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Abstract

Cytotoxic T lymphocytes (CTLs) are important immune effectors against intra-cellular pathogens. These cells search for
infected cells and kill them. Recently developed experimental methods in combination with mathematical models allow for
the quantification of the efficacy of CTL killing in vivo and, hence, for the estimation of parameters that characterize the
effect of CTL killing on the target cell populations. It is not known how these population-level parameters relate to single-
cell properties. To address this question, we developed a three-dimensional cellular automaton model of the region of the
spleen where CTL killing takes place. The cellular automaton model describes the movement of different cell populations
and their interactions. Cell movement patterns in our cellular automaton model agree with observations from two-photon
microscopy. We find that, despite the strong spatial nature of the kinetics in our cellular automaton model, the killing of
target cells by CTLs can be described by a term which is linear in the target cell frequency and saturates with respect to the
CTL levels. Further, we find that the parameters describing CTL killing on the population level are most strongly impacted by
the time a CTL needs to kill a target cell. This suggests that the killing of target cells, rather than their localization, is the
limiting step in CTL killing dynamics given reasonable frequencies of CTL. Our analysis identifies additional experimental
directions which are of particular importance to interpret estimates of killing rates and could advance our quantitative
understanding of CTL killing.
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Introduction

Cytotoxic T lymphocytes (CTL) are some of the most important

cells of our immune system. They are particularly important

against viral infections or tumours. They recognize infected cells

by scanning their surfaces for peptide-MHC-I complexes which

present peptide fragments sampled from the cytoplasm. These

complexes can tell the CTL if the cell is infected or not. Once

activated and primed for a specific peptide-MHC-I complex,

CD8+ T cells differentiate into effector CTL, which are able to lyse

infected cells. After an infection is cleared, some specific CTL may

persist as memory cells.

Immunologists are interested in quantifying the efficacy of CTL

in vivo. An appropriate measure of CTL efficacy would allow us to

disentangle quantitative from qualitative aspects of the CTL

response: For example, such a measure should tell us whether a

memory CTL response is less efficacious than an effector CTL

response because there are fewer cells, or because individual

memory CTL do not perform as well as effector cells. A measure

of CTL efficacy represents the first step in predicting if CTL

responses will be able to control an infection, and in quantifying

the selection pressure CTL responses exert on the pathogen

population. This selection pressure may lead to immune escape

where the virus evolves to become mainly undetected by the actual

immune response [1,2]. Rates which determine how fast CTL lyse

infected cells are already estimated for HIV-I in vitro [3] and

indirectly via the selective advantage of escape variants in vivo [4].

The best experimental data for the estimation of the CTL

efficacy in vivo so far originate from the in vivo CTL killing assay

[5,6]. In this assay, cells are prepared to display LCMV-peptides

on their MHC-I molecules. The cells are then transferred into

mice which harbour CTL specific for these LCMV-peptides. It is

known that the transferred cells migrate to the spleen where they

are targeted by CTL. These cells are mostly located either in the

red pulp or in the T cell-zones (perioarteriolar lymphoid sheaths (PALS))

depending on the stage of infection [7]. While effector CTL

preferentially accumulate in the red pulp, memory CTL are mostly

located in the PALS. Some time after the transfer, the levels of

target cells are determined in the spleen. To estimate CTL

efficacy, Regoes et al. [8] and Yates et al. [9] proposed a

mathematical model that takes into account the migration of

target cells into the spleen, and their subsequent killing by CTL.

Fitting this model to in vivo CTL killing data, we obtained a killing

rate constant k, and proposed this constant as a measure for CTL

efficacy. We found differences between killing rate constants of

effector and memory CTL, as well as for immunodominant and -

subdominant epitopes (see Table 2 in [9]).

In these previous studies, we intended to compare the efficacy of

distinct CTL populations whose levels differ. Therefore we

assumed a mass-action killing term to disentangle quantitative

from qualitative aspects of CTL killing. However, the validity of

the mass-action assumption is uncertain. Furthermore, it is unclear

how the killing rate constant in our mathematical model, which

describes CTL killing on the level of the cell populations involved,
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is related to properties of individual CTL. For example, how does

CTL velocity or the time needed to kill a cell influence the

estimate of the killing rate constant?

To address these questions we simulate the dynamic inside the

spleen or PALS, respectively with a three-dimensional cellular

automaton (CA) [10,11]. A CA is an individual-based computer

simulation of a dynamical system on a lattice (in our case a three

dimensional one). This method allows us to identify a more

appropriate mathematical description of CTL killing than the

simple mass-action term. Additionally, by generating in vivo CTL

killing data for different scenarios, we are able to relate the properties

of individual cells to the population dynamics of the system.

We find that there is a parameter regime in which the behaviour

of our CA model of CTL killing in the spleen is consistent with

data obtained by two-photon microscopy [12–15]. Further, we

find that the most appropriate mathematical description of CTL

killing is linear in the target cell levels, and a saturating function of

the CTL levels. However, fitting a mathematical model with such

a saturating killing term does not improve the fit to the original in

vivo CTL killing data consistently.

Studying the influence of single cell properties on our killing rate

estimates we find that one specific experimental detail, which

concerns the fate of CTL-target cell conjugates after splenectomy,

is of particular importance to be able to interpret the population-

level killing rate constants in terms of single cell efficacy.

Nevertheless, given the CTL frequencies observed experimentally,

the killing rate constant is mainly determined by the time a CTL

needs to kill its target, and not the CTL’s velocity.

Results

A spatial model for the T cell-zone of the spleen
The spleen is the secondary lymphoid organ which surveys the

blood for foreign antigen. It consists of red pulp, which is a site of

red blood cell destruction and comprises roughly 80% of the

splenic volume, interspersed with lymphoid regions (white pulp).

While most of the blood will bypass the lymphoid regions and

remain in the direct circulation, around ten percent of the cells will

diffuse through the T cell-zone (PALS) [16]. During this passage

the cells are under constant surveillance by T lymphocytes.

