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Noised-induced hearing loss (NIHL) is an acquired, progressive neurological damage
caused by exposure to intense noise in various environments including industrial,
military and entertaining settings. The prevalence of NIHL is much higher than other
occupational injuries in industrialized countries. Recent studies have revealed that
genetic factors, together with environmental conditions, also contribute to NIHL. A group
of genes which are linked to the susceptibility of NIHL had been uncovered, involving the
progression of oxidative stress, potassium ion cycling, cilia structure, heat shock protein
70 (HSP70), DNA damage repair, apoptosis, and some other genes. In this review,
we briefly summarized the studies primary in population and some animal researches
concerning the susceptible genes of NIHL, intending to give insights into the further
exploration of NIHL prevention and individual treatment.

Keywords: genes, noised-induced hearing loss, noise prevention, susceptibility, genetic variants

INTRODUCTION

The auditory system helps people to hear sound, understand language, and even distinguish people
or objects by recognizing different sounds. Any organic or functional impairment of the auditory
pathway can lead to hearing impairment. According to a WHO report (Castaneda et al., 2019), more
than 100 million people in East Asia are at risk of disabling hearing loss, leading to lifelong disability,
and deafness has become one of the major problems affecting their life quality. Sensorineural
hearing loss may be caused by pathological changes in the Corti’s organ of the inner ear, the
auditory nerve, or the auditory cortex. It is characterized by the impairment of sound perceptive
and analytic ability, and classified as drug-induced hearing loss, presbycusis, hereditary hearing
loss, noise-induced hearing loss (NIHL) and others. Although cochlear implant technology has
been increasingly advanced in the treatment of hearing loss, its therapeutic effect varies with
different lesion sites, therefore, sensorineural hearing loss remains one of the most challenging
medical problems.

Noise pollution is one of the seven public hazards in modern society. NIHL, one of the hot spots
of social concern, is the second cause of hearing loss in adults, and more than 6% of the global
population is affected by NIHL according to WHO data (Sliwinska-Kowalska and Zaborowski,
2017). NIHL is an acquired hearing loss caused by long-term exposure of the auditory system
to noise generated by construction, entertainment, industrial production, military equipment or
others, and its incidence is only behind presbycusis among all the types of sensorineural hearing loss
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(Miao et al., 2019). The A-frequency weighting network (dBA) is
normally utilized to measure the levels of noise in decibels (dB) of
sound pressure, indicating the risk of NIHL (Varela-Nieto et al.,
2020). Moreover, the principal requirements for the diagnosis
of NIHL are high-frequency hearing impairment, jeopardous
amount of noise exposure and recognizable high-frequency
audiometric notch or bulge (Coles et al., 2000). Addition to the
auditory symptoms such as hearing descending, hearing allergy,
tinnitus, the noise damage may also present as mental disorder,
digestive disorder or some other organic dysfunction (Skogstad
et al., 2016; Hahad et al., 2019).

Long-term noise exposure can lead to damage of peripheral
auditory system, including the structure of cochlea hair cells, cilia,
supporting cells, and tectorial membrane (Wang et al., 2002),
hitting the external layer of hair cells the most, and the Corti’s
organ and spiral ganglion may also undergo degenerative changes
(Henderson et al., 2006). The main manifestations of which
are increased hearing threshold, decreased auditory sensitivity
and speech resolution, tinnitus, and auditory hypersensitivity.
A “V”-shaped depression appears at 4k Hz on the audiogram,
which is called “V”-shaped notch hearing loss (Carroll et al.,
2017). Low intensity or short time noise exposure can cause
temporary changes of the auditory nerve synaptic transmitter,
resulting in temporary hearing loss which could return to normal
after the noise ceased, in terms of temporary threshold shift
(TTS) (Kurabi et al., 2017). High intensity or long-time noise
exposure causes damages on both hair cells and auditory nerve,
resulting in hearing loss that could not be restored, which is
called permanent threshold shift (PTS), and eventually leads to
sensorineural hearing loss (Liberman, 2016).

