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A very large-scale microelectrode array for cellular-
resolution electrophysiology
David Tsai1, Daniel Sawyer1, Adrian Bradd1, Rafael Yuste2 & Kenneth L. Shepard3

In traditional electrophysiology, spatially inefficient electronics and the need for tissue-to-

electrode proximity defy non-invasive interfaces at scales of more than a thousand low noise,

simultaneously recording channels. Using compressed sensing concepts and silicon com-

plementary metal-oxide-semiconductors (CMOS), we demonstrate a platform with

65,536 simultaneously recording and stimulating electrodes in which the per-electrode

electronics consume an area of 25.5 μm by 25.5 μm. Application of this platform to mouse

retinal studies is achieved with a high-performance processing pipeline with a 1 GB/s data

rate. The platform records from 65,536 electrodes concurrently with a ~10 µV r.m.s. noise;

senses spikes from more than 34,000 electrodes when recording across the entire retina;

automatically sorts and classifies greater than 1700 neurons following visual stimulation; and

stimulates individual neurons using any number of the 65,536 electrodes while observing

spikes over the entire retina. The approaches developed here are applicable to other

electrophysiological systems and electrode configurations.
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The ability to observe and manipulate, with single-cell pre-
cision, the activities of large neuronal populations is an
essential step toward better understanding of the nervous

system1. It is now possible to observe activities in large neuronal
populations through calcium imaging2–4. However, intracellular
calcium concentration is influenced by many simultaneously
active and mutually interacting mechanisms, including voltage-
and ligand-gated calcium channels, intracellular stores, and che-
lation by proteins and by the fluorescent calcium indicator5.
Many of these are not under direct control of the experimentalist
and operate over a time scale substantially longer than that of
action potentials, thus complicating interpretation. In particular,
inferring action potentials from calcium signals require non-
trivial calibration6, particularly if one is interested in precise spike
timing and not just the number of spikes.

Extracellular electrophysiology, in contrast, enables direct read
out of spikes. Recent progress has substantially increased the
number of simultaneously recordable neurons7. However, the
observable neurons, ranging from few tens to approximately a
thousand8–10, remains small relative to the number of neurons in
the brain. This is primarily due to trade-offs between several
competing requirements: adequate recording signal-to-noise ratio
(SNR), minimal biological invasiveness, at-scale recording, and,
ideally, ability to stimulate the recorded neurons with precision.

Because of spatial requirements, having a complete amplifier
chain and digitizer for each electrode, with sufficient noise per-
formance, bandwidth and dynamic range, is infeasible for at-scale
electrophysiology. Consequently, time-division multiplexing has
been the mainstay for increasing density and channel count9,11,12,
by sharing one signal path between several inputs. Traditional
time-division multiplexing constitutes a sampled system. Since
the input channels are sequentially scanned (sampled) over time,
per-channel low-pass filters are required to reject frequencies
above half the sampling rate (Supplementary Fig. 1a). Failure to
do so causes aliasing of frequencies above half the per-channel
sampling rate, thus degrading the SNR. Moreover, the more
channels an inadequately filtered system has, the greater the SNR
degradation.

The physical dimension of these filters dictates the density limit
of large-scale electrophysiology. With an ideal noise ceiling of
approximately 10 µV rms13, a parsimonious, multiplexed recor-
der, consisting of the electrode, an antialiasing filter and an
amplifier, cannot be smaller than ~10,000 µm2 to ensure adequate
noise performance, due to the capacitance density available in
today’s microelectronic technologies (Supplementary Fig. 1b; also
note Supplementary Fig. 1 caption). With mammalian neuronal
soma ≤25 µm in diameter, this 20-to-1 dimensional mismatch
fundamentally restricts the scalability of current approaches in
electrophysiology. Due to this noise-verse-density trade-off,
today’s large-scale neural recorders have either low noise but low
simultaneously recording channel count8,14 or high channel
count but high noise11,15,16.

Here we present a large-scale, high-density and low noise
electrophysiological recording and stimulation platform based on
CMOS electronics and an acquisition paradigm that negates the
requirement for per-channel antialiasing filters, thereby over-
coming scaling limitations faced by existing systems. This allows
us to maintain 10 µV rms recording noise with per-channel
electronics for 65,536 channels at a 25.5-µm electrode pitch,
avoiding the common trade-off between density, channel count
and noise8,11,14–19. We then demonstrate the platform’s ability to
record from 10 s of thousands of neurons simultaneously. In
conjunction with visual stimuli and the platform’s high-
performance computing infrastructure, the system could func-
tionally classify more than 1700 neurons in the retina auto-
matically, including identification of rare cell types. Finally,

combining cellular-resolution microstimulators with dense
recordings across the entire retina allowed us to re-examine how
electrical stimulation recruits neurons in a network, and impor-
tantly, how focal activation could be achieved.

Results
Compressed sensing-inspired electrophysiology. We con-
structed a 65,536-channel, multiplexed, extracellular electro-
physiology system consisting of a recording and stimulation array
based on a custom integrated circuit (IC), circuit-board-level
analog and digital circuits and custom software libraries (Fig. 1a).
Traditional implementations of such multiplexed systems incor-
porate per-channel low-pass filters to prevent noise aliasing
(Supplementary Fig. 1a). Our approach (Fig. 1b, Supplementary
Fig. 1b) does not use these filters, but instead, avoids aliasing
using concepts from compressed sensing20,21. This is made pos-
sible by noting several characteristics of extracellular recordings
and thermal noise aliasing.