We simulate the population dynamics of the cells in the PALS as a

cellular automaton. A cellular automaton allows us to investigate the

impact of individual cell properties and spatial aspects on the

dynamics. Into our simulation model, we incorporate target cells,

target-cell-specific CTL, splenocytes, and a limited number of large

cells which correspond to dendritic cells or macrophages. In addition,

we include the reticular network (RN), which defines the anatomical

structure of the spleen, as well as some free space (see Fig. 1). For a

detailed description of the automaton see Materials and Methods.

We first simulate the specific CTL without target cell interaction to

characterize their behaviour with regard to experimental observations.

The simulated CTL perform a random walk (see Fig. 2B, Video S1 in

the Supporting Material) consistent with observations made in lymph

nodes and the spleen based on in vivo imaging techniques [17–21].

We are able to manipulate the motility of our simulated CTL

through the rules of movement. We adjusted these rules of

movement such that they display a mean velocity, velocity

fluctuations, and a motility coefficient largly consistent with

observations in vivo.

Miller et al. [14,21] measure an average velocity for T cells of

about 10:2{12:7 mm=min in lymph nodes. It is thought that the

velocity is in the range of 10{15 mm=min [22]. For the spleen, T

cell velocities are observed which are slightly slower, even

correcting for differences in the observation method [20], but

comparable to those found in lymph nodes [19]. We mainly use a

parametrization where the simulated CTL migrate with an

average velocity of �vvh&10:8 mm=min.

In Fig. 2A we show the velocity fluctuations of six simulated CTL

for this parametrization chosen at random for a time period of

100 min. The amplitude of the velocity fluctuation of the simulated

CTL agrees with experimental observations (e.g. [12]). However,

the velocity fluctuations are less rugged than those observed in

experiments (compare to Fig. 5 in [12]). This is due to the

discreteness of space in our cellular automaton, i.e. cells can not be

arbitrarily displaced but have to occupy a node in the lattice.

As stated earlier, the simulated CTL perform a random walk.

This can be seen from a projection of their normalized tracks

(Fig. 2B) as well as from the relation between their mean

displacement and the square root of time (Fig. 2C). The

discreteness of space also affects the random walk characteristics

of simulated CTL. As CTL have to ‘‘move’’ on given edges, there

is only a discrete number of turning angles h available. As cell

movement involves the restructuring of the actin-filament network

in the cytoskeleton [23], cells will prefer small turning angles.

Therefore, in the simulation, they are programmed to preferen-

tially choose h[f00,450g per move. In the absence of killing and

given a mean velocity of �vvh~10:8 mm=min, the simulated CTL

show a mean turning angle of �hh~200 where the turning angle was

measured every minute. This slightly increases if we include killing

activity (tD~15min,�hh~260). The distribution of h (see Fig. S1)

differs from those observed experimentally [13]. This is provoked

by the fact that the motility of simulated CTL is only affected by

environmental conditions. CTL do not change their moving

direction c as frequently which leads to a low mean turning angle.

A second variable to characterize cell movement is the motility

coefficient, M. Given standard parametrization, the motility

coefficient of simulated CTL is approximately M&115 mm2=min
(see Fig. 2C, blue line), which is slightly above the range of

M~50{100 mm2=min observed experimentally for T cell move-

ment [12–15,22]. For other parametrizations, which we consider in

this paper, the motility coefficient is in the range

M&30{200 mm2=min.

The mean velocity as well as the motility of CTL decreases in

the presence of CTL-target cell interaction (Fig. 3) which is also

Author Summary

The immune response mediated by cytotoxic T lympho-
cytes (CTLs), which kill infected cells, is thought to be
essential to control viral infections. Experiments offer data
which allow one to address the efficacy of this cell
population in vivo and to estimate characterizing param-
eters. However, it is unclear which mathematical descrip-
tion reflects the experimental situation best and leads to
reliable parameter estimates that quantify CTL efficacy. We
simulate the spatial interaction of CTLs and infected cells
in a 3-dimensional computer model to examine different
mathematical descriptions of the experimental situation,
independently of experimental data. Thereby we find an
appropriate mathematical term to describe the killing
process. Estimates obtained so far describe CTL efficacy on
a population level. By varying the individual properties of
simulated CTLs, such as the velocity, we find that the time
a CTL needs to kill an infected cell is probably the key
factor limiting CTL killing efficacy. Our analysis identifies
additional experimental directions which could advance
our quantitative understanding of CTL killing for different
diseases.
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Figure 1. Snapshots of the simulated 3D cellular automaton. (A) CA at the beginning showing CTL (blue) and reticular network (grey). Other
cell types are not shown. (B) CA in the middle of a simulation showing target cells (red) and CTL (blue). Target cells in contact to a CTL are labeled in
orange, bound CTL in lightblue.
doi:10.1371/journal.pcbi.1000466.g001
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observed experimentally in the spleen [19]. For CTL-target cell

interaction, target cells will appear in the cellular automaton with

a certain rate and are killed after encountered by CTL (see Material

and Methods for details). In our simulations, the mean CTL velocity

decreases exponentially in the killing duration tD with a rate

constant of approximately 20.012 min21, given a fixed CTL

concentration. In Fig. 3B we show the change in the mean

displacement per square root of time for different values of tD in

comparison to the mean displacement of simulated CTL in the

absence of killing. In all cases, CTL velocity was fixed to

�vvh~10:8 mm=min{1. Given a killing duration of tD~15min, the

motility coefficient M decreases from M&115 mm2=min to

M&90 mm2=min. The motility coefficient includes only 15% of

the value measured in the absence of killing, if we assume a killing

duration of tD~60min. The decrease of M is linear in tD.