Long-term noise exposure may also cause damage to
the central auditory system, which mainly occurred in the
cochlear nucleus, olivary nucleus, medial geniculate body,
inferior colliculus, hippocampus and auditory cortex (Kujawa
and Liberman, 2009; Eggermont, 2017). Most previous studies
believed that the auditory cortex was the most vulnerable part
under noise exposure, but Cheng et al. (2016) showed that
the hippocampus may be more sensitive than the auditory
cortex, mainly manifested as headache, dizziness, irritability,
insomnia, memory loss and even serious mental problems
(Eraslan et al., 2015). Long-term noise exposure can increase
the expression of corticotropin releasing-hormone (CRH) in the
hippocampus and decrease the inhibition of the hypothalamic-
pituitary-adrenal (HPA) axis, which may worsen depression and
anxiety (Valentino et al., 2010).

In this study, we searched papers published in English and
Chinese via PubMed, Embase, Scopus, and Web of Science
database, intending to provide an overview of current knowledge
relevant to the pathogenesis and susceptibility genes to NIHL.

PATHOGENESIS OF NOISED-INDUCED
HEARING LOSS

Environmental and genetic factors can both contribute to
NIHL. Environmental factors include noise intensity, noise
spectrum characteristics, noise exposure time, etc. Genetic

factors mainly refer to NIHL susceptibility genes. Presently,
there are four main theories about the pathogenesis of NIHL,
including mechanical theory, vascular theory, metabolic theory,
and immunoinflammatory theory.

Mechanical Theory
According to the mechanical theory, the internal tissue structure
damage of cochlea caused by noise with over 130 dB intensity
is mainly attributed to the mechanical damage (Patterson and
Hamernik, 1997). High intensity noise impacts the Corti’s organ
and forms a strong liquid eddy current in the cochlear duct,
which can cause the rupture of the vestibular membrane and lead
to the fusion of endolymph and perilymph. The cytotoxic K+ in
endolymph could reach the tympanic scala through the orifice
of the cupula cochleae and then reach the lymphatic space of
the Corti’s organ, where the contact of K+ with hair cells leads
to the destruction of cochlear sensory epithelial cells, atrophy
of stria vascularis and degeneration of auditory nerve fibers.
The other ways of mechanical injury were the rupture of the
reticular laminae of the basilar membrane or the separation of the
stereocilium of the outer hair cells from the cuticular plate, which
can cause the K+-rich endolymph to come into contact with
the hair cells. In more serious cases, noise-induced mechanical
force can also cause the Corti’s organ to peel off from the basilar
membrane (Spoendlin and Brun, 1973; Rajguru, 2013).

Vascular Theory
Vascular theory believes that long-term strong noise exposure
may lead to vasoconstriction around the cochlear sensory
epithelium, swelling vascular endothelial cell, narrowing vascular
lumen, slowed blood flow velocity, decrease in local blood
perfusion, increase in blood viscosity, accumulation of platelets
and red blood cells in capillaries, and obvious thickening of
capillary walls. All of the aforementioned factors may ultimately
lead to cochlear ischemia and hypoxia, resulting in decreased
activity of otoprotective enzymes, accumulation of cellular
metabolites in cells, and damage to cochlear hair cells and the
Corti’s organ (Kim et al., 2018). Significant inner ear injury occurs
when the perilymph oxygen partial pressure decreases by about
20% (Wu et al., 2014).

Metabolic Theory
According to the metabolic theory, noise exposure could
lead to extensive metabolic changes in the auditory system.
Overexpression of free radicals including reactive oxygen species
(ROS) and reactive nitrogen species (RNS) in cochlea leads to the
formation of lipid peroxides and accelerates hair cells apoptosis
(Zhang et al., 2017). The isoconstrictive vascular substances
such as isoprostaglandin and 8-iso-prostaglandin F2α could
also be released from cochlear vascular system and the Corti’s
organ (Honkura et al., 2016). Strong noise exposure results
in abnormal influx of K+ ions, leading to depolarization of
membrane potential and abnormal influx of Ca2+, which is
termed as calcium overload (Vicente-Torres and Schacht, 2006;
Wang et al., 2007a). Excitotoxicity caused by large amount
of glutamate release leads to edema and vacuolation of inner
hair cells, neurotrophic factor deficiency, and mitochondrial
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dysfunction, inducing acute hair cell damage (Fridberger et al.,
1998). Besides, cytokines and chemokines such as tumor necrosis
factor (TNF-α), IL-6 and IL-1β are upregulated, which make
contributions to the cascading amplification of exogenous and
endogenous apoptotic signaling pathways, promoting the release
of pro-apoptotic proteins, leading to the activation of Caspase-
3, chromatin concentration, and DNA damage. Le Prell et al.
(2007) believed that metabolic injury played a key role in the
pathogenesis of NIHL.

