 datasets. We plotted the
ROC curve of the hub genes (all AUC > 0:70). Furthermore, the results of the GSEA for hub genes were correlated with
complement and inflammatory responses. Conclusions. The hub genes (BTG3, CCR2, RAB10, and TMEM60) performed well in
distinguishing the SSc-PAH patients from controls, and some biological functions, related to immunity, inflammation, and
cytokines, might pave the way for follow-up studies on the diagnosis and treatment of SSc-PAH.

1. Introduction

Systemic sclerosis (SSc), with a chronic progressive manner,
is a rare systemic autoimmune disease [1]. A series of patho-
physiological processes eventually lead to the deposition of
excessive collagen and fibrosis in the skin and various organ
systems, especially the lung [2]. Lung involvement in SSc
consists of both interstitial lung diseases (ILD) and pulmo-
nary hypertension (PAH), and it is worth noting that PAH
is not uncommon in SSc [3] and might be more common
in limited SSc [4]. At autopsy, PAH accounted for 8-12% of
patient death [4]. It was estimated that PAH’s lifetime prev-
alence in SSc patients is 5-12% [5].

PAH is a destructive disease that causes distinctive
remodeling of the intima, medial, and adventitia layers based
on the small and medium pulmonary arteries, resulting in
considerable narrowing of the pulmonary vascular lumen
[5–7]. The final manifestation is an increase in mean pulmo-
nary artery pressure at rest (mPAP ≥ 25mmHg) [5, 6]. Lung
involvement is a common cause of mortality in patients with
SSc [8], of which ILD is the most common, followed by PAH
[6]. Moreover, it was estimated that 30% of global PAH cases
appeared to be connective tissue disease-related PAH, of
which SSc-related PAH (SSc-PAH) accounted for the major-
ity [9]. The risk of death from PAH based on ILD was five
times higher than that of PAH alone [10]. The prognosis of
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patients with SSc-PAH is abysmal. It has been reported that
the 3-year mortality rate after PAH diagnosis was approxi-
mately 50% [5], while the latest 3-year survival rate was
75% [11]. In treatment, although the exercise capacity and
quality of life have significantly improved in patients with
idiopathic PAH (IPAH) due to vasodilators uses, there is
no such trend in patients with SSc-PAH [2].

The weighted gene coexpression network analysis
(WGCNA), which has been widely used to explore gene net-
works’ characteristics related to complex diseases [12], can be
used to investigate the association between the genome and
clinical features and identify candidate biomarkers. This
study’s objective was to use WGCNA analysis to investigate
the gene-network characteristics of peripheral blood associ-
ated with SSc-PAH and to identify the hub genes most rele-
vant to SSc-PAH and to use gene set enrichment analysis
(GSEA) of a single candidate gene to explore their potential
function.

2. Materials and Methods

2.1. Gene Expression Data and Data Preprocessing. The data-
set of RNA expression profiles of SSc-PAH was driven from
the Gene Expression Omnibus (GEO) database (https://
www.NCBI.nlm.nih.gov/GEO/). In this study, the microar-
ray dataset GSE33463 [13] from whole peripheral blood in
42 SSc-PAH patients and 41 controls was obtained to build
coexpression networks and identify hub genes related to
SSc-PAH. Considering that the datasets used in this study
were downloaded from the GEO database through publicly
available methods, the imperative of informed consent was
waived.

The R software (version 3.5.2; https://www.R-project.org/)
and several packages were used for data mining and statistical
analysis. Meaningfully, the “normalizeBetweenArrays” func-
tion of the “Limma” package [14] was used for normalization.

2.2. Screening of Differentially Expressed Genes. We screened
the differentially expressed genes (DEGs) between SSc-PAH
patients and normal controls in the expressing data by using
the t-test in the “Limma” package in R. The cut-off criteria
were defined as ∣ log2 FC ∣ >0:5, and adjusted P values <0.05.

2.3. Construction of Coexpression Network. Through the R
package “WGCNA” [12], the DEGs’ coexpression network
based on GSE33463 was constructed. In the coexpression
network, based on the soft-thresholding power of 16 and
the minimum number of genes in the module of 30, genes
with high absolute correlations were clustered into the same
module.