Is the mass-action killing term appropriate?
In previous studies [8,9], it is assumed that the rate at which target

cells are killed depends linearly on the frequency of the CTL, C, and

the frequency of the targets, T , in the spleen. Such a dependence is

commonly referred to as mass-action hypothesis. However, the

mass-action assumption may be inaccurate if the system is not well-

mixed and the dynamics is spatially confined. In addition, the fact

that CTL cannot seek for target cells while bound in a conjugate may

lead to deviations from a mass-action killing term.

To address the question whether the mass-action hypothesis

appropriately describes the killing dynamics given spatial confine-

ments, we initialized the cellular automaton with different

combinations of C and the starting target cell frequency

T0 : ~T(0). The CTL frequency C ranges from 0–20% of

simulated cells, which covers the frequencies observed for dominant

and subdominant effector and memory responses (Tab. 1). The

average velocity of CTL, �vvh, was fixed and the killing duration was

defined by tD~15min, in agreement to experimental observations

[24]. The loss of target cell frequency, DT , was calculated by

DT~T(tD){T(tDzDt) with Dt~1min ð1Þ

Fig. 4A shows linearity ofDT in T0 for different levels of C. In contrast,

DT is not linear in C (Fig. 4B), but saturates for high levels of C.

Figure 2. Velocity and motility characteristics of simulated CTL. (A) Velocity fluctuations of six simulated CTL given an average velocity of
�vvh~10:8 mm=min over 100 minutes in the absence of killing. (B) Projection of the tracks of 12 CTL of the same parametrization chosen at random
onto the xy- and the xz-planes aligned such that all cells start at the origin. Tracks are plotted for a time period of 60 min. (C) Mean displacement
against square root of time for different values of �vvh (M&61 mm2=min (red), M&115 mm2=min (blue), M&200 mm2=min (green)). The blue line
corresponds to the parametrization used in (A) and (B).
doi:10.1371/journal.pcbi.1000466.g002
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As an improvement over the mass-action killing term, we

therefore propose the following relationship between DT and C:

DT~kmax
C

CzC1=2

T ð2Þ

Hereby, kmax denotes the maximum killing rate at high levels of C,

and C1=2 denotes the CTL frequency at which the killing rate is at

half of the maximum. Such terms have been suggested previously

[25–27]. The saturation in the CTL frequency was observed

independent of the density of the reticular network (varying the

volume occupied by reticular network from 0–50% of the

simulated space, data not shown). Fitting Eq. (2) to the data

generated in our simulations yield kmax~1:2022min{1 and

C1=2~0:0325. The estimate of C1=2 is slightly above the frequency

of a subdominant effector or memory CTL response (Tab. 1, see

CSP or CCD8, respectively for GP276). This estimate of C1=2

suggests that — if the parametrization of our cellular automaton

agrees with the situation in vivo — the saturating term Eq. (2)

should be preferred over a mass-action killing term for in vivo

killing data with CTL frequencies Cw0:03.

The result that a killing term which saturates in the CTL

frequency is more appropriate stays valid if we include multiple

time points at which we calculate the loss in target cell frequency

DT . By this, we additionally include the search process and relate

to the fact that CTL which are bound in conjugates are prevented

from hunting other target cells.

New estimates of CTL killing rate constants
To account for the non-linear relationship between the loss of

target cells and CTL frequencies, we substituted the mass-action

killing term in our basic model (see Materials and Methods) by one

that saturates in C. In this case our equation is extended as follows:

T(t)~
sN0

Ns

e{(szd)t{e
{kmax

C
CzC1=2

t

kmax
C

CzC1=2

{(szd)

0
BB@

1
CCA ð3Þ

Figure 3. Changes in CTL velocity and motility due to killing activity. (A) Change in mean CTL velocity due to killing activity with different
values of tD for three different starting velocities �vvh (21:1 mm=min (diamond), 10:8 mm=min (square), 3:65 mm=min (circle)). (B) Change in mean
displacement of simulated CTL with killing activity against the square root of time for different values of tD (basic value with no killing (black),
tD~5min (red), 10 min (blue), 15 min (purple), 30 min (green), 60 min (orange)). The CTL hunting velocity is fixed with �vvh~10:8 mm=min.
doi:10.1371/journal.pcbi.1000466.g003

Table 1. Estimates of killing rates based on a model with a saturating killing term for in vivo CTL killing data.

Epitope kmax min-1
� �

C1=2 p-value CSP CCD8

Effector NP396 0.0574 (0.049,0.065) 0.0 (0.0,0.005) 0.0041 0.062 (0.054,0.070) 0.119 (0.106,0.132)

GP276 0.0244 (0.008,0.041) 0.0132 (0.0,0.034) 0.0761 0.021 (0.019,0.024) 0.041 (0.037,0.045)

Memory NP396 0.0133 (0.0,0.027) 0.0023 (0.0,0.011) 0.0023 0.005 (0.004,0.007) 0.032 (0.024,0.041)

GP276 0.0079 (0.0,0.059) 0.0030 (0.0,0.044) 0.0754 0.004 (0.002,0.005) 0.020 (0.016,0.025)

The parameters kmax and C1=2 are estimated based on the in vivo CTL killing data from Barber et al. [5]. The numbers in brackets represent 95%-confidence intervals
based on 1000 bootstrap samples. The p{values correspond to an F -test which compares these estimates with the results of fitting the data to a model with a mass-
action assumption in the killing term. CSP and CCD8 correspond to the mean frequency of epitope-specific CTL measured in the spleen and among CD8+ T cells in the
spleen, respectively together with their 95%-confidence intervals.
doi:10.1371/journal.pcbi.1000466.t001
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Eq. (3) was fitted to the in vivo CTL killing data from Barber et al.

[5] as described previously [8].

We obtain a reduction in the residual sum of squares compared

to the previous model with a mass-action killing term, Eq. (8). This

reduction is significant (as assessed by an F -test) for the effector

and memory CTL response against the NP396-LCMV epitope

given a significance-level of a~0:05 (see Tab. 1). However, even

though a saturating killing term does not significantly improve the

fit of our killing model to all the data, our simulations strongly

suggest that a saturating term is more appropriate to describe the

killing dynamics.

