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ABSTRACT
At present, novel Coronavirus (2019-nCoV, the causative agent of COVID-19) has caused worldwide
social and economic disruption. The disturbing statistics of this infection promoted us to develop an
effective vaccine candidate against the COVID-19. In this study, bioinformatics approaches were
employed to design and introduce a novel multi-epitope vaccine against 2019-nCoV that can poten-
tially trigger both CD4þ and CD8þ T-cell immune responses and investigated its biological activities by
computational tools. Three known antigenic proteins (Nucleocapsid, ORF3a, and Membrane protein,
hereafter called NOM) from the virus were selected and analyzed for prediction of the potential
immunogenic B and T-cell epitopes and then validated using bioinformatics tools. Based on in silico
analysis, we have constructed a multi-epitope vaccine candidate (NOM) with five rich-epitopes domain
including highly scored T and B-cell epitopes. After predicting and evaluating of the third structure of
the protein candidate, the best 3D predicted model was applied for docking studies with Toll-like
receptor 4 (TLR4) and HLA-A�11:01. In the next step, molecular dynamics (MD) simulation was used to
evaluate the stability of the designed fusion protein with TLR4 and HLA-A�11:01 receptors. MD studies
demonstrated that the NOM-TLR4 and NOM-HLA-A�11:01 docked models were stable during simula-
tion time. In silico evaluation showed that the designed chimeric protein could simultaneously elicit
humoral and cell-mediated immune responses.

Abbreviations: TLR4: Toll-like receptor4; MD: Molecular dynamics; WHO: World Health Organization;
SARS: Severe Acute Respiratory Syndrome; MERS: Middle East Respiratory Syndrome; ORF: Open read-
ing frame; MHC: Major histocompatibility complex; CTL: Cytotoxic T-lymphocytes; HTL: Helper T-lym-
phocytes; RMSD: Root mean square deviation; ns: Nanoseconds
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1. Introduction

Coronavirus disease COVID-19 outbreak began in late
December 2019 in Wuhan, the capital of Hubei Province,
China (Wang et al., 2020). Scientists from all over the world
are attempting to investigate this novel virus, known as
2019-nCoV, which is highly contagious, and to discover
effective interventions to control and prevent the disease
(Heymann, 2020; Huang et al., 2020). Coronaviruses are posi-
tive-sense single-stranded RNA viruses (ssRNAþ) belonging to
the Coronaviridae family. Human Coronaviruses HCoV-229E,
HCoV-NL63, HCoV-OC43, and HCoV-HKU1 are observed in
almost one-third of the common cold (Lim et al., 2016).
However, recently some cases of human coronavirus infec-
tions have led to fatal endemics, including SARS (Severe
Acute Respiratory Syndrome), MERS (Middle East Respiratory
Syndrome) and COVID-19 that are common diseases
between humans and animals whose belong to the genus

Betacoronavirus of the Coronaviridae family (Al-Tawfiq et al.,
2014). So far, the novel COVID-19 has caused more than
700,000 illnesses and more than 33,000 deaths worldwide
(W.H.O., 2020). The genome size of this virus is about 30 kb
and encodes structural and non-structural proteins like other
coronaviruses. Structural proteins include S protein (Spike), E
protein (Envelope), M protein (Membrane), and N protein
(Nucleocapsid) (Ahmed et al., 2020). The increasing rate of
COVID-19 disease and the high morbidity necessitate the
development of a specific and safe vaccine candidate as
soon as possible. There is very little known actually about
the pathogenesis of the virus; therefore, an immunoinfor-
matics-based approach to investigate the immunogenic epit-
opes and vaccine design using data from proteins
sequencing of the COVID-19 is required.

N protein is the only structural protein that associates
with replicase-transcriptase complexes and binds with gen-
omic RNA in coronaviruses (Cong et al., 2017). This protein is
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multifunctional and one of the most crucial structural com-
ponents of coronaviruses. N protein is a structural and anti-
genic protein that is involved in packaging, transcription,
and replication coronaviruses (4). This data showed that N
protein is a suitable candidate for targeting drug and vaccine
design because this protein is conserved, antigenic and
multifunctional (6). Leung and et al. concluded that N pro-
tein can be a suitable vaccine candidate against SARS-Cov
because induce strong antibody and this process may trigger
cytokine production (Leung et al., 2004). Coronaviruses M
protein also has a key role in the assembly of virions. The
SARS-CoV M protein can interact with N protein and make a
network of interactions with the genomic RNA (He et al.,
2004). Ong and et al. the COVID-19 antigens such as S, N
and M proteins introduced as a vaccine candidate (6). This
protein has also been studied as an epitope vaccine candi-
date against SARS-CoV (7).

Open reading frame 3a (ORF3a) is required for viral repli-
cation and virulence of SARS CoV. Severe induction of proin-
flammatory cytokine is a sign of SARS-CoV and MERS-CoV
infections. ORF3a activates both pro-IL-1b gene expression
and IL-1b secretion and leads to severe lung injury. (Siu
et al., 2019). Also, ORF3a has an important role in SARS-CoV
assembly or budding with the participation of M and E pro-
teins (McBride & Fielding, 2012). These proteins are not only
involved in the pathogenesis of the COVID-19 virus but also
have high antigenicity (Chan et al., 2020; Siu et al., 2019; Xu
et al., 2020). In this study E, M, N, ORF10, ORF8, ORF3a and
M proteins were evaluated by available bioinformatics tools
for designing an efficient multi-epitope vaccine for the
stimulation of immune responses against COVID-19 infection.