2.4. Gene Ontology and Pathway Enrichment Analysis. It
would be more productive if gene ontology and pathway
enrichment analysis were performed on a transcriptional
module closely related to the trait. To further probe the
function of the DEGs in the key module, the Gene Ontology
(GO) analysis and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis were performed using
the R package “clusterProfiler” [15], where GO analysis
included molecular function (MF), biological processes

(BP), and cellular component (CC). P < 0:05 was set as the
cut-off standard.

2.5. Identification of Hub Genes in Clinically Significant
Modules. Gene significance (GS) was evaluated by the medi-
ated P value (GS = lgP) of each gene in a linear regression
between gene expression and the clinical characteristics
[16], while the genes’ connectivity was assessed by the abso-
lute value of Pearson’s correlation.

In our study, genes with GS greater than 0.95 and
ModuleMembership > 0:9 were considered to be the hub
genes of the modules, reflecting a meaningful correlation
with particular clinical features.

2.6. Genes Validation and Efficacy Evaluation. A second
dataset GSE19617 [17], obtained from RNA extracted from
peripheral blood mononuclear cells (PBMCs) in 17 patients
with SSc-PAH and 12 healthy controls, was used to verify
the hub genes. To evaluate the hub genes’ reliability to distin-
guish SSc-PAH patients from healthy controls, we plotted

Table 1: The top 15 up-regulated genes and 15 down-regulated
genes identified in the microarray dataset GSE33463.

Gene symbol logFC P value Adj. P value

MOAP1 1.051413956 1.25E-21 2.01E-17

MED10 0.757768783 1.77E-21 2.01E-17

EIF1 0.949347975 9.48E-21 4.91E-17

DNAJB1 1.235358669 9.76E-21 4.91E-17

MYLIP 1.145187023 1.42E-20 5.36E-17

DYNLL2 1.300670563 2.45E-20 7.69E-17

SBDS 1.160211817 5.46E-20 1.18E-16

CCDC59 0.943865194 5.61E-20 1.18E-16

PITPNC1 0.729721186 7.93E-20 1.53E-16

LOC652773 0.833258361 2.19E-19 3.07E-16

LOC388275 0.765982809 3.01E-19 3.79E-16

MGAT4A 1.340399036 6.79E-19 7.77E-16

TOMM20 0.627208790 7.46E-19 8.16E-16

TIGA1 0.820889344 8.78E-19 9.20E-16

IRF2BP2 0.974930681 1.42E-18 1.38E-15

TMEM60 -1.131294044 2.40E-21 2.01E-17

EXOSC3 -0.835661131 1.49E-20 5.36E-17

ASH2L -0.588897110 3.02E-20 8.44E-17

GIMAP4 -1.639178038 4.24E-20 1.07E-16

FPR2 -1.495763022 1.10E-19 1.85E-16

TNFAIP8L2 -0.909455924 1.51E-19 2.37E-16

SCO1 -0.615800262 1.67E-19 2.48E-16

CRIPT -0.737821571 2.59E-19 3.43E-16

NFE2 -1.595721981 5.07E-19 6.07E-16

RNF149 -1.090753168 9.18E-19 9.24E-16

COPB2 -0.823346942 1.97E-18 1.77E-15

APEX2 -0.546065608 2.34E-18 2.03E-15

SAMD9L -1.095950962 2.65E-18 2.17E-15

LFNG -1.479067449 2.84E-18 2.23E-15
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Figure 1: Continued.
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receiver operating characteristic (ROC) curves and calculated
the area under curves (AUCs).

2.7. Gene Set Enrichment Analysis. GSEA of a single
candidate gene was conducted using the R package “cluster-
Profiler” to explore the potential function of the proper can-
didate genes in SSc-PAH. We use the h.all.v7.0.entrez.gmt in
the Molecular Signatures Database as the reference gene set.
We chose the adjusted P value <0.05 as the cut-off criterion.

3. Results

3.1. Differentially Expressed Genes between SSc-PAH and
Normal Controls. A total of 938 DEGs were identified in the
gene expression microarray study of 42 SSc-PAH patients
and 41 controls, and the top 15 up-regulated genes and 15
down-regulated genes are shown in Table 1. These DEGs
were selected for subsequent analysis.

3.2. Coexpression Network Construction of the SSc-PAH and
Normal Conditions. After using the average method of the
“hclust” function to evaluate the expression matrix, the gene
chip (GSM827775) with a cluster height exceeding 40 exhib-

ited deviation and was excluded from further analysis
(Figure 1(a)). The soft-thresholding parameter was selected
as 16 (scale-free R2 = 0:9) to ensure a scale-free network
when 0.9 was used as the correlation coefficient threshold
(Figures 1(b) and 1(c)). Seven coexpression modules were
constructed using WGCNA analysis (Figure 2(a)), which
contained the most genes in was the turquoise module. And
these coexpression modules were independent of other
modules (Figure 2(b)).