We therefore use a saturating term in the following analyses.

Estimates for kmax and C1=2 as well as p-values for the F -test are

given in Table 1.

Influence of single cell behaviour
The saturating term kmaxC=(CzC1=2) and the term kC

respectively, mathematically describe the reduction in the target

cell population due to their interaction with the CTL population.

How does this population-level description of the killing dynamics

relate to properties at the individual-cell level, such as the velocity

of CTL or the time it takes to kill a target cell?

We find that one specific experimental detail is of particular

importance for the interpretation of population-level parameters in

terms of the single cell properties. This experimental detail concerns

the fate of target cells in conjugates after the splenectomy. It is

unknown if conjugates are simply broken up by the preparation of

the spleen for the cell sorter, or if, during this preparation, killing of

target cells that are bound to CTL continues. In any case,

conjugates are not observed when the splenocytes are analysed by

fluorescent-activated cell sorting (FACS).

Influence of CTL velocity
We perform simulations with varying CTL velocities and killing

durations tD. The CTL velocity is indirectly manipulated via the

rules of cell movement in our cellular automaton.

We generate data with the same structure as Barber et al. [5]

(see Materials and Methods). We choose a frequency of target-

specific CTL with C~0:02 which is orientated at the CTL

frequencies observed ([5] and Tab. 1). While the population of

target-specific CTL is kept constant according to the assump-

tions made in the analysis [8,9], target cells as well as control cells

appear in the cellular automaton with a certain rate out of a

restricted pool of cells (see Fig. 5 and Video S2 for a time course of

one simulation). Each simulation represents the dynamics of

CTL killing in a single mouse followed over 300 minutes. We

perform 36 simulations for each combination of CTL velocity

and killing duration. A bootstrap analysis with 1000 replicates is

performed by sampling the number of free and bound target cells,

control cells and CTL in 6 randomly chosen ‘‘mice’’ per

indicated time-point (at either 15, 30, 60, 90, 120 or 240 minutes)

per replicate.

We consider two measures of CTL velocity: (i) �vvh, the mean

‘‘hunting velocity’’ based only on CTL that are not bound to

target cells, and (ii) �vvc, the mean velocity of all CTL regardless of

whether they are bound to target cells or not.

In Fig. 6A, we plot the killing parameter kmax versus the hunting

velocity �vvh. Hereby, we assume that target cells which are bound to

CTL remain alive and are counted by the cell sorter. Estimates of

Spearman’s rank correlation coefficient (r~0:23) show a weak

correlation between �vvh and kmax (see Tab. 2). For the mean

velocity �vvc and kmax, we observe a correlation coefficient of

r~0:66 (see Fig. 6B). The finding of a weak influence of the CTL

velocity on kmax is further corroborated if we analyze the lifespan,

s, of a single target after it appears in the cellular automaton. For a

killing duration of tD~15min, the average lifespan �ss&17:5min,

and 80% of all target cells are killed 20 min after their appearance

regardless of the CTL velocity. Similar observations are made for

the other levels of tD. Most target cells are recognized immediately

after their appearance in the cellular automaton.

Assuming that all target cells bound to CTL are killed before the

FACS analysis leads to slightly different conclusions regarding the

Figure 4. Change in the loss of target cell frequency, DT . The change in the loss of target cell frequency for different initial levels of target
cells, T0 , or CTL, C. DT is linear in T (shown in A) and not linear in C (shown in B). Added lines represent the fit of DT~kmaxCT=(CzC1=2) (dashed
line).
doi:10.1371/journal.pcbi.1000466.g004
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influence of CTL velocity on the parameter estimates that describe

the killing dynamics. We find a stronger correlation between kmax

and �vvh (r~0:39), and �vvc (r~0:82) (see Fig. 6D–E).

The correlation between the CTL velocities and C1=2 are

analogous but inverse to those observed in kmax.

Influence of killing duration tD. The second property of a

CTL, which might influence the estimate of our killing parameters

kmax and C1=2, is the time a single CTL needs to kill a target cell,

tD. This time includes the establishing of a contact between the

CTL and the target cell, the actual killing process and the time

required for the detachment of the CTL. Although the conjugate

formation and lysis of the target cell can happen very rapidly

within 10–25 min, CTL might remain in contact to dead target

cells for even longer periods [24,28,29]. We choose five different

values of tD in the range of 5–60 min.

In Fig. 6C, we plot estimates of kmax and tD, again based on the

assumption that free and bound target cells are counted in the

FACS analysis. This correlation is the strongest of all the variables:

r~{0:97. If we assume that only free target cells are counted, we

find a slightly lower, but still high, correlation coefficient of

r~{0:87 (Fig. 6F). During a simulated time period of 300 min, a

CTL kills on average 2–7 target cells depending on the velocity

and the killing duration. Thereby, the occurence of multiple

killing, where one CTL kills several target cells simultaneously, is

rather rare (see Fig. S2). Therefore, we think that this mechanism

does not affect our conclusions.

For all the analyses above, we simulate data that reflects the

dataset of Barber et al. [5] in terms of number of mice and time-

points sampled. To generate such data, we produce detailed time-

series of target cells and control cells in each simulation, and then

sample only at one time-point. If we use the entire time-series we

obtain from a single simulation to estimate kmax and C1=2, we

Figure 5. Cell density dynamics for one simulation. The
development of the number of target and control cells is shown for a
parametrization with �vvh~10:62 mm=min and tD~15min.
doi:10.1371/journal.pcbi.1000466.g005

Figure 6. Plots of vh, vc and tD against the estimates of kmax. The estimation was based on either counting free and bound target cells (shown
in A–C) or only free target cells (shown in D–F). The mean, the minimum and the maximum over 1000 estimates are shown (neglecting outliers) as the
95% confidence intervals are, in most cases, too small to be plotted. Spearman’s rank correlation coefficient, r, is given. The color coding corresponds
to the different levels of tD (5 min (orange), 10 min (green), 15 min (black), 30 min (blue), 60 min (red)). In each group of tD in C and F, the level of
velocity is increasing from left to right. Please note that in A–C, the y-axis is split and scaling differs for graphical clarity.
doi:10.1371/journal.pcbi.1000466.g006
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eliminate the variation in estimates across different simulation

runs. With this approach, our conclusions are qualitatively

equivalent to those above.