Immunoinflammatory Theory
Macrophages are the main natural immune cells in the cochlea
and are important drivers of inflammation and tissue repair
after noise exposure. In normal condition, cochlear macrophages
inhabit spiral ligaments, spiral ganglion, basilar membrane and
stria vascularis (Shi, 2010). The distribution, phenotype, number,
morphology and functional state of cochlear macrophages were
significantly changed after noise exposure (He W. et al., 2020).
Due to the existence of tight junctions, the infiltration of
macrophages and monocytes into the scala media is mainly
confined to the scala tympani cavity beneath the basilar
membrane, avoiding the damage and apoptosis of hair cells
(Frye et al., 2018). After noise exposure, signaling pathway such
as Toll-like receptor 4 (TLR-4)/nuclear factor kappa-B (NF-κB)
and mitogen-activated protein kinase (MAPK)/c-Jun N-terminal
kinase (JNK) were activated in cochleae, leading to upregulation
of downstream inflammatory factors and chemokines including
TNF-α, IL-6, IL-12, IL-1β, intercellular cell adhesion molecule-
1 (ICAM-1), and monocyte chemoattractant protein-1 (MCP-1)
(Wang et al., 2007b; Zhang G. et al., 2019). The release of theses
cytokines and chemokines set off chain inflammatory reactions
(Frye et al., 2019).

DIFFERENCES IN INDIVIDUAL
SUSCEPTIBILITY TO NOISED-INDUCED
HEARING LOSS

Noised-induced hearing loss (NIHL) is ranked as the highest
incidence of industrial injury in the United States (Ralli et al.,
2017), where 16% adult hearing loss are caused by exposure
to industrial noise. While NIHL is a typical type of hearing
loss, the causes of it are attributable to both environmental and
genetic factors. Long-term exposure to noise is a prominent
environmental factor for NIHL, but some studies found that
not every worker who exposed to the same level of noise would
develop NIHL, and the severity of NIHL also varies greatly (Irion,
1981; Hood, 1987). Taylor et al. (1965) detected the hearing
threshold of workers in a textile factory and found that the
workers with similar length of service had different hearing
threshold which ranged from 10 to 70 dB.

In recent years, with studies of large-scale samples, it is known
that even for the subjects exposed to the noise environment
with similar density and duration, their hearing threshold shifts
has significant individual differences (Lu et al., 2005). It reveals
that there is a great difference in the susceptibility to NIHL
among the population.

RESEARCH METHODS OF
NOISED-INDUCED HEARING LOSS
SUSCEPTIBLE GENE

After a comprehensive analysis of some experimental studies,
we summarized the methods of population research for NIHL
susceptible genes as follows: sufficient number of subjects with
history of noise exposure were selected as the research object,
strict inclusion criteria were established, and the population
whose hearing threshold locates higher than 25dB was recruited
into case group, whose hearing thresholds was less than or
equal to 25dB was selected into control group. The candidate
genes of the two groups were detected by implementing case-
control study.

There are mainly three methods for the selection of candidate
NIHL genes: (1) selection of genes that have been preliminarily
confirmed in animal models (2) selection of susceptibility genes
that have been reported in other types of deafness; and (3)
according to the pathogenic mechanism of NIHL, detect relevant
genes in the corresponding pathways.