3.3. Identification of Clinically Significant Modules and Hub
Genes. Since the turquoise module had the highest correla-
tion with SSc-PAH and a high correlation with clinical char-
acteristics among all modules, the turquoise module was
selected for further analysis (Figures 2(c) and 2(d)). Based
on the cut-off criteria (∣MM ∣ >0:95 and ∣GS ∣ >0:90), 27
genes with high connectivity in the clinically important mod-
ule were identified as hub genes. Notably, some genes in the
turquoise module, including “BTG3,” “C12orf41,” “CCR2,”
“COPB2,” “DYNLL2,” “ETNK1,” “GIMAP4,” “GIMAP8,”
“HSPA1A,” “LFNG,” “LOC653171,” “LOC731878,” “RAB10,”
“TMEM60,” “TNFAIP3,” and “TNFAIP8L2,” had high gene
significance for SSc-PAH (Figures 2(e) and 2(f)). This indicated
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(b) Analysis of the scale-free fit index for various soft-thresholding powers and (c) analysis of the mean connectivity for various soft-
thresholding powers. (d, e) exhibited the reliability of scale-free topology when β = 16.
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that these genes mentioned above were also closely correlated
with each other (Figure 2(f)).

3.4. Functional Annotation of the Key Module. GO analysis
showed that the genes in the turquoise module were mainly
enriched in C-C chemokine receptor activity, C-C chemo-

kine binding, G protein-coupled chemoattractant receptor
activity, and chemokine receptor activity. The relationship
between these genes and GO terms suggested that many
genes were linked to immune response and inflammation
(Table 2). No significant results were observed for KEGG
enrichment.
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Figure 2: (a) Clustering dendrogram of differentially expressed genes associated with systemic sclerosis-related pulmonary arterial
hypertension (SSc-PAH). (b) Network heat map in the coexpression module (as the color deepened, the overlap gradually increased).
(c) Heat map of the correlation between module eigengenes and clinical traits of systemic sclerosis-related pulmonary arterial
hypertension. (d) Distribution of average gene significance and errors in the modules related to systemic sclerosis-related pulmonary
arterial hypertension. (e) The gene significance for systemic sclerosis-related pulmonary arterial hypertension in the turquoise module
(one dot represents one gene in the turquoise module). (f) The top 16 genes with high gene significance for sclerosis-related
pulmonary arterial hypertension were tightly related to each other. PAH: pulmonary arterial hypertension.

Table 2: Gene ontology enrichment analysis of turquoise module genes.

Term Description Count P adjust

GO:0016493 C-C chemokine receptor activity 4 0.029688

GO:0019957 C-C chemokine binding 4 0.029688

GO:0001637 G protein-coupled chemoattractant receptor activity 4 0.029688

GO:0004950 Chemokine receptor activity 4 0.029688

GO:0019956 Chemokine binding 4 0.045889

GO:0004519 Endonuclease activity 7 0.045889

GO:0004518 Nuclease activity 9 0.045889

GO:0005159 Insulin-like growth factor receptor binding 3 0.045889

GO:0061630 Ubiquitin protein ligase activity 9 0.045889

GO:0004521 Endoribonuclease activity 5 0.045889

GO:0061659 Ubiquitin-like protein ligase activity 9 0.048451
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3.5. Validation and Efficacy Evaluation of Hub Genes. In
dataset GSE33463, the expression of four genes, B cell
translocation gene 3 (BTG3), C-C motif chemokine recep-
tor 2 (CCR2), member RAS oncogene family (RAB10),
and transmembrane protein 60 (TMEM60), was notably
increased or decreased in the PBMCs of SSc-PAH patients
compared with the controls (Figures 3(a)–3(d)). In addi-
tion, in the second dataset GSE19617, the expression of
BTG3, CCR2, RAB10, and TMEM60 (all P < 0:05) was
also considerably up-regulated or down-regulated in the
SSc-PAH patients (Figures 3(e)–3(h)). Furthermore, to dis-
tinguish SSc-PAH from the controls, we used the ROC
curves to calculate the AUCs. The AUC of each gene in
datasets GSE19617 and GSE33463 was greater than 0.7
(Figures 3(i) and 3(j)).