The effect of varying CTL velocities and killing durations on kmax

is rather weak in terms of absolute values. The difference which is

observed between the estimates of kmax based on simulated and

experimental data (Fig. 6 and Tab. 1) might be explained by the

varying CTL levels between mice in the experiment which affects

the estimation of C1=2 and thus kmax. We performed the same

analysis with a mass-action term in the killing using either Eq. (8) or

Eq. (9) to estimate the per-capita killing rate k. The estimates of k
are in the same order of magnitude as in the experiment if we

assume that the killing in conjugates does not continue after

splenectomy. Given realistic CTL velocities and killing durations

tDƒ15min, we obtain estimates for k which are close to those

estimated based on experimental data [8,9]. The pattern for k
against �vvh,�vvc and tD stays the same as for kmax (see Fig. 7 and Fig.

S3). The influence of the velocity on the estimates increases given

very low killing durations but depends again on the way the target

cells are counted. However, the difference in terms of absolute

values is more apparent in k than in kmax.

These general results are not affected by several changes in our

assumptions to simulate CTL-target cell interaction. We assumed that

a CTL will always recognize a neighbouring target cell and that both

cells will immediately stop movement after forming a conjugate. The

main influence of the killing duration tD on the killing rate estimates is

still observed if we decrease the probability of a CTL to recognize a

target cell to 0.5 or allow conjugates to continue migration for a while

as observed experimentally [24] (data not shown). This observation is

also robust to changes in the density of the reticular network varying

the density up to 50% of the simulated volume.

Discussion

Quantifying CTL efficacy based on data of an in vivo CTL

killing assay requires models which capture the anatomical

complexities inside the mice and reflect experimental conditions.

Previously, we proposed a population-level model [8,9], in which

the killing dynamics was seperated into migration to and killing in

the spleen. However, uncertainties remained concerning the most

appropriate mathematical description of the killing term and how

to interpret the population-level killing parameter. To address

these questions, we constructed a 3-dimensional cellular autom-

aton model of a T cell zone in the spleen.

Unlike previous studies [12,30], we do not model the

biophysical processes involved in cell movement. Rather, we

impose simple rules of directed movement and position swapping.

We find that our cellular automaton model can recapitulate

experimentally observed CTL motility. This has recently been

established in a more general context by Bogle and Dunbar [31].

We find that the most appropriate description of the killing term

is linear in the frequency of target cells and saturates in the

frequency of CTL. This saturation is observed irrespective of the

various densities of the reticular network we considered (0%–

50%). This is both expected and surprising: Expected, because it is

well established that killing terms will saturate in CTL frequency

[25,32] as CTL, while bound to a target cell, are prevented from

hunting and killing others. Surprising, because our cellular

automaton is spatially structured, and we expected this spatial

structure, which was not considered in previous work [25,32], to

percolate into the most appropriate killing term. Additionally, the

conditions, under which the saturating term is theoretically

derived, namely that there conjugates are in a quasi steady state,

are not fulfilled in our simulations.

The main aim of our study was to identify the most appropriate

killing term, rather than to obtain new estimates for killing.

Nevertheless, we re-analyzed the data by Barber et al. [5] using a

model with a saturating killing term. Using a saturating killing

term improves the fit significantly for the immunodominant

NP396-epitopes in the effector and memory response. This

suggests that the CTL levels specific for NP396 are in the

saturating regime. The improvement of the fit in the case of the

effector NP396 response is consistent with the critical CTL

frequency C&0:03 which we derived from our simulations.

(Above this critical CTL frequency the killing rate is saturated.)

The improvement of the fit in the case of the memory NP396

response is also consistent with the critical CTL frequency if we

factor in the finding that memory CTL are mostly located in and

around the T cell zones [7]. That means that, in the case of

memory responses, it is more appropriate to compare the critical

CTL frequency with the proportion of epitope-specific CTL in the

pool of CD8+ T cells (CCD8 in Tab. 1), rather than the entire

spleen (CSP in Tab. 1).

The killing term allows us to estimate populational-level

parameters which quantify CTL efficacy. By varying the velocity

of CTL and the time a CTL needs to kill a target cell, we were able

to determine the influence of these single-cell properties on the

population-level killing parameters. We based our analysis on a

CTL frequency of C~0:02 which is in the range of the

frequencies observed experimentally ([5] and Tab. 1). We find

that the population-level parameters are mostly affected by the

killing duration tD. The longer tD, the lower the killing rate

constant kmax or k. The impact of the CTL velocity on the killing

rate constant kmax or k varies depending on our assumptions

regarding the fate of target cells in conjugates after the

splenectomy. The impact of CTL velocity is weak if we assume

that target cells in conjugates are still alive and counted by the cell

sorter. If we assume that killing in conjugates continues and,

therefore, target cells bound in conjugates are not detected by the

cell sorter, the impact of CTL velocity is stronger. To clearly

Table 2. Correlation between killing rate constants and
properties of simulated CTL.

vh vc tD

(a) original kmax 0.2342 0.6610 20.9714

C1=2 20.2947 20.6986 0.9837

k 0.2571 0.6814 20.9798

revised kmax 0.2267 0.6664 20.9784

C1=2 20.2639 20.6834 0.9823

k 0.4060 0.5888 20.9696

(b) original kmax 0.3916 0.8196 20.8685

C1=2 20.3916 20.8197 0.8685

k 0.4533 0.8379 20.8753

revised kmax 0.6054 0.8711 20.7895

C1=2 20.6135 20.8682 0.7860

k 0.5059 0.8628 20.8688

Spearman’s r rank correlation coefficient for the estimated killing parameter k

or kmax and C1=2 against the CTL hunting velocity �vvh , the average CTL velocity �vvc

and the killing duration tD, respectively. The estimation was either based on
the assumption that targets cells bound in conjugates are counted in the FACS
analysis (a) or that they have been killed and therefore not counted (b).
Estimates were obtained by using either Eq. (8) (original) or Eq. (9) (revised). For
each situation, 1000 data pairs are correlated. (pv2:2e{16 for all coefficients).
doi:10.1371/journal.pcbi.1000466.t002
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separate the relative effects of killing duration and CTL velocity it

is necessary to determine the fate of target cells in conjugates

during the in vivo killing assay.