First, electrophysiological recording is dominated by thermal
noise at frequencies above a few kHz. It is a stationary process
with a Gaussian time-domain amplitude distribution and
uniform frequency distribution, up to the recording channel’s
bandwidth. Therefore, this thermal noise can be described, and
generated computationally, with only two parameters, its variance
and bandwidth. Second, thermal noise aliasing offers two
averaging properties, which greatly simplify the reconstruction,
and subsequent removal, of its spectral contribution in the under-
sampled, per-channel data. The power of thermal noise is
approximately uniform. As the thermal noise powers are folded
down into the first Nyquist zone (Supplementary Fig. 3b) during
aliasing, the slight variations in power between frequencies are
averaged out. This allows us to compute the power contributed by
aliasing using the expected average thermal noise power,
multiplied by the number of folded Nyquist zones. Similarly,
the spectral angles of thermal noise have a uniform distribution
with zero mean. The angle variation between frequencies
converge to zero as the aliased thermal noise are folded down
into the first Nyquist zone.

Taking advantage of the foregoing characteristics, we can
digitally reconstruct the spectral contributions originating from
the under-sampled thermal noise, then remove them from the
sparsely-sampled channel data, thereby minimizing the effects of
aliasing, without using per-channel anti-aliasing filters.

This acquisition strategy allows us to pack 65,536 channels
(Fig. 1c, d) into an area of 42.6 mm2, with 25.5 µm spacing
between channels (Fig. 1e), using CMOS IC processes. Each
channel can be sampled at 10 kHz during full-grid recordings,
with higher sampling rates achievable by reducing the recording
area. Importantly, this platform does not have the noise-verses-
density trade-off of classical large-scale electrophysiology. We
constructed an electrophysiological platform based on this
acquisition paradigm. It consists of the aforementioned 65,536-
channel CMOS IC, custom circuit boards with filters and field
programmable gate arrays (FPGAs), CPUs, graphical processing
units (GPUs), and an OLED display for generating visual patterns
(Fig. 1f).

Achieving 65,536-channel recordings with minimal noise. To
test the recording performance, we applied test signals through a
pair silver-silver chloride electrodes into the recording chamber
filled with physiological saline (Fig. 2a). The median SNR across
the array was 54.9 with 200 µV test signals (Fig. 2b, c). Our
system uses a capacitive recording interface15,22,23, formed by a 6-
nm thick HfO2 dielectric deposited above each electrode and a
pseudo-resistor constructed from a p-type MOSFET. The corner
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Fig. 1 Platform for dense, large-scale electrophysiology. a Overview of acquisition paradigm based on compressed sensing. b Sparse sampling by the ADC,
followed by digital reconstruction and removal of the spectral contribution by the aliased thermal noise. c A 65,536-channel recording and microstimulation
grid based on CMOS-integrated circuits (IC). d Packaged IC. e Scanning electron micrograph of the 14 × 14 µm electrodes, spaced 25.5 µm apart. f
Illustration of the experimental platform consisting of: the IC; supporting circuits; data processing pipeline containing CPUs and GPUs; and optics for near-
infrared visualization and visual pattern delivery. ADC, analog-to-digital-converter; MUX, multiplexer
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Fig. 2 System performance characterization. a Test setup. Recordings from the 65,536-channel grid are compared against patch clamp recordings. Inset
photo: pipette above the grid. b SNR variation across the array, measured at every sixteenth row and column. The test signal was a bath-applied 1-kHz, 200
µV sine wave. c SNR distribution for all electrodes in the array. d Frequency response of the capacitive recording front-end (mean± SEM, 8 electrodes). e, f
Comparison of per-channel data, before (green) and after (orange) removal of aliased thermal noise, for a recording with 1 kHz signal e and a baseline
recording f. Insets in e and f: PSD plots of time-domain data in e and f, respectively. The dc component has been removed to better illustrate the linear
reduction in noise floor across frequencies. g The system’s input referred noise was ~10 µV rms over 100–10k Hz, in saline. h Comparison to patch clamp
amplifier recordings. The test signal was a 1 kHz, 100 µV peak-to-peak sine wave. Both traces have been bandpass filtered between 300–3k Hz for clarity. i
Recordings before and after removing aliased thermal noise. Inset: expanded view of segment without and with spike, respectively. j Overlaid traces for
99 spike segments before and after removing aliased noise. Traces in i and j are unfiltered
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frequency is user-tuneable, and is nominally set to 100 Hz
(Fig. 2d).

Each channel is typically observed at a rate well below the
channel bandwidth. To minimize thermal noise aliasing, the
spectral contribution of the under-sampled thermal noise is
computed, then removed, from the channel data (Fig. 1b, steps
3–4). Figure 2e compares, for a 1 kHz signal applied in the saline-
filled recording bath, the channel data before (green) and after
(orange) removal of the aliased thermal noise. The SNR
improvement is also apparent in the spectral domain (Fig. 2e
inset). The noise floor was reduced uniformly across frequencies.
Fig. 2f illustrates the effects of our processing strategy on a
segment of baseline recording without test signal. Here, the noise
was reduced from 21.7 µV rms (green) to 10.02 µV rms (orange)
over the 100–3 kHz bandwidth following signal processing.