Since the COVID-19 has been recently discovered, little
immunological information is available. Preliminary studies
based on phylogenetic analyses of the COVID-19 whole gen-
ome have suggested that this virus is very similar to the
SARS-CoV (79.7% Identify)(9, 14). Given the apparent similar-
ity between the two viruses, it could be concluded that pre-
vious studies on the protective immune responses against
SARS-CoV may be useful for developing a vaccine for COVID-
19. Previous studies have suggested that both humoral and
cellular immunity play important roles in protective
responses against this virus (Deming et al., 2007; Yang et al.,
2004). Studies revealed that the formation of antibodies
against the N protein of SARS-CoV, an immunogenic protein
that is highly expressed during infection, is relatively com-
mon in patients infected with this virus (Liu et al., 2004; Lin
et al., 2003). Although these antibodies are effective, they
have a shorter lifespan in recovering the patients. In addition
to the specific humoral immunity, it has been shown that
the CD4þ and CD8þ responses provide long-lasting protec-
tion against COVID-19. These studies showed that besides
antibody-mediated immune response, cellular immunity is
critical to induce protectivity in these infections (Liu et al.,
2017). The concept of a multi-epitope vaccine is to efficiently
identify and assemble B and T-cell epitopes that are more
capable of stimulating the immune system and therefore can
induce more potent and effective both arms of immune
responses. Peptides and epitopes have shown to be

desirable candidates for vaccine development due to their
relatively easy production, chemical stability, and lack of
infectious potential (Patronov & Doytchinova, 2013). The
experimental design and production of multi-epitope vac-
cines have improved dramatically in recent years. These vac-
cines are mainly made up of B-cell, CD8þ cytolytic T-cell
(CTLs) and CD4þ helper T-cells (HTLs) epitopes (Chiarella
et al., 2009). Since the antigenic epitopes of a protein could
be predicted and detected, therefore the whole protein is
not suitable to stimulate an immune response (Testa &
Philip, 2012; Zheng et al., 2017). During the development of
a vaccine candidate against COVID-19, complex pathogenic
mechanisms and numerous pathogenic factors should be
considered in vaccine formulation.

In the present study, we aimed to design a novel multi-
epitope fusion protein (Nucleocapsid, ORF3a, and Membrane
protein or NOM) containing more efficient antigenic epito-
pes-rich domains. The biological activity of the engineered
fusion protein was assessed by bioinformatics tools using the
interaction between the vaccine candidate and the innate
immune system receptor (TLR4) and cellular immune system
receptor (HLA-A�11:01). We strongly believe that the out-
come of the present report will provide a potential vaccine
candidate against 2019-nCoV.

2. Materials and methods

In this study, we designed a suitable vaccine candidate
against COVID-19, by exploiting the programs of reverse vac-
cinology (Figure 1)

2.1. Retrieval of protein sequences

At first, the amino acid sequences of proteins were retrieved
from the National Centre for Biotechnology Information
(NCBI) at www.ncbi.nlm.nih.gov in FASTA format and per-
formed for subsequent analysis (Table 1).

2.2. Selection of antigenic proteins

We selected six proteins of COVID-19 virus (Table 1) that
have an essential role in virulence and replication of the
virus, and previous studies have highlighted the necessity of
these proteins in coronaviruses function. After the antigenic
analysis of these proteins, three proteins of N, ORF3a, and M
were selected for final analysis.

2.3. Prediction of T-cell (HLA class I and II) epitopes

1d sequence-based screening server RANKPEP was used to
identify T-cell epitopes (Reche & Reinherz, 2007). This server
predicts peptide binders to MHC molecules from protein
sequences using the position-specific scoring matrix (PSSM).
We have selected all HLA class I alleles from the selection
panel of RANKPEP server for prediction of epitopes of HLA
class I. To prediction of epitopes of HLA class II, we consid-
ered DRB1�0101, DRB1�0301, DRB1�0401, DRB1�0701,
DRB1�0801, DRB1�1101, DRB1�1301, and DRB1�1501 that
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cover HLA variability of over 95% of the human population
worldwide (Kruiswijk et al., 2020).

2.4. B-cell epitopes (linear) identification

For the prediction of B-cell epitopes, the amino acid
sequence was analyzed using BepiPred and Kolaskar &
Tongaonkar Antigenicity (http://www.iedb.org/) servers (Vita
et al., 2019). Bepipred for linear epitope prediction uses both
hidden Markov model and amino acid propensity scales
methods. Kolaskar and Tongaonkar evaluate the protein for

B cell epitopes using the physicochemical properties of the
amino acids and their frequencies of occurrence in recog-
nized B cell epitopes (Kolaskar & Tongaonkar, 1990; Mirza
et al., 2016).

2.5. Selection of epitope-rich domains and the
final sequence

According to the prediction results of the servers used, B cell
epitopes and HLA class I and II epitopes that have had high
scores were extracted and combined to generate multi-

Figure 1. Strategies employed in the overall study.
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epitope protein. B cell and T cell epitope-rich domains of N,
ORF3a and M proteins were selected and joined to each
other with an AAA linker.

2.6. Antigenicity and allergenicity evaluation

Antigenicity of designed recombinant protein predicted
using the VaxiJen v2.0 server. The VaxiJen classified antigens
based on auto cross-covariance (ACC) transformation of pro-
tein sequences into uniform vectors of principal amino acid
properties which is a novel alignment-independent method
and overcome the limitations of alignment-dependent
sequence methods (Doytchinova & Flower, 2007). The predic-
tion of vaccine candidate allergenicity is essential. The aller-
genicity of the designed protein was computed by AllerTOP
(http://www.ddg-pharmfac.net/AllerTOP/). AllerTOP method
predicts recombinant protein allergenicity on auto cross-
covariance ACC that describe residue hydrophobicity, size,
abundance, helix- and b-strand forming propensities
(Dimitrov et al., 2013). AllerTOP v.2 has the highest accuracy

(88.7%) compared to several servers for allergen prediction
(Dimitrov et al., 2013).

2.7. The physicochemical parameters

The analyzed parameters consisted of the molecular weight,
theoretical pI, amino acid composition, atomic composition,
extinction coefficient, estimated half-life, instability index, ali-
phatic index and grand average of hydropathicity that were
evaluated by ProtParam online server (http://us.expasy.org/
tools/ protparam.html) (Gasteiger et al., 2005).