3.6. Gene Set Enrichment Analysis. The complete list of gene
sets enriched in samples with a high expression of BTG3,
CCR2, RAB10, or TMEM60 was found through GSEA
(Figures 4(a)–4(d)). The gene sets related to immunity and
inflammation among the complete list were used for further
analysis. “Complement” was enriched in samples in which
CCR2 and RAB10 were highly expressed (Figures 4(f) and
4(g)). Similarly, the samples with a high expression of
BTG3 and TMEM60 were enriched in “inflammatory
response” (Figures 4(e) and 4(h)). Moreover, “tumor necrosis
factor-α (TNF-α) signaling via nuclear factor-kappa B (NF-
κB)” and “mammalian target of rapamycin complex 1
(mTORC1) signaling” were enriched in the samples with a
high expression of any one of BTG3, CCR2, RAB10, or
TMEM60 (Figures 4(e)–4(h)).

4. Discussion

Recent studies have provided new clues into the critical signal-
ing pathways of PAH. These signaling pathways include
inflammation, immune activation, endothelial dysfunction,
and growth factors [5]. In this study, we built a coexpression
network of SSc-PAH-related genes throughWGCNA analysis.
The association of modules and traits was constructed and
visualized as a heat map to find the modules most relevant
to PAH. The turquoise module was the most important in
SSc-PAH, and hub genes in this module associated with SSc-
PAH pathogenesis were discovered. The study’s outcome
indicated that candidate genes identified in SSc-PAH were
associated with immunity, inflammation, and cytokines.

Some genes deemed as hub genes could play significant
roles in the pathogenesis of SSc-PAH. Pulmonary vascular
cells in PAH have similar phenotypic characteristics to tumor
cells in hyperproliferation and antiapoptosis [18]. By down-
regulating BTG3, miR-142-5p promotes the proliferation of
vascular smooth muscle cells [19]. Although some findings
indicated that CCR2 could not directly promote PAH
development, it might play a previously unrecognized role
in developing and remodeling pulmonary blood vessels
[20]. Guanosine-5′-triphosphatase IMAP family member 4
(GIMAP4) is a locus that strongly affects susceptibility to
vasculitis [21]. Considering the anti-inflammatory properties
of heat shock protein A1A (HSPA1A) [22], low levels of
intracellular and circulating HSPA1A would promote the
proinflammatory state and increase the vulnerability of the
arterial wall to the destructive effects of vascular risk factors
connected with endothelial dysfunction [23]. Previous
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Figure 3: (a–h) Expression of hub genes. Expression levels of BTG3 (a), CCR2 (b), RAB10 (c), and TMEM60 (d) of dataset GSE33463.
Expression levels of BTG3 (e), CCR2 (f), RAB10 (g), and TMEM60 (h) of dataset GSE19617. (i, j) Receiver operating characteristic curve
of hub genes (BTG3, CCR2, RAB10, and TMEM60) in the two datasets GSE33463 (i) and GSE19617 (j). BTG3: B cell translocation gene
3; CCR2: C-C motif chemokine receptor 2; RAB10: member RAS oncogene family; TMEM60: transmembrane protein 60.

11Cardiovascular Therapeutics



Activated Suppressed

0.25 0.30 0.35 0.40 0.45 0.25 0.30 0.35 0.40 0.45

HALLMARK_HYPOXIA

HALLMARK_UV_RESPONSE_UP

HALLMARK_OXIDATIVE_PHOSPHORYLATION

HALLMARK_APOPTOSIS

HALLMARK_INFLAMMATORY_RESPONSE

HALLMARK_UNFOLDED_PROTEIN_RESPONSE

HALLMARK_P53_PATHWAY

HALLMARK_PROTEIN_SECRETION

HALLMARK_HEME_METABOLISM

HALLMARK_TNFA_SIGNALING_VIA_NFKB

HALLMARK_INTERFERON_GAMMA_RESPONSE

HALLMARK_CHOLESTEROL_HOMEOSTASIS

GeneRatio

Count
40

50

60

70

80

0.018

0.016

0.014

p.adjust

(a)

Activated Suppressed

0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50

HALLMARK_P53_PATHWAY

HALLMARK_OXIDATIVE_PHOSPHORYLATION

HALLMARK_MITOTIC_SPINDLE

HALLMARK_TNFA_SIGNALING_VIA_NFKB

HALLMARK_E2F_TARGETS

HALLMARK_ADIPOGENESIS

HALLMARK_MTORC1_SIGNALING

HALLMARK_COMPLEMENT

HALLMARK_MYC_TARGETS_V1

HALLMARK_GLYCOLYSIS

HALLMARK_G2M_CHECKPOINT

HALLMARK_PROTEIN_SECRETION

GeneRatio

Count
50

60

70

80

0.020

0.015

0.010

p.adjust

(b)

Figure 4: Continued.