When recording in physiological saline, the 65k-electrode grid
had ~10 µV rms input referred noise over the 100–5 kHz
bandwidth, encompassing the spike frequency range of
300–3 kHz (Fig. 2g). Finally, the per-channel signal from the
65k-electrode grid closely resembled those from patch clamp
recordings—the gold standard in electrophysiology–performed
adjacent to the test electrode (Fig. 2h). For clarity, both traces
were bandpass filtered between 300–3 kHz. The low-frequency
fluctuation was due to noise pick-up by the wires connecting the
signal generator to the bath electrodes.

To assess the performance of the de-noising procedure on
biological recordings, Fig. 2i compares a recording before (green)
and after (orange) removal of aliased noise. In particular, the inset
plots in Fig. 2i show that the procedure reduced noise fluctuations
without degrading the action potential waveforms. This is further
illustrated in Fig. 2j for 99 spikes recorded from one electrode.
The average variance of these raw waveforms is 8307.6. After
removing the aliasing-induced spurious fluctuations, the average
variance of the processed waveforms is 3179.0. While the
amplitudes of signal and noise are both reduced, the SNR is
improved by reducing the spectral contribution of aliased noise
from the first Nyquist zone (Supplementary Fig. 3b verses
Supplementary Fig. 3c).

Collectively, these results demonstrate the ability of this system
to acquire, with high SNR, weak signals having amplitudes typical
of mammalian extracellular recording, and to do so at spatial
resolutions down to 25.5 µm, while simultaneously providing
observable spatial coverage of 42.6 mm2 with 65,536 electrodes.

Simultaneous recordings from more than 34,000 electrodes.
We tested the ability of the platform to carry out at-scale, cellular-
resolution recordings with single-spike sensitivity by placing a
piece of mouse retina, retinal ganglion cell (RGC) side down, on
the recording grid (Fig. 3a). We began by observing the neurons’
spontaneous activities under scotopic conditions (Fig. 3b). Spikes
were readily apparent, with 34,187 electrodes picking up spiking
activities. This exceeded the best existing attempts at across-retina
spike recordings by an order of magnitude in channel count24

and the best calcium imaging efforts in the retina by approxi-
mately two orders of magnitude25,26.

Spikes from each neuron were observed on multiple adjacent
electrodes (Fig. 3c, Supplementary Fig. 4e) and each electrode
acquired spikes from more than one neuron (Fig. 3d, Supple-
mentary Fig. 4c). Spike sorting accuracy is substantially improved
by combining spatially dependent waveforms from adjacent
electrodes27 (Supplementary Fig. 4), made possible by the dense
25.5 µm electrode pitch. Figure 3d, e illustrate the sorted spike
waveforms and rasters, respectively, from one electrode in Fig. 3b.
Note the lack of inter-spike intervals (ISIs) less than or equal to
2.5 ms (Fig. 3f), the typical absolute refractory period of

mammalian neurons. The presence of such intervals would be
indicative of incorrect clustering. A similar absence of ISI
violation was also observed when we sorted electrodes with an
order of magnitude more events (Supplementary Fig. 4a–d). The
high electrode density also allowed us to triangulate the putative
location of each observed neuron on the basis of small changes in
waveform amplitude over space (Fig. 4a).

Functional classification of neurons. There have been intense
debates over the number of functional types of RGCs, the retina’s
output neurons, and hence the number of information channels
connecting the eyes to the brain. In the mouse, it has been var-
iously estimated to be: >12 by traditional sparse electro-
physiology28, ~12 types on morphological basis29, ≥16 by genetic
markers30, and, most recently, ≥ 30 types with two-photon cal-
cium imaging26. The crucial requirement for successful
functional-type accounting is unbiased sampling, over large dis-
tances and at cellular granularity. Dense, high-channel-count
recording systems are well suited for such applications. Impor-
tantly, electrophysiological recordings read out spikes—the
transmission protocol between the retina and the brain—rather
than somatic calcium fluxes, which are secondary to spike
generation.

As a proof of concept, in Fig. 4 we flashed 1122-µm diameter
light spots of 1-s duration over the retina while simultaneously
recording spikes. Using a high-throughput stream processing
pipeline (Supplementary Fig. 5), we sorted and functionally
classified the evoked spikes from 1750 neurons in response to the
light stimuli. The RGCs were classified according to changes in
spiking activities during a period spanning 3-s around the 1-s
visual stimuli. Upon satisfying appropriate response character-
istics (Methods section), the neurons were assigned one of several
classical functional types31,32: ON transient, ON sustained, OFF
transient, OFF sustained, ON–OFF, and SbC RGCs. Notably,
large-scale recordings allowed us to routinely identify and record
from the so-called suppression-by-contrast (SbC) RGCs, also
known as uniformity detectors. These neurons were first
described33 in 1967, but seldom studied electrophysiologically34,
presumably due to rare encounters in low-channel-count
recordings. Example spike rasters, for five stimulus repetitions,
of each functional class are illustrated in Fig. 4b–g.

The RGC types were homogeneous throughout the field of
analyses (Fig. 4a), consistent with known RGC spatial distribution
properties35. We further analysed the population distributions of
the six RGC types (Fig. 4h). Approximately 14% of the neurons
were the ON–OFF class, in agreement with anatomical account-
ing36. There was a slight excess of OFF-type neurons comparing
to the ON-types, a consequence of some OFF neurons’ smaller
dendritic arbor and hence higher density37. More sophisticated
light stimuli will permit further sub-division of RGC types.
Nevertheless, these results illustrate the ability of the processing
pipeline and algorithms to analyse the data accurately and
automatically. These are important attributes for at-scale
analytics.