2.8. Secondary and tertiary structure prediction

GOR was used for the designed protein secondary structure
prediction (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.
pl?page=/NPSA/npsa_gor4.html) (Kloczkowski et al., 2002).
GOR4 predict protein secondary structure using informa-
tion theory.

The tertiary structure was built using the Galaxy web.
GalaxyWEB server (http://galaxy.seoklab.org/ tbm) is based

Table 1: Amino acid sequences of proteins were retrieved from NCBI.

Name protein Accession number FASTA

Nucleocapsid protein QIC53221.1 >QIC53221.1 nucleocapsid protein [Severe acute respiratory
syndrome coronavirus 2]

[Severe acute respiratory syndrome coronavirus 2] MSDNGPQNQRNAPRITFGGPSDSTGSNQNGERSG
ARSKQRRPQGLPNNTASWFTALTQHGKEDLKFPRG
QGVPINTNSSPDDQIGYYRRATRRIRGGDGKMKDLS
PRYFYYLGTGPEAGLPYGANKDGIIWVATEGALNTP
KDHIGTRNPANNAAIVLQLPQGTTLPKGFYAEGSRG
GSQASSRSSSRSRNSSRNSTPGSSRGTSPARMAGN
GGDAALALLLLDRLNQLESKMSGKGQQQQGQTVTK
KSAAEASKKPRQKRTATKAYNVTQAFGRRGPEQTQ
GNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMS
RIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNK
HIDAYKTFPPTEPKKDKKKKADETQALPQRQKKQQT
VTLLPAADLDDFSKQLQQSMSSADSTQA

Membrane protein QIC53216.1 >QIC53216.1 membrane protein [Severe acute respiratory
syndrome coronavirus 2]

[Severe acute respiratory syndrome coronavirus 2] MADSNGTITVEELKKLLEQWNLVIGFLFLTWICLLQF
AYANRNRFLYIIKLIFLWLLWPVTLACFVLAAVYRINWI
TGGIAIAMACLVGLMWLSYFIASFRLFARTRSMWSF
NPETNILLNVPLHGTILTRPLLESELVIGAVILRGHLRIA
GHHLGRCDIKDLPKEITVATSRTLSYYKLGASQRVAG
DSGFAAYSRYRIGNYKLNTDHSSSSDNIALLV

ORF10 protein [Severe acute respiratory syndrome coronavirus 2] QIC53212.1 >QIC53212.1 ORF10 protein [Severe acute respiratory syndrome
coronavirus 2]

MGYINVFAFPFTIYSLLLCRMNSRNYIAQVDVVNFNLT
Envelope protein QIC53206.1 >QIC53206.1 envelope protein [Severe acute respiratory syndrome

coronavirus 2]
[Severe acute respiratory syndrome coronavirus 2] MYSFVSEETGTLIVNSVLLFLAFVVFLLVTLAILTALRL

CAYCCNIVNVSLVKPSFYVYSRVKNLNSSRVPDLLV
ORF8 protein QIC53210.1 >QIC53210.1 ORF8 protein [Severe acute respiratory syndrome

coronavirus 2]
[Severe acute respiratory syndrome coronavirus 2] MKFLVFLGIITTVAAFHQECSLQSCTQHQPYVVDDP

CPIHFYSKWYIRVGARKSAPLIELCVDEAGSKSPIQYID
IGNYTVSCLPFTINCQEPKLGSLVVRCSFYEDFLEYH
DVRVVLDFI

ORF3a protein QIC53205.1 >QIC53205.1 ORF3a protein [Severe acute respiratory syndrome
coronavirus 2]

[Severe acute respiratory syndrome coronavirus 2] MDLFMRIFTIGTVTLKQGEIKDATPSDFVRATATIPIQ
ASLPFGWLIVGVALLAVFQSASKIITLKKRWQLALSKG
VHFVCNLLLLFVTVYSHLLLVAAGLEAPFLYLYALVY
FLQSINFVRIIMRLWLCWKCRSKNPLLYDANYFLCWH
TNCYDYCIPYNSVTSSIVITSGDGTTSPISEHDYQIGG
YTEKWESGVKDCVVLHSYFTSDYYQLYSTQLSTDT
GVEHVTFFIYNKIVDEPEEHVQIHTIDVSSGVVNPVM
EPIYDEPTTTTSVPL
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on the TBM method. This server detects similar proteins and
alignment with the target sequence, then make the model
and finally perform model refinement (Shin et al., 2014).

2.9. Tertiary structure refinement and validation

The best-modeled structure was refined using the Galaxy
Refine server at (http://galaxy.seoklab.org/cgi-bin/submit.cgi?-
type=REFINE). Galaxy refined the model by molecular dynam-
ics simulation. This method showed one of the best
performances in improving protein structure quality.

Analysis of the final 3 D model was made using
MolProbity, ProSA and Ramachandran plot. Ramachandran
plot obtained from RAMPAGE calculates torsional angles resi-
due-by-residue in protein and indicates that residues are in
allowed, favored or outlier regions (Oberholser, 2010). ProSA
web used to recognize the errors in the generated 3D mod-
els using atomic coordinates of the model. ProSA web was
created Z-score (overall model quality) and a plot of residue
energies of proteins (Wiederstein & Sippl, 2007). Clash ana-
lysis is very important for the validation of proteins.
MolProbity is a structure-validation web service that calcu-
lates the clash score, Protein-geometry score, Poor rotamers,
Ramachandran plot, and MolProbity score.

2.10. Defining discontinuous B-cell epitopes of
designed protein

The interaction between antigen epitopes and antibodies is
very essential to eliminate the infection. Conformational epit-
opes are the most important and the most prevalent epito-
pes that are recognized by antibodies. All conformational
epitope prediction methods require the 3D structures of pro-
teins. Discontinuous epitopes of recombinant protein pre-
dicted using the ElliPro server. This web-based predicts
discontinuous epitopes based on protein-antibody interac-
tions. ElliPro server predicts conformational and linear B cell
epitopes using Thornton’s method and by MODELLER pro-
gram or BLAST search of PDB predict and visualize of anti-
body epitopes (Ponomarenko et al., 2008).

