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ABSTRACT Oenococcus oeni OE37 is an autochthonous strain that was isolated
from a Chardonnay wine from Piedmont (Italy) during spontaneous malolactic fer-
mentation. Here, the OE37 genome sequence is presented, and a brief description of
the main genes is reported.

Malolactic fermentation (MLF) is a biological process in which malic acid is con-
verted to lactic acid and carbon dioxide by decarboxylation through the NADH-

malic enzyme (1). Oenococcus oeni is the main bacterium responsible for conducting
this process because of its ability to survive the harsh wine conditions and its produc-
tion of desirable wine sensory attributes. Currently, the most significant studies have
been focused on describing the occurrence of MLF, lactic acid bacteria, and O. oeni
starter selection (2, 3). The number of reported O. oeni genomes is increasing, but only
4 of 242 records currently available in GenBank are complete genome sequences.

OE37 is an autochthonous strain that was isolated from a Chardonnay wine during
spontaneous MLF by plating diluted wine onto MRS agar plates, as described by Doria
et al. (4). In this study, the OE37 strain was multiplied in MRS broth, and DNA was
purified using the ArchivePure yeast/Gram-positive DNA kit (Eppendorf, Milan, Italy).
Whole-genome sequencing was performed by Macrogen (South Korea). A library was
prepared using the TruSeq Nano DNA kit, and sequencing was performed using the
Illumina HiSeq 2500 platform, with a paired-end read length of 101 bp. Trimmomatic
v0.36 (5) was used to remove adapter sequences; after trimming, a total of 23,084,810
reads, with 96.72% of bases having a quality score above Q30, were found. The GC
content was 37.53%, and the mean coverage depth was 1,132.21�. Reads were
mapped, using Oenococcus PSU-1 as the reference genome (GenBank accession num-
ber NC_008528.1), with BWA v0.7.17 (6) and SAMtools v1.9-1 (7). For all software,
default parameters were used.

The sequence was annotated by the National Center for Biotechnology Information
(NCBI) Prokaryotic Genome Annotation Pipeline (PGAP). The resulting draft complete
sequence is 1,718,702 bp, with a GC content of 37.99%, and contains 1,720 coding
sequences, 46 tRNAs, and 6 rRNA-like motifs. Assembly completeness was checked with
Benchmarking Universal Single-Copy Orthologs (BUSCO) v.1 (8) on the gVolante server
(9), using bacteria as the selected reference gene set, which resulted in 97.5% com-
pleteness.

In winemaking, different aspects are considered for starter selection, such as the
ability to tolerate the harsh wine conditions and physiological, biochemical, and
technological properties (10). The observation of the genes contained in the OE37
genome confirmed the ability of this bacterium to conduct MLF, since malic enzyme is
present; genes related to citrate metabolism are also present, as is a gene coding for
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diacetyl reductase. Diacetyl is the main aromatic compound associated with MLF and
is derived from citrate consumption (11). Concerning the organoleptic quality, other
genes are involved and are present in this strain, such as various glucosidase enzyme
genes, including that for a �-glucosidase (12, 13).

Regarding the mechanism of the stress response of O. oeni, several genes previously
reported as being implicated in the response are present in the OE37 genome, such as
those involved in cell wall biosynthesis (e.g., N-acetylmuramoyl-L-alanine amidase and
D-alanyl-D-alanine carboxypeptidase), whose expression is strongly influenced by the
presence of ethanol (14, 15). Genes coding for exopolysaccharides, which are important
for the adaptation of O. oeni to its ecological niche (16), are also present.

The genome sequence of this O. oeni strain confirms the current knowledge
regarding malolactic bacteria and their impact on wine.

Data availability. The genome sequence was deposited in GenBank under acces-

sion number CP053280. The raw sequencing data were deposited in the SRA database
under accession number PRJNA607182.
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