Simultaneous microstimulation and recording. Electrical
microstimulation has a long application history in neu-
roscience38,39. It provides a method for perturbing the neurons
and/or network being studied. Furthermore, neural stimulation at
scale may be useful in medical applications, as demonstrated by a
1500-electrode implantable photodiode array, which enabled
blind patients to read and navigate40. With the exception of a
recent design16, existing at-scale (>1000 channels) electro-
physiological tools have either lacked microstimulation features11
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or offered limited simultaneously operable stimulation sites (up to
approximately three dozen) despite high electrode number8,19.

Space saving achieved by removing the per-channel antialias-
ing filters allowed us to implement a stimulator within each
recording site. The stimulators are individually programmable.
Stimulus artifacts are reduced with two circuit features. First,
routing-associated parasitic capacitance is minimized by integrat-
ing the stimulation circuit beneath each electrode. The charging
and discharging of this capacitance during stimulation manifest
as transient artifacts in the recordings. Second, the MOSFET
pseudo-resistor in series with the electrode (Supplementary
Fig. 2a) is disabled during and immediately after stimulation to
quickly restore the first recording transistor’s biasing voltage.
Figure 5a illustrates, for ten trials, the electrically evoked spikes of
a RGC following a single pulse. These spikes are easily
distinguished from the artifacts. Further artifact suppression
was achieved by subtracting recordings without neurons from
those with neurons (Fig. 5b). The evoked spikes could be detected
automatically in these post-processed data using the platform’s
stream processing pipeline (Fig. 5c). In this example, the neuron
responded in 8 of 10 trials. To assess the reliability of electrical
stimulation, we stimulated and calculated the response rate (over
10 trials) of 46 RGCs in two retinas using single 1.6 v pulses
(Fig. 5d). More than half of these neurons responded to each trial,
while the remaining neurons responded with ≥50% probability.

To ensure that these short-latency spikes were not spontaneous
activities, we examined the quiescent firing rate of 22 neurons
from a single retina (Supplementary Fig. 6a). The mean firing rate
was 2.6 Hz. In contrast, when electrically stimulated, these same
neurons spiked with a mean response rate of 74.1% within 3.0 ms
of stimulus delivery, over 10 trials (Supplementary Fig. 6b).
Therefore, the increased spiking probability following electrical
stimulation was unlikely to be of spontaneous origin.

Loss of focal activation by high-strength microstimulation. An
important goal of microstimulation, and indeed for neuronal

manipulation in general, is achieving spatiotemporally precise
activation. Some studies have found confined activation with
single-neuron precision41,42, while others observed wide-spread
neuronal activation39,43. This discrepancy could be a consequence
of shortcomings in existing recording tools. First, the inability to
record from every neuron, or nearly so, across sufficient area
could lead one to incorrectly conclude that activation is spatially
confined, because signals from the recruited neurons were not
completely accounted for. Second, techniques with limited single-
spike sensitivity, such as calcium reporters44,45, require large
stimuli capable of eliciting multiple spikes to reach detectability
threshold. Electric field size increases with stimulus amplitude,
influencing a larger neuronal population, giving rise to the
alternative, incorrect conclusion of wide-spread neuronal activa-
tion, caused by the use of excessive stimuli due to poor spike
sensitivity.

A key advantage of cellular-resolution, at-scale electrophysiol-
ogy is the ability to simultaneously observe activities over the
entire retina with single-spike sensitivity. We re-examined the
spatial confinement of microstimulation in the retina while
stimulating at one location (Fig. 5e). With moderate stimulus
strength, we observed a 70% (7 out of 10 trials) response rate
from one neuron at the stimulation site (Fig. 5i, red circle). A
number of distant neurons were also recruited (i.e., responded in
≥50% of trials). The response latencies increased with distance
from the stimulation location (Fig. 5f, g). The axon of RGCs
converges at the optic nerve head near the central retina, where
they exit the eye. The spatial distribution and response latency of
these activated distant neurons were consistent with retrograde
axonal stimulation46,47, as the axon from these neurons passed in
close proximity to the simulation site.

The number of distant neurons recruited by electrical
stimulation was strongly dependent on the stimulus strength.
Weak stimuli recruited one neuron at the stimulating electrode
(i.e., the targeted neuron; Fig. 5h). The number of distant neurons
elicited, as well as their response probability, increased as the

0.5 ms
30 µV

2 s

Electrode activity (unsorted)

0

50

100

150

200

Spikes

Well

0 200 400 600 800 1000
ISI (ms)

0

1

2

3

4

5

C
ou

nt

Neuron 1 Neuron 2

0 10 20
ISI (ms)

0
1
2

C
ou

nt

20 ms
50 µV

25.5 µm

Ø 14 µm

2.5 ms

Membrane

Weight

Retina

a b c

d f

e

Fig. 3 Large-scale recordings in the retina. a Photo of setup with mouse retina. b Spontaneous spiking activities recorded simultaneously from 34,187
electrodes over 12 s, at 10 kHz per electrode. Scale bar, 1275 µm. c Unit activities were observed concurrently on several adjacent electrodes spaced 25.5
µm apart. These spikes are single-trial waveforms. Sorted spike waveforms d and spike time raster e for one electrode in b. There are 33 and 47 spikes for
the first and second neuron, respectively. f Inter-spike interval (ISI) plot for the two neurons in d. Inset: zoomed-in view of the first 20ms

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02009-x

6 NATURE COMMUNICATIONS | 8:  1802 |DOI: 10.1038/s41467-017-02009-x |www.nature.com/naturecommunications

www.nature.com/naturecommunications


stimulus strength increased (Fig. 5h–j). Therefore, focal activation
depended critically on the stimulus strength. It should be
sufficiently powerful to recruit the close proximity, target neuron,
but should not be excessive, to avoid stimulating distant neurons
with axons passing near the stimulating electrode.