2.11. Obtaining and preparing the structures of immune
receptors and NOM recombinant protein

The crystallographic structures of TLR4 (PDB ID: 2Z62 (Kim
et al., 2007)) and HLA-A�11:01 (PDB ID: 5WJL (Culshaw et al.,
2017)) were obtained from the PDB database (Berman et al.,
2000). The structures were cleaned and crystallographic
waters and co-crystallized molecules were deleted and only
the monomer forms of each receptor were kept. Then, the
structures of the two receptors and the NOM protein were
prepared by the Dock prep tool in UCSF Chimera software
(Pettersen et al., 2004) where hydrogen atoms and charge
were added to the structures to make them ready for the
next step. In the next step, to stabilize and relax the struc-
tures in an aqueous physiological environment, each of the
monomer form of the receptors and the NOM protein were

simulated for 100 ns. The details of the MD simulation will be
explained later.

2.12. Protein-Protein molecular docking and refinement

After the MD simulation of each receptor and the NOM
recombinant protein, the last frame of the trajectory of each
simulation was extracted and used as the input structures for
protein-protein molecular docking. The PatchDock webserver
(Schneidman-Duhovny et al., 2005) with default parameters
was used to predict the best positions and orientations
where the two proteins can have the highest number of
favorable interactions. Afterward, the top 10 solutions were
subjected to Firedock webserver (Andrusier et al., 2007;
Mashiach et al., 2008) to refine the interaction of protein-pro-
tein complexes resulted from molecular docking. The top
two complexes from Coronavirus NOM protein-TLR4 and
NOM recombinant protein-HLA-A�11:01 complexes were
chosen based on global energies. These four complexes
were then taken to the next step, MD simulation.

2.13. Molecular dynamics simulation

After performing the protein-protein molecular docking and
finding the best orientations of the vaccine candidate and
the receptor proteins to interact with one another, the two
best-scored complexes were subjected to MD simulation. All
of the MD simulations were done by GROMACS 2018 pack-
age (Abraham et al., 2015) and OPLS-AA force field
(Jorgensen et al., 1996). The monomer form of each protein
and also the docked complexes were placed in the center of
a triclinic box with a distance of 1 nm from all edges and sol-
vated with TIP3P water model (Jorgensen et al., 1983). Then,
sodium and chloride ions were added to produce a neutral
physiological salt concentration of 150mM. Each system was
energy minimized, using the steepest descent algorithm,
until the Fmax was found to be smaller than
10 kJ.mol�1nm�1. All of the covalent bonds were constrained
using the Linear Constraint Solver (LINCS) algorithm (Hess
et al., 1997) to maintain constant bond lengths. The long-
range electrostatic interactions were treated using the
Particle Mesh Ewald (PME) method (Darden et al., 1993;
Essmann et al., 1995) and the cut off radii for Coulomb and
Van der Waals short-range interactions were set to 0.9 nm.
Then 100 ps NVT (constant number of particles (N), volume
(V), and temperature (T)) and 300 ps NPT (constant number
of particles (N), pressure (P), and temperature (T)) equilibra-
tions were performed for each system. After the necessary
equilibrations, 100 ns of production run were performed for
each of the four complexes. Finally, simulations were carried
out under the periodic boundary conditions (PBC), set at XYZ
coordinates to ensure that the atoms had stayed inside the
simulation box, and the subsequent analyses were then per-
formed using GROMACS utilities, VMD (Humphrey et al.,
1996) and USCF Chimera, and also the plots and the figures
were created using Daniel’s XL Toolbox (v 7.3.2) add-in
(Kraus, 2014) and EzMol (Reynolds et al., 2018). All of the
computations were performed on an Ubuntu desktop PC,
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with a [Intel(R) Xeon(R) CPU E5-2630 v3þNVIDIA GeForce
GTX 1080] configuration.

2.14. Mmpbsa binding free energy

The binding free energies of the protein-protein complexes
were calculated by Molecular Mechanics-Poisson–Boltzmann
Solvent-Accessible surface area, MMPBSA method (Kollman
et al., 2000) using g_mmpbsa package (Kumari et al., 2014).
In this method, the binding free energy is the result of the
free energy of the complex minus the sum of the free
energies of the ligand and the protein. In our case, the
NOM recombinant protein is defined as the ligand and the
immune receptors are defined as the receptors. The MMPBSA
calculation was done for every ns of each simulation
trajectories.

DGbind ¼ DGcomplex– DGligand þ DGReceptorð Þ

3. Results and discussion

3.1. Defining T-cell epitopes

The results of several studies have shown that strong virus-
specific T-cell response is required for the elimination of
respiratory virus infections such as SARS-CoV and influenza A
and para-influenza. These studies conclude that future vac-
cine interventions should also consider strategies to enhance
T cell response to provide robust long-term memory
(Channappanavar et al., 2014; Janice Oh et al., 2012). Studies
have shown that high levels of T cell responses against N
protein were found 2 years after the patient’s recovery (Peng
et al., 2006). Antibodies are essential to combat SARS-CoV
infection, and the body needs SARS-CoV specific CD4þ T
helper cells to produce these specific antibodies. Also, CD8þ

cytotoxic T cells are important for recognizing and killing
infected cells, especially in the lungs of infected individuals.
We used the Rankpep server which covers almost all HLA
supertypes to predicted different epitops from N, ORF3a and
M proteins sequence according to HLA I and HLA II alleles.
Antigenic epitopes with high binding affinity score were pre-
dicted that are summarized in table 2a–b.