12 Cardiovascular Therapeutics



Count
50

60

70

80

Activated Suppressed

0.30 0.35 0.40 0.45 0.30 0.35 0.40 0.45

HALLMARK_ADIPOGENESIS

HALLMARK_GLYCOLYSIS

HALLMARK_OXIDATIVE_PHOSPHORYLATION

HALLMARK_TNFA_SIGNALING_VIA_NFKB

HALLMARK_MTORC1_SIGNALING

HALLMARK_COMPLEMENT

HALLMARK_MYC_TARGETS_V1

HALLMARK_PROTEIN_SECRETION

HALLMARK_G2M_CHECKPOINT

HALLMARK_E2F_TARGETS

GeneRatio

0.035

0.030

0.025

0.020

0.015

p.adjust

(c)

Count
40

50

60

70

Activated Suppressed

0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50

HALLMARK_HEME_METABOLISM

HALLMARK_P53_PATHWAY

HALLMARK_INFLAMMATORY_RESPONSE

HALLMARK_HYPOXIA

HALLMARK_UV_RESPONSE_UP

HALLMARK_TNFA_SIGNALING_VIA_NFKB

HALLMARK_UNFOLDED_PROTEIN_RESPONSE

HALLMARK_CHOLESTEROL_HOMEOSTASIS

GeneRatio

0.035

0.030

0.025

0.020

0.015

p.adjust

(d)

Figure 4: Continued.

13Cardiovascular Therapeutics



pvalue
0.0024HALLMARK_INFLAMMATORY_RESPONSE

p.adjust

0.0024HALLMARK_OXIDATIVE_PHOSPHORYLATION
0.0024HALLMARK_TNFA_SIGNALING_VIA_NFKB

0.0137
0.0137
0.0137

0.0

0.2

0.4

0.6
Ru

nn
in

g 
en

ric
hm

en
t s

co
re

−0.5

0.0

0.5

1.0

4000 8000 12000 16000
Rank in ordered dataset

Ra
nk

ed
 li

st 
m

et
ric

(e)

pvalue
0.0012HALLMARK_COMPLEMENT

p.adjust

0.0012HALLMARK_GLYCOLYSIS
0.0012HALLMARK_MTORC1_SIGNALING

0.0066
0.0066
0.0066

0.0

0.1

0.2

0.3

0.4

Ru
nn

in
g 

en
ric

hm
en

t s
co

re

−0.5

0.0

0.5

1.0

4000 8000 12000 16000
Rank in ordered dataset

Ra
nk

ed
 li

st 
m

et
ric

(f)

Figure 4: Continued.

14 Cardiovascular Therapeutics



pvalue
0.0012HALLMARK_COMPLEMENT

p.adjust

0.0012HALLMARK_MTORC1_SIGNALING
0.0012HALLMARK_MYC_TARGETS_V1

0.0109
0.0109
0.0109

0.0

0.1

0.2

0.3

0.4
Ru

nn
in

g 
en

ric
hm

en
t s

co
re

−0.5

0.0

0.5

1.0

4000 8000 12000 16000
Rank in ordered dataset

Ra
nk

ed
 li

st 
m

et
ric

(g)

pvalue
0.002HALLMARK_HYPOXIA

p.adjust

0.0019HALLMARK_TNFA_SIGNALING_VIA_NFKB
0.0143
0.0143

−0.4

−0.2

0.0

Ru
nn

in
g 

en
ric

hm
en

t s
co

re

−0.5

0.0

0.5

1.0

4000 8000 12000 16000
Rank in ordered dataset

Ra
nk

ed
 li

st 
m

et
ric

(h)