At present, the techniques for detecting susceptible genes
include microarray chip, polymerase chain reaction (PCR) -
restriction enzyme digestion, quantitative reverse transcription
PCR, amplification refractory mutation system (ARMS)-PCR,
high-throughput sequencing, and whole-exome sequencing
(WES) etc. Genetic screening was carried out and compared
between the two population to determine the susceptible genes
which might have important influence on the pathogenesis and
development of NIHL.

SUSCEPTIBILITY GENES OF
NOISE-INDUCED HEARING LOSS

According to the pathogenesis of NIHL, recent studies have
revealed a large group of genes that are linked to NIHL involving
oxidative stress, potassium ion cycling, cilia structure, heat shock
protein genes 70, DNA damage repair, apoptosis, monogenic
NIHL genes and others. The distribution of major susceptibility
genes and the functions they are involved in is shown in Figure 1.
The summary of NIHL susceptible genes and their locus is
concluded in Table 1.

Antioxidant Genes
According to the metabolic theory, oxidative stress plays a major
role in the pathomechanisms of NIHL (Spoendlin and Brun,
1973; Rajguru, 2013; Chen et al., 2020). Mutations of oxidative
stress related genes would disturb the balance of the oxidative
and antioxidative system in the cochlea, thus fail to eliminate the
oxidative damage of ROS, leading to the structural and functional
disorders of the cochlea which ultimately result in hearing loss.

ATPase Plasma Membrane Ca2+ Transporting 2
(ATP2B2, PMCA2)
ATP2B2, encoding plasma membrane calcium-transporting
ATPase isoform2 (PMCA2), is located on human chromosome
region 3p25, and played an important role on intracellular
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FIGURE 1 | Schematic diagram of major NIHL susceptible genes distributed in the hair cells. NIHL susceptible genes are involved in the progression of oxidative
stress, potassium ion cycling, calcium overload, glutamate excitotoxicity, DNA damage repair, apoptosis, and other biochemical processes. They are distributed in
various locations in cells, including membrane, cytoplasm, nucleus, mitochondria, and endoplasmic reticulum. Abbreviations: Glu, Glutamate; GR, Glutathione
reductase; GSH, Glutathione; GSSH, Glutathione oxidized; Keap1, Kelch-like ECH associated protein 1; PMCA2, Plasma membrane calcium-transporting ATPase 2;
ROS, Reactive oxygen species.

calcium homeostasis (Yang et al., 2013). In an animal experiment,
Kozel et al. (2002) hypothesized that Atp2b2+/− mice may be
more susceptible to NIHL. Recently, Li X. et al. (2016) designed

a study to investigate whether genetic variability in ATP2B2
was associated with high susceptibility to NIHL in Chinese
Han nationality population. However, no significant main effect
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was observed for ATP2B2 gene single-nucleotide polymorphisms
(SNPs) (rs1719571, rs3209637 and rs4327369) in their study
because of the small sample size. In another case-control study
of 760 Chinese textile workers, the results indicated that the
rs3209637 C genotype of ATP2B2 may lead to a greatly increased
incidence of NIHL. Meanwhile, the analysis also demonstrates
that ATP2B2 SNPs (rs1719571, rs14154, and rs3209637) have a
great effect on NIHL (Zhang S. et al., 2019).

Catalase
Catalase (CAT) is a ubiquitous enzyme in all organisms,
functioning as a key antioxidant enzyme in the defense against
oxidative stress. Catalase encoded by CAT gene can decompose
hydrogen peroxide (H2O2), maintain the balance of redox in
the body, and reduce the oxidative damage of cochlea caused
by oxidative stress. Yang et al. (2015) screened 719 unrelated
Chinese Han adults, including 225 healthy volunteers and 494
noise-exposed workers, and found that rs208679 and rs769217
SNPs were significantly associated with the susceptibility to
NIHL. For rs208679 recessive effect, GG genotype showed
significantly augmented risk when exposing to noise less than
85dB, while for rs769217 dominant effect, TT/TC combined
genotypes significantly increased the risk of NIHL when noise
intensity was between 85dB-92dB.