Discussion
Traditional multichannel electrophysiology is limited in its ability
to simultaneously realize low noise, dense and large-scale
recordings, due to the need for per-channel antialiasing filters.
We presented an acquisition paradigm that does not require these
scalability-limiting elements. A platform based on this paradigm
allowed us to record spiking activities in the mouse retina across
more than 34,000 electrodes with high SNR. In conjunction with
the platform’s high-performance computing infrastructure, we
were able to sort and functionally classify more than 1700 neu-
rons following light stimulation. Finally, recording at cellular-
resolution, across large area and with single-spike sensitivity,
allowed us to examine the dynamics of microstimulation in
greater spatiotemporal resolution than previously possible.

Our acquisition paradigm is inspired by compressive sensing
(CS), based on the central CS notion that, if we know something
about the frequency contents of the signal being acquired, it may
be possible to recover the signal without sampling at the classical
Nyquist rate. In electrophysiology, we know how the aliased
thermal noise is manifested in the under-sampled, per-channel

data. Conventional CS approach would attempt recovery by some
form of iterative, optimization algorithm, which is generally quite
slow. In electrophysiology, we could instead exploit the statistical
prior of thermal noise for computationally efficient recovery.
Thus, while the implementations differ, the general concept is
identical. There are further conceptual similarities. CS often uses
irregular/random under-sampling to achieve incoherent aliasing.
That is, the spectral power of the aliased content is evenly spread
out across frequencies constituting the under-sampled data. This
is notionally similar to our approach, where the aliased thermal
noise is folded down into the first Nyquist zone (Supplementary
Fig. 3b), averaging out variations in the original thermal noise
power spectra and spectral angles.

Several multichannel electrophysiological systems have
recently reached simultaneously recording channel counts in the
thousands11,16,23 or even up to 16,000 channels48, at the expense
of noise performance. The noise in these tools are several times
higher than traditional systems with at most a few hundred
electrodes (≤10 µV rms verses 25–250 µV rms or more). High
SNR is critical for spike sorting, where neurons are distinguished
on the basis of minute differences in spike waveform. This is
particularly relevant for the mammalian nervous system. For
example, extracellular signals in the mouse retina generally do not
exceed much more than 150 µV peak-to-peak, while reliable spike
sorting requires at least 100 µV peak-to-peak signals under
optimal SNR conditions49. Indeed, current high-channel-count
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raster shows the normalized firing rate for all detected neurons in each class. The n-numbers denote the neurons considered in each histogram. All neurons
were recorded simultaneously. h Distribution of functional classes for the identified neurons in a
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implementations have used higher-than-typical spike detection
thresholds24 (7.5 SD vs. ~4.0 SD) to avoid misinterpreting noise
as spikes; have detected few neurons despite the large number of
electrodes48 (126 neurons in 16,384 electrodes); or have identified
putative events at locations that apparently did not correspond
with neurite positions23. In general, because of noise, a substantial
fraction of neurons may be unobservable when using these sys-
tems, potentially diminishing the benefits of high channel count
and/or high electrode density. The systems designed by the Litke
and Chichilinisky groups27,50, and the Roska and Hierlemann
groups8 have achieved input referred noise as low as 5 µV rms
and 2.4 µV rms, respectively. The higher SNR offers several
advantages, including improved spike sorting performance and
the ability to detect dendritic spikes. However, the superior noise
performance limits the simultaneously recording channels to
1024 or less, due to the need for per-channel anti-aliasing filters
in these classical multiplexed systems.

Here we demonstrated the multichannel acquisition paradigm
in a 65,536-channel ex vivo recording grid, fabricated using
commercial CMOS-integrated circuit (IC) technology. The
strategy is generalizable to any dense, high-channel count elec-
trophysiological systems, including implantable, long-term
in vivo recording tools. In these, multiplexing is important not
only for density and channel count scaling, but also to reduce
wiring, power consumption and heat dissipation. Indeed, the
sampling paradigm will work for any big-data acquisition appli-
cations where the spectral and statistical characteristics of the
high frequency components, above twice the per-channel obser-
vation rate and below the recording channel bandwidth, can be
reasonably approximated.

Another advantage of this data acquisition approach is that the
signal processing steps (channel separation and aliased noise

removal) are all implemented in the digital domain. The
throughput of these procedures will improve with technological
advancements in electronics, allowing the approach to continue
scaling beyond the tens of thousands of simultaneously recording
and stimulating channels presented here.