3.2. Defining linear B-cell epitopes

Successful vaccination against viruses such as measles and
rubella reflects the importance of protective antibodies.
Protection against virus infection such as Coronaviruses
depends on the simulation of neutralizing antibodies in add-
ition to the T cell-mediated immunity. While cytotoxic lym-
phocytes can kill infected cells, antibodies have the potential
to eliminate infected cells and prevent the infectious virus
from infecting a cell (neutralization). SARS-CoV-specific
Neutralizing antibodies block viral entry (D€orner & Radbruch,
2007; Hsueh et al., 2004). In this study, for the linear epitope
prediction, the Bepipred server was employed. Bepipred ana-
lysis revealed several continuous predicted epitopes of N,
ORF3a and M proteins. For cross-checking the predicted

epitopes, the sequence of all three proteins was also pre-
dicted by Kolaskar & Tongaonkar Antigenicity. The linear B-
cell epitopes are represented in (Table 3). Given that both
cellular and humoral immune responses are essential against
coronaviruses infection (Janice Oh et al., 2012), finally, epito-
pes that were shared between B cell and T-cell
were selected.

3.3. Selected targets for designing the final vaccine

The main strategy in the present study was to design and
construct a novel multi-epitope protein from COVID-19
based on in silico methods to elicit humoral and cellular
immune responses. Due to the low immunogenicity of the
epitope, we chose epitope-rich domains to generate a
more diverse and robust response (Wieser et al., 2010).
Based on in silico analysis, five epitope-rich domains
including highly scored and shared epitopes between T
and B-cell epitopes were selected and joined to each
other with a three AAA linker (Table 4). The schematic
diagram of designed vaccine domains with linker’s sites
has been shown in Figure 2.

3.4. Vaccine features

3.4.1. Assessment of antigenicity and allergenicity
Prediction of the vaccine candidate antigenicity represents a
numerical criterion for the capability of the vaccine to bind
to the B- and T-cell receptors and increase the immune
response in the host cell. VaxiJen v2.0 was used to predict
the antigenicity of the designed protein. VaxiJen analysis of
NOM protein showed potent antigenicity 0.5999 with a 0.4%
threshold. The results indicate that the designed protein
sequences without adjuvant are antigenic.

Allergen proteins induce an IgE antibody response
(Dimitrov et al., 2013). The designed vaccine candidate must
not show an allergic reaction to the body. The allergenicity
of the sequence was predicted using the Allertop tool. Based
on prediction approaches in Allertop, this protein was not
recognized as an allergen.

3.4.2. The physicochemical parameters and protein sec-
ondary structure prediction

Primary structure analysis NOM designed protein (337 aa)
has a molecular weight of 37513.57D. The total number of
positively charged residues (Argþ Lys) and negatively
charged residues (AspþGlu) were 19 and 32 respectively.
The theoretical isoelectric point (PI) was calculated at 9.62.
The instability index (< 40) indicates that the designed pro-
tein has high stability for the initiation of an immunogenic
reaction. The instability index (II) was 35.75 which classifies
the protein as stable. The aliphatic index of NOM recombin-
ant protein was calculated 97.92 and indicates this protein
has stability in several temperatures.

Natively unfolded protein regions and alpha-helix are
important forms of structural antigens that can be arranged
in their native structure and thus identified by antibodies
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that are produced in response to infection. (Shey et al.,
2019). The composition of the predicted secondary structure
of the NOM multi-epitope vaccine candidate was 43.92%
(alpha helix), 16.02% (extended strand), and 40.06% (random
coil). All this information indicates the designed protein is
suitable as a vaccine candidate.

3.4.3. Tertiary structure prediction and validation
Three-dimensional structure was modeled by GalaxyWEB
for our designed protein (Figure 3a). This model was used
for evaluation and refinement. For validation of the
model, ProSA-web, Ramachandran plot and MolProbity
were used that compare and analyze the protein struc-
ture. The ProSA Web determined Z-score for the best pre-
dicted 3 D model (Figure 3b). The Z-score of the NOM
predicted model was -4.42, which is within the range of
scores typically found for native proteins of similar size.

The Ramachandran plot indicates that most of the resi-
dues are found in the favored and allowed regions
(99.7%) and only 0.3% in the outlier region, this shows
that the quality of the designed model is satisfactory. Phe
282, Asn311, Tyr228, Lys194, Asp223, Ser229, Ser4, His197,
Tyr68 residues were observed in the allowed and outlier
regions of Ramachandran plot (Figure 3c). In MolProbity
analysis, the all-atom clash score was 9.37, the MolProbity
score was 2.21. All structural images were created using
PyMol (The PyMOL Molecular Graphics System, Version
1.1, Schr€odinger, LLC).

3.4.4. Defining discontinuous B-cell epitopes
Ellipro Server was used for predicting conformational B-cell
epitopes from the 3D structure of NOM recombinant pro-
tein. Discontinuous B-cell epitopes were predicted with

Table 2b: HLA II antigenic epitopes predicted using Rankpep.

Antigen HLADRB10101 HLADRB10401 HLADRB10402 HLADRB10402 HLADRB10701 HLADRB10801 HLADRB11101 HLADRB11501

Nucleocapsid protein 298-305 52-60 346-354 41-49 87-95 50-58
YKHWPQIAQ WFTALTQHG FKDQVILLN RPQGLPNNT YRRATRRIR ASWFTALTQ
354-362 86-94 300-308 348-356 86-94 360-368
NKHIDAYKT YYRRATRRI HWPQIAQFA DQVILLNKH YYRRATRRI YKTFPPTEP
86-94 300-308 34-42
YYRRATRRI HWPQIAQFA GARSKQRRP
305-313 49-57 298-306
AQFAPSASA TASWFTALT YKHWPQIAQ
52-60 301-309
WFTALTQHG WPQIAQFAP

ORF3a 211-219 211-219 45-53 62-70 59-67 62-70 77-85
YYQLYSTQL YYQLYSTQL WLIVGVALL IITLKKRWQ ASKIITLKK IITLKKRWQ VHFVCNLLL
212-220 45-53 211-219 85-93 87-95 68-76 84-92
YQLYSTQLS WLIVGVALL YYQLYSTQL LLFVTVYSH FVTVYSHLL RWQLALSKG LLLFVTVYS
65-73 54-62
LKKRWQLAL AVFQSASKI

Membrane protein 32-40 28-36 28-36 37-45 65-73 44-52 31-39
ICLLQFAYA FLTWICLLQ FLTWICLLQ FAYANRNRF FVLAAVYRI RFLYIIKLI WICLLQFAY
65-73 55-63 49-57 48-56 55-63 39-47
FVLAAVYRI WLLWPVTLA IKLIFLWLL IIKLIFLWL WLLWPVTLA YANRNRFLY
76-84 65-73 58-66 90-98
ITGGIAIAM FVLAAVYRI WPVTLACFV LMWLSYFIA
80-88 71-79
IAIAMACLV YRINWITGG

Table 2a: HLA I antigenic epitopes predicted using Rankpep.