Glutathione Peroxidase 1
The GPX protein belongs to the glutathione peroxidase (GPx)
family, which reduces H2O2 and organic hydroperoxides
originated from Fenton and Haber Weiss reactions coupling
with other glutathione (GSH) and GSH reductase redox systems
(Evans and Halliwell, 1999). GPx oxidizes GSH into glutathione
oxidized (GSSH), while glutathione reductase (GR) reduces
GSSH into GSH. Moreover, H2O2 is catalyzed and broke down
into H2O by GPx and CAT to achieve antioxidant effects
(Figure 1). Ohlemiller et al. (2000) performed research to
investigate the association between cellular Gpx1 gene and the
susceptibility to NIHL in mice. The significant results revealed
that Gpx-deficient mice showed increased susceptibility to NIHL.
Wen et al. (2014) scrutinized the relationship between SNPs of
GPX1 gene rs3448, rs1050450, rs1800668, and rs1987628, and
the risk of developing NIHL among Chinese Han population.
They clarified that GPX1 SNP rs1987628 may be a risk factor of
NIHL. Another study of a limited sample set using genotyping
kit to analyze the SNPs discovered that the individuals carrying
rs1987628 GA genotype of GPX1 had a higher NIHL risk than
those carrying the GG genotype (Li J. Y. et al., 2020).

Glutathione S-Transferase
Glutathione S-transferase (GST) can catalyze the binding
of a variety of endogenous or exogenous compounds to
reduced glutathione, which serves as an important protective
antioxidant factor in the cochlea. Shen et al. (2012) analyzed the
polymorphism of GST gene in 444 workers with NIHL and 445
workers with normal hearing to find out the relationship between
the polymorphism and the susceptibility to NIHL. The results
showed that null genotype of GSTM1 rs10712361 had a higher
risk of NIHL comparing with wild-type genotype. Lin et al. (2009)

found that individuals carrying all genotypes with GSTM1 null,
GSTT1 null, and GSTP1 lle (Guo et al., 2017)/lle (Guo et al., 2017)
were more susceptible to NIHL.

Nuclear Factor Erythroid 2-Related Factor 2
NRF2, existing widely in tissues, is a key transcription factor in
the regulation of oxidative stress. When affected by oxidative
stress, NRF2 dissociates from Kelch like epichlorohydrin
associated protein 1 (Keap1), a negative regulator of NRF2,
and is transferred to the nucleus to recognize and bind
antioxidant response elements (ARE) (Sivandzade et al., 2019).
Thus, the transcription of downstream antioxidant enzyme genes
is initiated, including heme oxygenase 1 (HO-1), superoxide
dismutase (SOD), triphosphopyridine nucleotide (NADPH),
GST, GR and GPx (He F. et al., 2020). Honkura et al.
(2016) explored the contribution of Nrf2 to cochlear protection
via Nrf2−/− mice models. They found that Nrf2 deficiency
could exacerbate NIHL as auditory brainstem response (ABR)
threshold shifts of the Nrf2−/− mice was significantly larger
than the wild-type mice at 7 days post-exposure. Although noise
exposure does not obviously change the expression of Nrf2 target
genes, the potent NRF2-activating drug, CDDO-Im used before
the noise exposure could preserve the integrity of hair cells
and improve post-exposure hearing level. Wang et al. (2019)
found that persons with a G allele (NRF2 tagSNP rs6726395) in
addition to rs77684420 and the rs6726395, rs1962142, rs6721961,
and rs77684420 haplotype had associations that may be more
susceptible to NIHL.

Triphosphopyridine Nucleotide Oxidase-3
The NOX family of ROS-generating NADPH oxidases consists of
7 members: NOX1 to NOX5, DUOX1 and DUOX2. In particular,
NOX3 is almost exclusively expressed in the inner ear, and it has
been demonstrated to generate superoxide constitutively which
is converted to H2O2 by SOD, which can in turn participate
in cell signaling events (Krause, 2004; Forman et al., 2010).
In a previous study, a significant reduction in the intensity of
NOX3 immunolabeling was observed in the inner sulcus region
of the cochlea after noise exposure, and down-regulation of
NOX3 may represent an endogenous protective mechanism to
reduce oxidative stress in the noise-exposed cochlea (Vlajkovic
et al., 2013). Xin et al. (2021) conducted a case-control study in
five factories in China, and illustrated the association between
rs12195525 and NIHL susceptibility. For further exploration,
Lavinsky et al. (2015) verified that Nox3 is involved in NIHL
susceptibility in Nox3het/Nox3het and Nox3het/ + mutant mice,
which was frequency specific at 8 kHz. Besides, the significant
and highly potential association of rs33652818 with ABR at 8 and
4 kHz was observed.