Yates et al. [9] showed a significant difference between estimates

of the killing rate constant k in effector and memory responses.

Effector CTL are more efficacious than memory CTL indicated

by a higher value of k. Our analysis suggests that the difference

between effector and memory CTL can be explained by a

difference in the time tD which a single CTL needs to kill a target

cell. This hypothesis is in line with the observation that memory

CTL store intermediate or low level of perforin and granzyme in

comparison to effector CTL, which could prolong the killing

process [33]. The difference between the killing rate constants for

NP396- and GP276-specific CTL could be explained by different

binding rates between the T cell receptor of the CTL and the

peptide-MHC complex of the target cells. It is known that the

binding of the T cell receptor specific for NP396 to NP396-MHC

is stronger than that of the T cell receptor specific for GP276 to

GP276-MHC [34]. We find that lower probabilities of recogni-

tion, which correspond to low binding rates, lead to lower

estimates of k in our simulations (see Fig. S4). To test these

hypotheses about the killing process experimentally, one could

combine in vivo CTL killing assays with two-photon microscopy as

it is performed for the analysis of T cell activation [12–15,22,24].

In a recent study, Ganusov and De Boer [35] calculated target

cell half-lives using a mathematical model that did not control for

differences in CTL levels. The reason that these authors neglected

CTL levels was that the exact form of the killing term is unknown.

However, to predict the protection afforded by CD8+ T cell

responses it is necessary to extrapolate the efficacy of a CTL

population of varying size. Further, to decide if effector CTL are

more efficacious than memory CTL, or CTL in acute infections

are more efficacious than CTL in persistent infections, it is

necessary to disentangle quantitative from qualitative aspects.

Therefore, the dependence of the killing rate on the level of CTL

can, in the long run, not be ignored.

The point of the present study was to derive a more appropriate

mathematical description of the killing term from a model that

incorporates more of the spatial complexities of the spleen as

previous population level descriptions. Based on our analysis, we

showed that a killing term which saturates in the CTL frequency

would be more appropriate to describe the experimental situation.

There is no clear answer to the question which of the different

killing rates for LCMV epitopes presented in this study and

published so far [8,9] should be preferred. Much more detail

about the killing process is required to clearly favour one estimate.

Our study is a first step to improve the estimation of per-capita

killing rates based on a population-level and to enhance their

interpretation in terms of single cell properties.

Materials and Methods

The cellular automaton
We use a three-dimensional lattice of nodes and edges to

simulate the T cell zone of the spleen. Recent analysis showed the

suitability of a lattice based approach to simulate T cell movement

Figure 7. Plots of vh, vc and tD against the estimates of k. The estimation was based on either counting free and bound target cells (shown in
A–C) or only free target cells (shown in D–F). The killing rate constant was estimated using the original method.The mean, the minimum and the
maximum over 1000 estimates are shown (neglecting outliers) as the 95% confidence intervals are, in most cases, too small to be plotted. Spearman’s
rank correlation coefficient, r, is given. The color coding corresponds to the different levels of tD (5 min (orange), 10 min (green), 15 min (black),
30 min (blue), 60 min (red)). In each group of tD in C and F, the level of velocity is increasing from left to right.
doi:10.1371/journal.pcbi.1000466.g007
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[31,36]. We define periodic boundary conditions in which a cell

leaving the simulated space on the one side of the lattice will

reappear at the opposite side. Each node of the lattice represents a

cell or a part of a cell. We consider target cells, target-specific CTL

and splenocytes, which occupy a single node. Macrophages and

dendritic cells are larger than CTL and have an average diameter

of 10{16 mm [12,37]. These cells are modelled as occupying four

nodes connected in no regular shape. The shapes are not stable,

we only require that each cell-part has at least one other part of the

cell as its direct neighbour. Some nodes are occupied by reticular

network which does not change position over time and represents

spatial obstacles to moving cells. Lastly, a few nodes are left

unoccupied and define free space.

Each node has 26 neighbours. As cell movement requires a

complex restructuring of the actin cytoskeleton [23], each cell in

our cellular automaton is assumed to have a preferred moving

direction c[f0, . . . ,26g. The direction can change upon encounter

of another CTL, a target cell, or reticular network (see below). A

cell will only have a moving direction of c~0 while it is bound in a

conjugate. The cellular automaton was implemented in the C++
programming language.

Cellular automaton - scaling and initialization
We consider a lattice of 30630630 nodes, which makes 27000

nodes in total. To set the spatial scale of the simulation we assume

that each edge of the lattice has a size of 7 mm, the average

diameter of a T cell [38,39]. The reticular network occupies

<4500 nodes (<17% of the space). To achieve the actual structure

of a network, we seed the lattice at random nodes from which the

network grows until the assigned volume is occupied. As the spleen

is a densely packed organ, free space is set to <1300 nodes (<5%).

We consider only a small number of large cells (macrophages and

dendritic cells) (<24–40 nodes, ,0.1% of space). To determine

the appropriateness of the mass-action term, target cells and

target-specific CTL are randomly positioned in the lattice

according to their assigned frequency. The rest of the lattice is

filled with unspecified splenocytes.