Methods
Recording and stimulation architecture. The architecture for our platform is
summarized in Fig. 1a. Supplementary Fig. 2a shows the schematic overview for the
recording and stimulating circuits. The platform is constructed from a combination
of custom IC, circuit-board-level components, synthesized digital logic in field
programmable gate arrays (FPGAs) and algorithms running on ×86 CPUs and
NVIDIA CUDA processors. The IC (Supplementary Fig. 2b) contained 65,536
front-end elements, divided into 16 blocks of 4096 elements each. Each block is
connected to a back-end circuit for additional amplification through a 4096:1
multiplexer. We bandpass filter the outputs from these back-ends to confine
spectral content between 50 Hz and 40MHz with a Sallen-Key filter, implemented
on the printed circuit board, then digitize the resulting signals using 12-bit analog-
to-digital converters (ADCs). The ADCs’ data streams are captured by a FPGA and
transferred to a computer. There are four FPGAs in the system, each handling the
outputs of four ADCs. Each front-end element contains programmable registers to
enable or disable voltage-based, electrical microstimulation, via the capacitive-
coupled HfO2 dielectric interface.

The system is powered by a 6 V supply, and uses approximately 24.7W when in
operation. The power consumption is dominated by the four Xilinx FPGAs and, to
a lesser extent, the board-level bandpass filters. The IC consumes less than 0.6 %
(i.e., ≤148 mW) of the total power budget.

Electrical stimulation. The electrical stimulation strategy is based on our previous
architecture51,52. Thirty-two elements are configured at a time during the pro-
gramming phase, which takes 60 ns. Only elements needing change of stimulation
status require programming. Asserting a global digital signal triggers stimulus
delivery on all electrodes programmed to do so. User programmable voltage stimuli
ranging between 0 to 2.0 volt, are generated by a voltage source on the circuit board
(Fig. 1f), fed into the IC, shared by all stimulating electrodes, and capacitive-
coupled to the neurons via the electrodes’ HfO2 dielectric interface. The MOSFET
pseudo-resistor is turned off during stimulation to minimize source resistance. For
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all electrical stimulation results presented here, we delivered the stimuli with four
neighboring electrodes arranged in a 2 × 2 pattern, we found the larger electric field
so generated to more consistently elicit spikes in the mouse retina than that from
one electrode. The stimulus threshold is defined as the voltage required to elicit
electrically evoked responses within 3 ms of stimulus onset in 50% of trials (out of
10), at the 2 × 2 stimulating electrodes.

Integrated circuit fabrication and post-processing. The top metal layer of the
CMOS IC serves as the base material for the sensing electrodes. This is achieved by
etching away the foundry-deposited passivation layers (polyimide, silicon nitride
and silicon dioxide) by inductively coupled plasma/reactive ion etching (ICP/RIE)
using a mixture of SF6 and O2 plasma. We restrict etching to within the sensing
region by protecting all other area with a ~16 µm layer of AZ-4620 photoresist,
patterned with standard UV photolithography.

The naturally occurring aluminum oxide on the top metal is stripped by ion
milling. Next, we deposit 6 nm of HfO2, a high-K dielectric, by atomic layer
deposition (ALD) at 150 °C on top of the metal. This serves two purposes. First, it
creates a capacitive sensing and stimulation interface; and second, it provides a
passivation layer for the underlying aluminum. This HfO2 layer provides a
capacitance of 5.8 pF over the 14 × 14 µm electrode. The capacitance is ascertained
by building test structures (Supplementary Fig. 2c) consisting of a metal-HfO2-
metal stack on a SiO2 substrate, followed by measurements with a semiconductor
parameter analyser (Agilent B1500).

A 160-nm-thick film of conductive polymer10 is spun over the die surface to
reduce the electrode-to-electrolyte interfacial impedance53 (between the conformal
ALD HfO2 layer and saline). This is followed by a 220-nm PMMA A4
(MicroChem) barrier film. The PEDOT:PSS+ PMMA stack is patterned using UV
lithography with Shipley S1813 photoresist, followed by O2 ICP etching, such that
only the electrodes are covered by PEDOT:PSS. Finally, the remaining PMMA is
stripped with PG Remover (MicroChem).

Each post-processed die is attached to a custom ball grid array (BGA) with
thermally conductive epoxy, wire-bonded, and then encapsulated with medical
grade epoxy (OG-116-31, Epoxy Technology, Inc.). In the final step, we attach a
polycarbonate ring around the IC using Sylgard 184 (Dow Corning) to serve as the
perfusion chamber.

Sparse sampling and data recovery. Multiplexing causes each channel to be
observed at a rate (fvisit), through the multiplexer, considerably lower than the
channel bandwidth (fBW). Unless the content spanning fvisit/2 … fBW is removed
from the per-channel data, aliasing occurs. The problem of per-channel data
recovery is thus two-fold. First, the channel data must be extracted from the ADC
data stream (Fig. 1b, step 2); and second, the spectral contribution of contents in
fvisit/2 … fBW has to be computed (Fig. 1b, step 3) and removed from the channel
data (Fig. 1b, step 4).

The first task, per-channel data extraction, is achieved by keeping a history of
the scanned channels during recording. In this manner, each sampled value from
the ADC can be assigned to the channel from which it originates by examining the
history at the corresponding time point.