Antigen HLA_A0201 HLA_A0204 HLA_A0206 HLA_B0702 HLA_B51 HLA_B5401 HLA_B5301

Nucleocapsid protein 316-324 299-307 66-74 343-351 66-74 45-53
GMSRIGMEV KHWPQIAQF FPRGQGVPI DPNFKDQVI FPRGQGVPI LPNNTASWF

45-53
LPNNTASWF
66-74
FPRGQGVPI

ORF3a 39-47 39-47 45-53 35-43 41-49
ASLPFGWLIV ASLPFGWLI WLIVGVALL IPIQASLPF LPFGWLIVG
46-55 72-80 72-80 35-43
LIVGVALLAV ALSKGVHFV ALSKGVHFV IPIQASLPF
64-73 220-228 82-90
TLKKRWQLAL STDTGVEHV NLLLLFVTV
79-87
FVCNLLLLFV

Membrane protein 16-24 56-64 21-29 58-66 58-66 58-66
LLEQWNLVI LLWPVTLAC NLVIGFLFL WPVTLACFV WPVTLACFV WPVTLACFV
15-23 96-104 65-73
KLLEQWNLV FIASFRLFA FVLAAVYRI
65-73 89-97
FVLAAVYRI GLMWLSYFI

96-104
FIASFRLFA
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scores ranging from0.679 to 0.945. Amino acid residues, the
number of residues, sequence location as well as their
scores have been listed in Tables 5. The graphical represen-
tation of the discontinuous epitopes has been displayed in
Figure 4.

3.4.5. Establishing the stability of the initial structures
A vaccine can interact with different receptors of the
immune system. We have docked designed final constructs
(NOM) with TLR4 and HLA-A�11:01 receptors. The interaction
between these receptors and NOM recombinant protein

Figure 3. (a-c) Prediction and validation of tertiary structure of the NOM recombinant protein using (a) Prediction of the tertiary structure of the NOM recombinant
protein, (b) ProSA web, (c) Ramachandran plot.

Figure 2. The schematic diagram of the vaccine candidate construct consists of N, ORF3a and M proteins epitopes of the COVID-19 linked together with
AAA linkers.
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induce different immune responses. To achieve a stable and
relaxed state of the NOM recombinant protein and the
immune receptors, a MD simulation of 100 ns was performed

for each structure. These simulations ensure that the struc-
tures are stable enough to be used for protein-protein
molecular docking. After 100 ns of the production run, as it

Table 3: Predicted epitopes of N, ORF3a and M proteins via Bepipred and Kolaskar & Tongaonkar antigenicity.

Antigen Server Amino acid Position Sequence

Nucleocapsid protein Bepipred 1-51 MSDNGPQNQRNAPRITFGGPSDSTGSNQNGERSGARSKQRRPQGLPNNTAS
(QIC53221.1) 58-85 QHGKEDLKFPRGQGVPINTNSSPDDQIG

93-104 RIRGGDGKMKDL
306-310 QFAPS
323-321 EVTPSGTWL
338-347 KLDDKDPNFK
361-390 KTFPPTEPKKDKKKKADETQALPQRQKKQQ

Kolaskar & Tongaonkar 52-59 WFTALTQH
69-75 GQGVPIN
83-89 QIGYYRR
299-315 KHWPQIAQFAPSASAFF
333-339 YTGAIKL
347-363 KDQVILLNKHIDAYKTF

ORF3a Bepipred 17-28 QGEIKDATPSDF
(QIC53205.1) 61-71 KIITLKKRWQL

213-214 QL
216-225 STQLSTDTGV

Kolaskar & Tongaonkar 44-58 GWLIVGVALLAVFQS
74-100 SKGVHFVCNLLLLFVTVYSHLLLVAAG
212-217 YQLYST

Membrane protein (QIC53207.1) Bepipred 5-20 NGTITVEELKKLLEQW
40-41 AN
132-137 PLLESE
180-191 KLGASQRVAGDS

Kolaskar & Tongaonkar 29-38 LTWICLLQFA
46-71 LYIIKLIFLWLLWPVTLACFVLAAVY
83-91 AMACLVGLM
93-101 LSYFIASFR

Figure 4. Three-dimensional representation of discontinuous epitopes of the NOM designed protein. The epitopes are represented by a yellow surface, and the
bulk of the polyprotein is represented in grey sticks.

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 9



is shown in Figure 5, the RMSD (Root Mean Square Distance)
values of the monomers show that the backbone structure
of TLR4 (PDB ID: 2Z62) is very rigid and stable. The structure
of the NOM recombinant protein also reached stability after
about 25 ns after a considerable structural change. The back-
bone structure of the HLA-A�11:01 (PDB ID: 5WJL), however,
showed big spikes in the RMSD values but all three struc-
tures were visually inspected and were considered stable
enough for the next step of the project.