For the analysis of the influence of the CTL velocity and killing

duration on our estimates, we simulate the migration of target cells

into the spleen, in addition to target cell killing in the spleen, in

accordance with the events in an in vivo CTL killing assay [5]. In

these simulations, 450 CTL (<2% of the total number of cells

without reticular network) are randomly positioned in the lattice.

Target and control cells (N0~1000 each) appear in the lattice at a

rate s~0:02min{1 [8]. They can either appear on a free node or

replace an unspecified splenocyte, which, in turn, is simply deleted.

At each time-step of the simulation the position and other properties

of each cell are updated. A time-step corresponds to 30 seconds of real

time. In the simulations in which we increase or decrease the velocity of

CTL, we update them more or less often than the other cells,

respectively. In these simulations, a time-step corresponds to 12–40 s

real time. We initialize our simulations by a burn-in phase of

20 minutes real time before target cells are allowed to migrate into the

spleen, and target cells and CTL are allowed to interact. After the

burn-in phase a simulation is run for 300 min real time.

The 27000 nodes of the cellular automaton comprise approx-

imately 21000 (biological) cells. As the total number of splenocytes

of a mouse spleen is estimated to be around 26107–108 cells

[5,40], the modelled compartment comprises roughly 0.01%–

0.1% of the white pulp of the spleen.

Cell movement
Each cell is able to move. We distinguish between two types of

movement. The first is movement into free space. A cell can move

into a neighbouring unoccupied node if it has the appropriate

moving direction c. If several cells are able to move into the free

spot, one cell is chosen at random. The second type of movement

is defined as neighbour swapping. As we are not interested in

knowing if an unspecified splenocyte changes its place with

another unspecified splenocyte (and to speed up computation),

neighbour swapping is performed by target cells and target-specific

CTL only. Hereby, such a cell will swap its place with a splenocyte

irrespectively of the moving direction c of the splenocyte while two

CTL or target cells only swap their places if they move towards

each other.

Movement of cells consisting of several nodes involves the

restructuring of their shape. Such a cell is simulated to ‘‘diffuse’’

into an unoccupied node by placing its cell-part ( = node) farthest

from the unoccupied node into this node. The node which was

occupied by the moved cell-part becomes free space. The same

procedure is performed for neighbour-swapping with a CTL or

target cell. Position changes become effective after all cells updated

their position.

If a CTL or target cell is not able to move, it randomly chooses

a new moving direction c. This new direction becomes effective in

the next round of updating. The new moving direction is sampled

from the set of the 26 possible directions defined by the next

neighbours according to the following method. The former

moving direction c is translated into cartesian coordinates

c : ~(x,y,z)T , with x,y,z[f{1,0,1g. One coordinate e[fx,y,zg
is chosen at random and updated dependent on the former value.

As cells prefer small changes in their direction, enew~ez1 with

probability q~0:8 and enew~ez2 otherwise if e~{1 (analogous

for e~1). If e~0, enew~e+1 at random. If the cells hit the

reticular network, there is a higher chance to make larger turns in

our simulations, as there is a high chance that a node in a direction

similar to the previous moving direction will also be occupied by

reticular network (q~0:5). By controling the number of changes

and moves per time step, we are able to regulate the velocity of

cells. With these rules, CTL will perform random walks as

described above (see Fig. 2B).

CTL scanning and target killing
Before each update of the lattice, all the target-specific CTL

scan their direct neighbourhood for target cells. If a CTL

encounters a target cell it recognizes it with a certain probability

(the probability of recognition). Upon recognition both cells will

form a conjugate. Unless it is stated otherwise, we assume the

probability of recognition to be one. It is observed, that conjugate-

formation is followed by a period where T cells and bound target

cells migrate together before they finally stop [24,41]. However, it

is not clear how the direction of the conjugate is determined and

what happens if several CTL are bound to one target or vice versa.

We assume that conjugates will immediately stop migrating after

conjugate formation and stay immobile during the time of the

killing, tD. Allowing conjugates to migrate together for a certain

time does not generally affect our results.

We allow multiple killing of CTL which is in agreement with

observations in vitro where CTL kill multiple targets simultaneously

[28]. When the target cell is killed, the CTL chooses a new moving

direction c at random and proceeds.

Quantification of CTL movement and motility
The average velocity of a CTL in a simulation with n CTL is

defined by �vv~1=n
X

i
vi, with vi as the average velocity of CTL

i~1, . . . ,n over time. We distinguish between two different types

of velocities in the presence of killing. The ‘‘hunting’’ velocity �vvh is

calculated based on all CTL that are not bound to target cells. The

Investigating CTL Killing

PLoS Computational Biology | www.ploscompbiol.org 10 August 2009 | Volume 5 | Issue 8 | e1000466



second velocity, �vvc, describes the average velocity over all CTL

regardless of them being bound to target cells or not.

The motility coefficient M measures the temporal displacement

of a cell. If ~xx(t) denotes the position of a cell at time t and

j~dd(t)j~j~xx(t){~xx(0)j its displacement during this time, the motility

coefficient, M, in three dimensions is estimated according to:

M~j~dd(t)j2=6t. For a graphical representation, we plot the mean

displacement against the square root of Dt, which denotes the time

interval on which the calculation of the displacement is based. The

motility coefficient can then be calculated from the slope of the

curve (Fig. 2C) (see e.g. [18]).

The in vivo CTL killing assay
Our research was motivated by the in vivo CTL killing assay

presented in Barber et al. [5]. The experimental details are

comprehensively described in this paper. Briefly, mice are infected

by LCMV to generate CTL responses. Eight days after infection

the mice harbour effector CTL, whereas 30 days after infection or

later the mice harbour memory CTL. A mixture of fluorescently

labelled cells is then injected intravenously into the tail vene of the

mice. This mixture consists of equal proportions of target cells

expressing either of the two LCMV epitopes (NP396 and GP276)

and control cells, which do not express LCMV peptides and are

therefore assumed to be unaffected by the CTL response. The

frequencies of CTL, target and control cells are measured in the

spleen after sacrificing the mice at different time points up to

270 min after the transfer of the target cells.