Paraoxonase-2
PON2 gene, localized in endoplasmic reticulum (ER),
mitochondria and nuclear envelope, is involved in the process of
defending ROS, ER stress, mitochondrial superoxide formation,
and apoptosis (Altenhofer et al., 2010; Witte et al., 2011). Li X.
et al. (2016) studied the polymorphisms of rs12026, rs7785846,
and rs12704796 in PON2 in 221 patients with NIHL and 233
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TABLE 1 | Summary of NIHL susceptible genes and their locus.

Groups of
genes

Gene Full name Genetic locus References

Antioxidant
genes

APEX1 Apurinic/Apyrimidinic
endodeoxyribonuclease 1

rs1130409, rs1760944 Shen et al., 2016; Ding et al., 2019

ATP2B2
(PMCA2)

ATPase plasma membrane Ca2+

transporting 2
rs1719571, rs3209637, rs14154 Kozel et al., 2002; Li X. et al., 2016;

Yan et al., 2013; Zhang S. et al.,
2019

CAT Catalase rs769217, rs208679, rs7943316,
rs769214, rs475043, rs12273124,
rs494024, rs564250

Konings et al., 2007; Xia et al.,
2011; Yang et al., 2015; Li T. et al.,

2020

GPX1 Glutathione peroxidase 1 rs1987628 Wen et al., 2014; Li J. Y. et al.,
2020

GST Glutathione S-transferase rs1695, rs1049055, rs10712361 Lin et al., 2009; Shen et al., 2012;
Loukzadeh et al., 2019; Zong et al.,

2019; Li Y. H. et al., 2020

NFE2L2 (NRF2) Nuclear factor erythroid 2-related factor 2 rs77684420, rs6726395, rs1962142,
rs6721961

Honkura et al., 2016; Wang et al.,
2019

NOX3 NADPH Oxidase 3 rs12195525, rs33652818 Lavinsky et al., 2015; Xin et al.,
2021

PON2 Paraoxonase 2 rs12026, rs7785846, rs12704796,
rs987539, rs7493, rs7786401

Cao et al., 2013; Li X. et al., 2016;
Bhatt et al., 2020; Wu et al., 2020;

Zhou H. et al., 2020

SOD1 Superoxide dismutase 1 rs2070424, rs10432782 Liu et al., 2010b

SOD2 Superoxide dismutase 2 rs4880, rs2855116 Ohlemiller et al., 1999; Fortunato
et al., 2004; Liu et al., 2010a; Wang

et al., 2014; Wang J. et al., 2017

Potassium ion
cycling related
genes

KCNQ1 Potassium voltage-gated channel subfamily
Q member 1

rs800336, rs2056892, rs2011750,
rs2283158, rs2283179, rs2283205,
rs231899, rs760419, rs163171, rs8234,
rs7945327, rs11022922, rs718579,
rs463924

Van Laer et al., 2006; Pawelczyk
et al., 2009; Ding et al., 2020

KCNQ4 Potassium voltage-gated channel subfamily
Q member 4

rs34287852, rs2769256, rs727146,
rs4660468, rs12143503, rs4660470

Van Laer et al., 2006; Pawelczyk
et al., 2009; Guo et al., 2018b;

Zhou W. H. et al., 2020

KCNE1 Potassium voltage-gated channel subfamily
E regulatory subunit 1

rs915539, rs2070358, rs1805127,
rs1805128

Van Laer et al., 2006; Ding et al.,
2020

KCNJ10 Potassium voltage-gated channel subfamily
J member 10

rs1130183, rs1186675 Van Laer et al., 2006; Pawelczyk
et al., 2009; Bhatt et al., 2020