Figure 4: (a–d) Gene set enrichment analysis (GSEA). The full list of gene sets enriched in samples with a high expression of BTG3 (a),
CCR2 (b), RAB10 (c), and TMEM60 (d). (e–g) Gene sets related to immunity and inflammation. Gene sets related to immunity and
inflammation enriched in samples with a high expression of BTG3 (e), CCR2 (f), RAB10 (h), and TMEM60 (g). BTG3: B cell
translocation gene 3; CCR2: C-C motif chemokine receptor 2; RAB10: member RAS oncogene family; TMEM60: transmembrane protein 60.
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studies have shown that decreased expression of tumor
necrosis factor-α-induced protein 8 (TNFAIP8), leading to
reduced levels of vascular endothelial growth factor receptor
2 (VEGFR-2) [24]. The antiapoptotic effects could partially
mediate the therapeutic effects of endothelial progenitor cell
transplantation in PAH. However, the antiapoptotic effect
of the conditioned medium of endothelial progenitor cells
was attenuated by blocking VEGFR-2 [25]. Similarly,
Pendergrass et al. found inflammatory mediators such as
TNF-α and markers of vascular injury such as VEGF in
SSc-PAH subjects [17]. Grigoriev et al. confirmed by real-
time PCR that VEGF was significantly up-regulated in mild
cases compared with severe PAH and healthy controls [26].
Polymorphisms within the tumor necrosis factor-α-induced
protein 3 (TNFAIP3) genomic locus have been linked to
multiple inflammatory and autoimmune diseases [27]. These
genes have not been further elucidated in SSc-PAH. Hemmes
et al. successfully distinguished the vasodilator-responsive
and nonresponsive forms of PAH, but there are few relevant
studies on SSc-PAH [28].

Among hub genes, in dataset GSE33463, the expression
of BTG3, CCR2, RAB10, and TMEM60 was significantly
increased or decreased in the SSc-PAH patients compared
with healthy controls. Simultaneously, we confirmed the
above four hub genes’ expression levels in GSE19617, and
their expression in PBMCs was also significantly up- or
down-regulated. In the future, more experiments are needed
to illuminate their expression and related functions in differ-
ent ethnic groups.

Because the genes within a module were closely related in
function, we performed GO analysis to investigate genes’
biological functions in the turquoise module. The results
indicated that the genes were mainly enriched in C-C chemo-
kine receptor activity, C-C chemokine binding, G protein-
coupled chemoattractant receptor activity, and chemokine
receptor activity. There was no doubt that SSc manifested
itself as an immune system disorder and endothelial dys-
function [29]. Various studies have shown that the
immune processes originating in the lungs seemed to pro-
mote PAH development and were likely to leave evident
fingerprints in the systemic circulation [30]. Hemmes
et al. found extensive differences in RNA expression pat-
terns using microarray analysis, such as cell-cell adhesion
factors [28].

Furthermore, our study revealed that “inflammatory
response” and “complement” were involved in the pathogen-
esis of SSc-PAH. Immunoglobulin-driven complement acti-
vation could regulate proinflammatory remodeling in PAH
[31]. Besides, “TNF-α signaling via NF-κB” and “mTORC1
signaling” were also enriched. TNF-α, one of the inflamma-
tory mediators, was found in SSc-PAH subjects [17]. Baica-
lein inhibited pulmonary artery remodeling in rats at least
in part through NF-κB pathways [32]. In mice, loss of the
D prostanoid receptor subtype one aggravated vascular
remodeling in PAH via mTORC1 signaling [33]. Aldosterone
could upregulate the mammalian target of the rapamycin
complex one subunit raptor, inducing abnormal survival pat-
terns of pulmonary artery smooth muscle cells to promote
PAH [34].

Our study also had limitations. First, due to GEO’s incom-
plete data, some patients’ characteristics were unknown,
including autoantibodies. Second, many biomarkers related
to SSc-PAH remain puzzling, and further bioinformatics anal-
ysis and experimental confirmation are needed to detail the
biological functions of these genes in SSc-PAH. Third, we used
data from only two different studies in our WGCNA analysis
and validation of hub genes. Microarray samples need to be
extracted from patients with varying degrees of PAH, and
more samples are needed.

5. Conclusions

In summary, we identified the hub genes in the key gene
coexpression modules, and the four genes (BTG3, CCR2,
RAB10, and TMEM60) play an essential role in the diagnosis
of SSc-PAH patients. Some functional biological pathways
linking immunity, inflammation, and cytokines play a critical
role in the pathogenesis of SSc-PAH. These results provide
new insights into SSc-PAH diagnosis and treatment,
although the precise mechanisms still require further
exploration.
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