The basic model - the dynamic of target cells in blood
and spleen

According to previously published mathematical models [8,9],

the data obtained by an in vivo CTL killing assay are analysed in

two steps. First, we consider the migration of target cells into the

spleen after injection. Second, we analyse the killing of target cells

in the spleen. The model assumes that killing only occurs in the

spleen and that the frequency of target-specific CTL, C, is

constant during the short time period of the experiment.

Estimates of migration parameters are based on absolute

numbers of control cells in the blood, N, and in the spleen, U .

The dynamics is described by:

_NN(t)~{(szd)N(t) ð4Þ

_UU(t)~sN(t) ð5Þ

This leads to

U(t)~
sN0

szd
1{e{(szd)t
� �

ð6Þ

where N0 refers to the number of control cells transferred at the

start of the experiment. The parameter s defines the migration

rate of cells into the spleen and d the natural loss rate of cells in the

blood. To estimate the actual killing rate k, we assume that target

and control cells migrate into the spleen following the same rate s.

If T denotes the frequency of target cells in the spleen then the

basic model is given by:

_TT(t)~s
N(t)

Ns

{kCT(t) ð7Þ

The solution of the above differential equation is:

T(t)~
sN0

Ns

e{(szd)t{e{kCt

kC{(szd)

� �
ð8Þ

Here Ns represents the total number of splenocytes.

To fit experimental data to the model, Regoes et al. [8] used Eq.

(6) and Eq. (8). Assuming that most of the experimental error arises

from different number of cells injected into the mice, this method

can be refined [9]. In Yates et al. [9] we used the proportion of

target cells that have been killed, p(t), to estimate the killing rate

constant k. The proportion of target cells that have been killed,

p(t), is given by:

p(t)~1{
target cells

unpulsed cells
~1{

d

kC{d

� �
e{dt{e{kCt

1{e{dt

� �
ð9Þ

Here d : ~szd.

We showed in Yates et al. [9] that Eq. (9) provides a less biased

estimator based on simulated data if there are large variations in

the number of injected cells, N0. As we control N0 in our

simulations, both methods lead to the same results for k given a

mass-action assumption in the killing term (see Fig. 7 and Fig. S3).

However, the latter method seems to be less robust if we assume a

killing term, which is linear in the target cell frequency and

saturates in the CTL frequency. This is surprising as we expect to

reduce variation in the estimates with the revised method [9]. We

do not understand the lower robustness of the fitting method yet.

However, we mainly show results for kmax using Eq. (8) because

the estimates are more robust for our simulated data.

To perform the statistical analysis we used the R language of

statistical computing [42].

Supporting Information

Figure S1 Distribution for the turning angle h. The distribution

is shown in the absence of killing for the CTL velocities

vh = 3.65 mm/min (A) and vh = 10.8 mm/min (B) and in the

presence of killing for vh = 10.8 mm/min and tD = 15 min (C).

Reduced velocity as well as killing activity slightly increases the

mean turning angle.

Found at: doi:10.1371/journal.pcbi.1000466.s001 (0.10 MB TIF)

Figure S2 Investigating the influence of multiple killing on the

simulations. (A) Histogram for the number of target cells killed per

CTL for different CTL velocities. Killing duration of tD = 15 min

is fixed and a CTL frequency of C,0.02 ( = 450 cells) is used.

Each simulation comprises 300 min (vh = 3.73 mm/min (red),

vh = 6.91 mm/min (blue), vh = 10.54 mm/min (black), vh = 13.45 mm/

min (green), vh = 19.45 mm/min (orange)). The average number of

target cells killed per CTL increases with velocity. (B) The same data as

in (A) analyzed for the time a CTL spents to perform multiple killing

relative to the time it is bound in a conjugate.

Found at: doi:10.1371/journal.pcbi.1000466.s002 (0.16 MB TIF)

Figure S3 Plots of vh, vc and tD against the estimates of k. The

estimation was based on either counting free and bound target

cells (shown in A–C) or only free target cells (shown in D–F). The

killing rate constant was estimated using the revised estimation

method based on the proportion of target cells killed. The mean,

the minimum and the maximum over 1000 bootstrap estimates

are shown (neglecting outliers), as the 95% confidence intervals

are, in most cases, too small to be plotted. Spearman’s rank

correlation coefficient, r, is given. The color coding corresponds to

the different levels of tD (5 min (orange), 10 min (green), 15 min

(black), 30 min (blue), 60 min (red)). In each group of tD in C and

F, the level of velocity is increasing from left to right.

Found at: doi:10.1371/journal.pcbi.1000466.s003 (0.16 MB TIF)
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Figure S4 Estimates for k given different probabilities of

recognition of CTL for targets. The killing duration and the

CTL velocity were kept constant (vh,10.8 mm/min, tD = 15 min).

Each dot represents the estimate for one simulation follwed over a

time period of 300 min using the revised estimation method based

on the proportion of target cells killed. Blue squares represent the

mean values per probability of recognition.

Found at: doi:10.1371/journal.pcbi.1000466.s004 (0.11 MB TIF)

Video S1 Movement of simulated CTL in the absence of killing.

A time period of 60 min is shown. The CTL velocity is set to

vh = 10.8 mm/min.

Found at: doi:10.1371/journal.pcbi.1000466.s005 (6.90 MB

MPG)

Video S2 Dynamics for the interaction of CTL (blue) and target

cells (red) for one simulation. Ths simulation was parameterized

with vh = 10.8 mm/min and tD = 15 min. CTL and target cells

bound in conjugates are shown in lightblue and orange,

respectively. The movie shows the first 100 min of a simulated

time period of 300 min. The size of the full movie is too large to be

shown.

Found at: doi:10.1371/journal.pcbi.1000466.s006 (9.43 MB

MPG)
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