3.4.6. Protein-protein molecular docking
To find the best orientation for optimal interaction of the
NOM protein with the immune receptors we decided to use
protein-protein molecular docking. We used PatchDock web-
server which concentrates on recognizing and matching

patterns of the surfaces of the proteins to put them in the
best possible positions. Afterward, the top 10 best solutions
were subjected to the Firedock webserver to refine the
docked structures. The FireDock algorithms refine the docked
complexes by side-chain rearrangement and soft rigid-body
optimization. The ranking of the docked complexes is based
on short-range, long-range, attractive and repulsive inter-
action energies between the residues of the two proteins,
which are all summed up in the global energy or the binding
energy of the complexes. We considered global energy as
the main criterion for choosing the best complexes and
chose the two top-scored solutions with the best global
energy. As it is shown in Table 6, the solution numbers 5
and 6 from the NOM-TLR4 complex and the solution num-
bers 2 and 3, from NOM-HLA-A�11:01 complex, were chosen
for further calculations. The total energy plots of the

Figure 5. The RMSD values of the simulated monomer forms of the proteins throughput the 100 ns of production runs.

Table 5: Conformational B-cell epitopes from vaccine protein using Ellipro server.

No. Residues Number of residues Score

1 P1, S2, D3, S4, T5, G6, S7, N8, Q9, N10,
G11, E12, S14, G15, A16, R17, S18, K19, Q20, R21, R22

21 0.945

2 K123, L124, D125, D126, K127, D128, P129, N130,
F131, K132, D133, Q134, V135, I136

14 0.819

3 P23, Q24, G25, L26, P27, N28, N29, T30, A31, S32,
W33, F34, T35, A36, L37, T38, Q39, H40, G41, K42, E43, D44, L45

23 0.779

4 I181, I182, T183, L184, K185, K186, R187, W188, Q189,
L190, A191, L192, S193, K194, G195, V196, H197, F198,
V199, C200, N201, L203, F244, I245, Y246, N247, K248,
I249, V250, D251, E252, P253, A254, A255, A256, W257, N258,
L259, V260, I261, G262, F263, L264, F265, L266, T267, W268,
I269, C270, L271, L272, Q273, F274, A275, Y276, A277, N278,
R279, N280, R281, F282, L283, I285, I286, I289, L304, A305,
A306, Y308, R309, I310, N311, W312, I313, T314, G315, G316, I317, I319

79 0.679

Table 4: Five epitope-rich domains were selected

Antigen Position Antigenic determinant

Nucleocapsid protein 20–100 PSDSTGSNQNGERSGARSKQRRPQGLPNNTASWFTALTQHGK
EDLKFPRGQGVPINTNSSPDDQIGYYRRATRRIRGGDGK

300–370 HWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDK
DPNFKDQVILLNKHIDAYKTFPPTEPKK

ORF3a 40–100 SLPFGWLIVGVALLAVFQSASKIITLKKRWQLALSKGVHFVCNLLLLFVTVYSHLLLVAAG
210–240 DYYQLYSTQLSTDTGVEHVTFFIYNKIVDEP

Membrane protein 20–100 WNLVIGFLFLTWICLLQFAYANRNRFLYIIKLIFLWLLWPVTLA
CFVLAAVYRINWITGGIAIAMACLVGLMWLSYFIASF
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Table 6. The rankings of the solution of the complexes of NOM protein and the immune receptors sorted by global energy (kJ/mol).

Complex No of Solution glob energy aVdW rVdW aElec rElec laElec lrElec

CoVir NOM-TLR4 6 �70.72 �35.8 15.25 �59.29 32.2 �9.04 7.84
CoVir NOM-TLR4 5 �36.56 �38.35 23.35 �35.83 0 �8.39 8.75
CoVir NOM-TLR4 7 �36.39 �24.48 25.24 0 0 0 0
CoVir NOM-TLR4 9 �36.21 �35.91 16.81 �16.15 12.49 �16.07 8.56
CoVir NOM-TLR4 4 �34.54 �20.58 9.45 �11.25 0 �5.55 0
CoVir NOM-TLR4 3 �21.92 �34.54 8.21 �25.98 58.08 �29.15 12.41
CoVir NOM-TLR4 2 �19.49 �23.45 11.3 �82.71 81.52 �17.3 0
CoVir NOM-TLR4 8 �18.15 �17.09 6.82 0 0 0 0
CoVir NOM-TLR4 10 �6.55 �17.77 6.58 �7.49 5.9 �8.21 7.88
CoVir NOM-TLR4 1 26.74 �3.48 49.43 0 0 �2.35 3.58
CoVir NOM-HLA-A�11:01 2 �26.26 �30.64 19.51 �26.6 52.43 �24.6 8.53
CoVir NOM-HLA-A�11:01 3 �21.9 �19.09 7.4 �47.3 14.42 �39.27 20.53
CoVir NOM-HLA-A�11:01 1 �5.38 �5.26 0.43 0 0 �5.89 3.65
CoVir NOM-HLA-A�11:01 8 �0.97 �8.76 3.27 0 0 0 0
CoVir NOM-HLA-A�11:01 5 0.15 �25.97 7.15 �37.47 90.84 �26.96 28.97
CoVir NOM-HLA-A�11:01 6 1.52 �0.8 0.61 0 0 0 0
CoVir NOM-HLA-A�11:01 9 1.74 �28.7 15.11 �90.47 136.21 �32.16 26.54
CoVir NOM-HLA-A�11:01 4 10.29 �10.6 22.49 �40.45 11.12 �24.32 24.47
CoVir NOM-HLA-A�11:01 7 18.39 �21.1 10.69 �35.18 99.31 �30.65 40.48
CoVir NOM-HLA-A�11:01 10 1498.09 �34.31 2561.4 �73.6 10.46 �7.59 18.87

Figure 7. The RMSD values of each protein in the simulated complexes throughout the 100 ns of production runs.

Figure 6. The total energy plots of the simulations.
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simulations are shown in Figure 6. The results showed a
strong interaction between designed protein amino acids
and receptors. The interactions between the binding

receptors and the docked NOM protein were visualized using
the UCSF Chimera program. Residues of HLA-A�1101(GLU53,
ASN174, GLY56, ASN174, GLU53, PRO57) participated in the

Table 7. The Van der Waals, Electrostatic, Polar solvation, SASA and Binding Energy of protein complexes, kJ/mol, calculated by MMPBSA method.