The goals of the second task are to preserve the spectral contents of neural
signal and to prevent aliasing of contents in fvisit/2 … fBW, for data sampled at only
fvisit (Supplementary Fig. 3b), with fvisit ≪ fBW. We begin by setting the
multiplexers’ per-channel visit rate (fvisit) to be sufficiently high, such that the
spike bandwidth (300–3k Hz) is entirely encompassed by fvisit/2 and that the range
fvisit/2 … fBW is dominated by thermal noise. We typically set fvisit to 10 kHz to
achieve these requirements.

Several statistical and spectral characteristics of thermal noise make its aliased
image amenable to reconstruction in the frequency domain. This thermal noise,
which comes from the electrodes and from the amplifier transistors, is a stationary
random process, with a flat spectrum and a Gaussian time-domain amplitude
distribution54 of zero mean and variance σ2. The probability density function for
such a process is

Nðxjσ2Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2πσ2
p e�

x2

2σ2

We can easily determine every channel’s σ2 for thermal noise calculation by
recording each channel without multiplexer interruption (i.e. conventional
sampling) at full system bandwidth, thereby completely specifying the thermal
noise characteristics of the channel up to fBW. With the noise variance σ2 and
bandwidth fBW now known for every recording channel, we computationally
construct the thermal noise ni for each channel i.

As the under-sampled thermal noise is folded down into the First Nyquist zone,
in the per-channel data, fluctuations in power and spectral angle, from frequency to
frequency, are averaged out (Supplementary Fig. 3b). We can compute the power
contributed by aliasing using the expected average thermal noise power, multiplied
by the number of folded Nyquist zones. Similarly, the spectral angles converge to
zero in the aliased version of the thermal noise. We construct vectors in the
frequency space to represent the aliased thermal noise, subtracting these from the
per-channel data, thereby reversing the effects of aliasing.

The effects of thermal noise aliasing, between fvisit/2 … fBW, in the per-channel
data (Supplementary Fig. 3b) can be readily reproduced by decimating the

generated noise ni to a lower rate, fvisit. We denote this aliased sequence ai:

ai : decimateðni; fvisitÞ
Next we construct another sequence bi, a decimated version of ni without

aliasing. This is accomplished by first low-pass filtering ni at fvisit/2, followed by
decimation to the new rate fvisit:

bi : decimate lowpass ni; fvisit=2ð Þ; fvisitð Þ

The power contributed by the aliased thermal noise at each frequency, for a system
with bandwidth fBW but sampled at only fvisit, is, therefore, the power difference
between the deliberately aliased sequence ai and the anti-aliased sequence bi:

Pi ¼ FðaiÞj j � FðbiÞj j

where F denotes Fourier transform. By removing the contribution of Pi in the per-
channel data, we avoid aliasing. Because thermal noise is a stochastic process, for
any finite-length segment there will be slight fluctuations in power from frequency
to frequency, and no two finite-length segments are exactly identical. These
uncertainties are minimized with increased length for ni, and by computing Pi from
the averaged power, which converges to the true value as the number of analysed
frequencies increases:

Pi ¼ mean F aið Þj jð Þ �mean F bið Þj jð Þ

We then construct a set of vectors describing the aliased contents in the frequency
domain:

V
!

ι ¼ Pie
j arg F dið Þð Þ

In the last step, we remove these aliased contents Vi
!

from the per-channel data di .
In doing so, we recover the data ei without aliasing (Supplementary Fig. 3c):

ei ¼ F�1ðF dið Þ � Vi
!Þ

In practice, we perform the thermal noise parameter estimation procedure
separately in physiological saline prior to the biological experiments with
50–100 ms recordings at full sampling rate. This can be computed for 16 pixels in
parallel, taking advantage of the 16 parallel read-outs on the IC. The noise
parameters are saved for each pixel and reused in subsequent biological
experiments.

Data analysis pipeline. The four FPGAs, each collecting digitized data from four
ADCs, are connected to a high-performance computer with separate USB3 links
(Supplementary Fig. 5), with a combined transfer capacity of approximately 1 GB/s.
Low-level drivers and custom libraries store the data to RAID0 hard drives and
arbitrate interactions with near real-time processing algorithms written in C++, run-
ning on Intel ×86 CPUs (Xeon E5-2623 3 GHz) and NVIDIA GPUs (Quadro K5200).

Characterization of acquisition paradigm. The perfusion well is filled with PBS at
physiological concentration. We generate 1-kHz sine waves from a function gen-
erator (AFG3102C, Tektronix) and attenuate the signal amplitude down to
100–200 µV peak-to-peak. The test signals are applied in the PBS bath through a
pair of large (hence low impedance) Ag-AgCl electrodes. The recording SNR is
measured by applying a 1-kHz sine wave into the saline bath, directly above the test
electrode. After bandpass filtering the data between 300 and 3 kHz, we then
compare its variance against a similarly bandpass filtered quiescent recording with
a grounded bath. We determine the corner frequency of the high-pass filter at each
electrode by measuring the amplitude attenuation of a bath-applied sine wave, at
different frequencies.

We also compare the performance of our system to that of conventional, low-
noise patch clamp recordings. A ~950-kΩ, PBS-filled borosilicate glass pipette,
connected to a commercial patch clamp recording setup (MultiClamp 700B,
Digidata 1550, pClamp 10, all Molecular Devices), is brought within 50 µm of the
test electrode in the 65,536-electrde grid using a micromanipulator (MP-285, Sutter
Instruments). The digitally recovered data from the test electrode within the CMOS
recording grid is compared against the patch clamp amplifier’s recordings. Both
signals are bandpass filtered between 300–3k Hz.