Complex Van der Waals Electrostatic Polar solvation SASA Binding Energy

CoVir NOM-HLA-A�11:01, sol no 2 �556 þ/- 8 �2991.1 þ/- 28.5 1354.4 þ/- 20.5 �79.46 þ/- 1.2 �2267.7 þ/- 6.5
CoVir NOM-HLA-A�11:01, sol no 3 �381.9 þ/- 8.7 �2705.2 þ/- 11.5 729.4 þ/- 10.9 �57.1 þ/- 1 �2423.3 þ/- 24.9
CoVir NOM-TLR4, sol no 5 �503 þ/- 5.7 �1598.9 þ/- 10.8 1202 þ/- 6.1 �75.4 þ/- 0.3 �978.4 þ/- 7.6
CoVir NOM-TLR4, sol no 6 �407.6 þ/- 5.9 �1406.8 þ/- 23.4 1009.3 þ/- 12.3 �64.8 þ/- 0.6 �865.7 þ/- 10.6

Figure 8. The RMSF values of each protein in the simulated complexes compared to the simulated monomer forms of the proteins throughout the 100 ns of pro-
duction runs. a, The comparison of the RMSF values of NOM recombinant protein in the complexes with the monomer form. b, The comparison of the RMSF values
of HLA-A�11:01 in the complexes with the simulated monomer form. c, The comparison of the RMSF values of TLR4 in the complexes with the simulated mono-
mer form.
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interaction with ARG49, SER97, GLN91, MET102, ARG49 and
GLN91 residues of the candidate vaccine. Also, nine residues
of TLR4 (TLR4 LYS123, ILE319, THR66, SER90, LYS124, LYS46,
HIS85, LYS123) participated in the interaction with SER45,
GLU199, GLN91, ALA84, MET328, GLN65, SER90, GLU68 residues
of the designed candidate vaccine.

3.4.7. Molecular dynamics simulation of top
scored solutions

After the protein-protein molecular docking, 4 solutions were
chosen for MD simulation, solution numbers 2 and 3 from
NOM protein-HLA-A�11:01 complex and solution numbers 5
and 6 from NOM protein-TLR4 complex. Each was simulated
for 100 ns. To examine their stability throughout the simula-
tions period, the RMSD values of each protein was analyzed.
As it is shown in Figure 7, each protein has different RMSD
values and in some of them, the backbone atoms have con-
siderable movements during the simulations. The reason is
that the interactions can get optimized and rearranged by
introducing water molecules and physiological conditions.
The RMSD values of TLR4 in NOM protein-TLR4 complexes
and the values of HLA-A�11:01 in NOM protein-HLA-A�11:01
complexes are very stable and the average values do not

reach very high values. However, the RMSD values of the
NOM protein in every complex reach high values which
means that the structure of the vaccine has more move-
ments to refine the interactions with the immune receptors.
However, the interactions between the NOM recombinant
protein and the immune receptors are quite strong and
MMPBSA binding energy calculations exhibit great binding
energies. As it is shown in Table 7, the Van der Waals and
electrostatic energies of the complexes are strong enough to
keep the two proteins in contact with each other. Moreover,
the deviation of each value is very small which means that
the interactions are very stable and consistent throughout
the simulations. In another word, the higher scale of RMSD
values with consistent binding energies only show that the
structure of the NOM protein is well optimized for interact-
ing with the immune receptors.

In addition to the analysis described above, to analyze the
fluctuations of the backbone atoms of structures of the pro-
teins, we decided to perform RMSF (Root Mean Square
Fluctuation) analysis. In this analysis, the average value of fluc-
tuation of each residue during the simulation is plotted, Figure
8. As it is shown in Figure 8a, the RMSF values of NOM recom-
binant protein in five simulations indicate that the fluctuation

Figure 9. The graphical illustration of the monomer forms and the complex forms of the NOM recombinant protein and the HLA-A�11:01 and TLR4
immune receptors.
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of the monomer form of the vaccine in many regions is consid-
erably more than the complex forms. This is a direct indication
that the NOM recombinant protein is much more stable when
it is in complex with the two immune receptors. Furthermore,
the RMSF values of the NOM recombinant protein in complex
with HLA-A�11:01 are lower compared with that of NOM
recombinant protein in complex with TLR4. Also, with the evi-
dence that the binding energies are also lower, we can con-
clude that NOM recombinant protein can bind to the HLA-
A�11:01 better than the other immune receptor.

In Figure 8b and Figure 8c, the RMSF values of the mono-
mer forms of the immune receptors show lower values com-
pared to the complex forms. This behavior is exactly the
opposite of the NOM designed protein. This can be an indica-
tion that the structures are very stable in their natural function
and their structures considerably change when they get into
contact with the designed NOM protein. Furthermore, the
structural illustration of the monomer forms and also the com-
plex forms of the vaccine and the immune receptors, Figure 9,
shows that the vaccine can fill the cavities and bind tightly to
them, as it was proved by the binding energies.

4. Conclusion

COVID-19 pandemic is much more than a health crisis. It leads
to a political, social and economic crisis in the world. The
development of a safe and effective vaccine could reduce the
rate of this infection. Immunoinformatics methods are valu-
able in reducing time and cost in vaccine design and other
fields of life sciences. We have predicted and validated NOM
recombinant protein against HLA-A�11:01 and TLR4 receptors.
Our evaluation was based on vaccine candidate structural
analysis and molecular docking and MD simulations study.
The NOM-TLR4 and NOM-HLA-A�11:01 complexes were very
stable in their natural function with strong molecular interac-
tions in around 100 ns. Higher binding energy even after the
MD simulation of 100 ns confirmed the stability and specificity
NOM-TLR4 and NOM- HLA-A�11:01 interaction. Our vaccine
candidate can stimulate both cellular and humoral immunity,
given that B and T-cell epitopes have been selected in the
final construct. Taken all together, according to physicochemi-
cal evaluations as well as structural and immunological analy-
ses, NOM recombinant protein could be considered as a
possible vaccine candidate against COVID-19.
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