Mouse retina preparation. WT mice >P40, of either sex, are dark adapted for one
hour and deeply anaesthetized with isoflurane in O2. Following euthanasia, the eyes
are rapidly enucleated under dim red light then placed in oxygenated Ames’
medium (Sigma Aldrich) with 1.9 g/L of NaHCO3 and equilibrated with 95% O2/
5% CO2, at room temperature. Under a near-infrared illuminated dissection
microscope we hemisect the eyes, remove the anterior chamber, the vitreous and
the posterior eye cup, then place the isolated retina in equilibrated Ames’ medium
at room temperature, in darkness.

For recordings, an intact retina is flattened by several small incisions around the
periphery, transferred onto a transparent dialysis membrane, then placed retinal
ganglion cell side down, on top of the 65,536-channel CMOS recording /
stimulation grid. A small, custom-made platinum harp, with (Supplementary
Fig. 7) or without nylon threads, is placed over the membrane to maintain retina-
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to-electrode contact. The retina is kept alive by perfusing with equilibrated Ames’
medium, heated to 33–35 °C, at a rate of ~4.5 mL/min. We allow at least 30-
minutes recovery in the warm solution before recordings. All experiments are
performed in the dark. Visualization of the retina under a fixed-stage upright
microscope (Nikon FN1) is achieved with near-infrared illumination (≥850 nm)
and an IR-sensitive CCD camera.

Visual stimuli are generated on an OLED display with built-in digital signal
processor and memory, then projected onto the retina via custom optics attached
to the modified epi-fluorescent light path of a fixed-stage microscope. Visual
patterns are triggered via a TTL digital input. The light spot stimuli are 1-s in
duration, of 1122 µm diameter, white on black background at 100 % contrast, with
intensity of 11.4 × 1011 photons/s/cm2.

Data analysis. Eight mouse retinae were used for the biological results presented
here. After per-channel data separation and noise removal (Fig. 1b), the data are
bandpass filtered between 100 Hz and 3 kHz. Putative spikes are detected by
threshold crossing over 4.5 standard deviation of mean. We use an event window
of 0.7 ms and 1.0 ms, before and after, the spike peak, respectively. To facilitate
spike sorting, whenever an event is detected, we also collect the waveforms from
the electrode’s eight adjacent neighbors over the corresponding timeframe. These
waveforms are concatenated and saved to a database, mapping from electrode
address to event data (peak time, waveform data and recording sweep ID).

We compute the principal components for each waveform by singular value
decomposition, then sort the waveforms using the first four scores by expectation
maximization (EM) with Gaussian mixture model. We repeat the EM procedure
ten times to avoid suboptimal, local-maxima solutions. The repetitions are
performed concurrently using parallel CPUs/GPUs to reduce run time. The
clustering with the highest fitness metric, namely, maximal between-cluster
separation, minimal within-cluster spread, lack of singleton clusters and zero inter-
spike interval violation, are deemed the correct/best solution. Conventional EM
algorithms require a priori the number of clusters, an impractical requirement for
at-scale spike sorting. We implement automatic cluster number detection using the
foregoing fitness metric. Specifically, the number is increased incrementally from a
minimum of two, up to maximum of 10. The lowest cluster number without inter-
spike interval violation and having the highest, or equal highest, fitness metric is
used. These procedures are implemented on parallel hardware to reduce run time.
All sorted spikes are saved to a database, mapping from electrode address to a list
of waveforms, their associated spike time, sweep ID and cluster assignment.

To classify RGCs into functional types31,32, we flash a 1-s light spot over the
region of interest in the retina. The recording duration is three seconds, for 1-s pre-
stimulus and 1-s post-stimulus periods. We divide the 3-s recording interval into
six equal segments of 500 ms each, numbered 1–6. ON-type neurons spike
predominantly in segments 3 and 4, while OFF-type neurons spike predominantly
in segments 5 and 6. Neurons with high segment 3 or segment 5 rates relative to
segments 4 and 6 are designated as “Transient”, otherwise they are designated as
“Sustained.” ON–OFF RGCs are distinguished by simultaneously strong responses
in segments 3 and 5, and low baseline spiking rates. SbC RGCs are distinguished by
their high baseline rate, with little or no spikes in segments 3 and 5. Units with
ambiguous spiking profile, without the foregoing characteristics, are not assigned a
functional class. Units with low spike rate (≤2 Hz) during the 3-s recording period
are also not functionally classified, because the low spike counts preclude accurate
classification. The pseudocode for the functional classification procedure can be
found in Supplementary Note 1.

In Fig. 5, the spike-triggered average (STA) stimulus is defined as the average
stimulus preceding a spike from a neuron. Specifically, it is the sum of stimuli
(voltage impulses through the HfO2 dielectric) that preceded each spike, divided by
the number of spikes.

To create the spike latency verses distance plot (Fig. 5f), we begin by collapsing,
for each electrode, the spike-sorted events over 10 stimulus repetitions into a time-
invariant plot. From this plot, at each electrode, we select all spike-sorted unit(s),
with at least 5 events within 5 ms following stimulus delivery (i.e., 5 successes out of
10 trials). The spike time of these units are then plotted as a function of distance
from the stimulation site.

Data availability. The data sets generated during and/or analysed during the
current study are available from the corresponding author on reasonable request.
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