KCNMA1 Potassium calcium-activated channel
subfamily M alpha 1

rs696211, rs1436089 Konings et al., 2009b; Zhang X.
et al., 2019

GJB1 (Cx32) Gap Junction Protein Beta 1 rs747181, rs1997625 Van Laer et al., 2006; Pawelczyk
et al., 2009

GJB2 (Cx26) Gap Junction Protein Beta 2 rs3751385, rs5030700, rs137852540 Van Laer et al., 2006; Pawelczyk
et al., 2009; Zhou et al., 2016

GJB3 (Cx31) Gap Junction Protein Beta 3 rs476220 Van Laer et al., 2006

GJB4 (Cx30.3) Gap Junction Protein Beta 4 rs1998177, rs755931 Van Laer et al., 2006; Pawelczyk
et al., 2009

GJB6 (Cx30) Gap Junction Protein Beta 6 rs945370, rs2065796, rs2065797 Van Laer et al., 2006

SLC12A2 Solute carrier family 12 member 2 rs1962291, rs1560637, rs790153,
rs790156, rs10089

Van Laer et al., 2006

Cilia structure
related genes

CDH23 Cadherin related 23 rs1227049, rs1227051, rs3802711,
rs3752752, rs41281334

Yang et al., 2006; Kowalski et al.,
2014; Yu et al., 2016; Bhatt et al.,

2020; Jiao et al., 2020; Jiang et al.,
2021

PCDH15 Protocadherin related 15 rs11004085, rs7095441, rs1100085,
rs10825122, rs1930146, rs2384437,
rs4540756, rs2384375

Konings et al., 2009b; Xu et al.,
2017a,b

MYH14 Myosin heavy chain 14 rs667907, rs588035 Konings et al., 2009b; Fu et al.,
2016

(Continued)
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TABLE 1 | (Continued)

Groups of
genes

Gene Full name Genetic locus References

Heat shock
protein genes
70

HSPA1A Heat shock protein family A member 1A rs1043618, rs1061581 Li et al., 2017

HSPA1B Heat shock protein family A member 1B rs2763979 Konings et al., 2009a; Chang et al.,
2011

HSPA1L Heat shock protein family A member 1L rs2075800, rs2227956 Chang et al., 2011; Li Y. H. et al.,
2016; Li et al., 2017

DNA damage
repair related
genes

DNMT1 DNA methyltransferase 1 rs2228611 Guo et al., 2018a

DNMT3A DNA methyltransferase 3 alpha rs749131, rs1550117 Guo et al., 2018a

EYA4 EYA transcriptional coactivator and
phosphatase 4

rs3777781, rs212769, rs3813346,
rs9321402, rs9493627

Zhang et al., 2015; Yang Q. et al.,
2016; Yang et al., 2017

OGG1 8-Oxoguanine DNA glycosylase rs1052133 Shen et al., 2014

Apoptosis
related genes

CASP3 Caspase 3 rs1049216, rs6948 Wu et al., 2017

ERK2
(MAPK1)

Extracellular signal-regulated kinase 2 Null (animal experiment) Kurioka et al., 2015

JNK1
(MAPK8)

C-Jun N-terminal kinases 1 rs11598320, rs8424 Sun et al., 2021

Other NIHL
susceptible
genes

AUTS2 Activator of transcription and
developmental regulator

rs35075890 Niu et al., 2021

CARD8 Caspase recruitment domain family
member 8

rs2043211 Miao et al., 2021

DFNA5
(GSDME)

Gasdermin E rs2521758 Zhang et al., 2015

FAS Fas cell surface death receptor rs1468063, rs2862833 Xu et al., 2021

FOXO3 Forkhead box O3 rs2802292, rs10457180, rs12206094 Guo et al., 2017, Guo et al., 2018c;
Jiao et al., 2017

GAPDH Glyceraldehyde-3-phosphate
dehydrogenase

rs6489721 Wan et al., 2020

GRHL2 Grainyhead like transcription factor 2 rs3735715, rs1981361, rs666026,
rs611419

Li X. et al., 2013; Zhang et al.,
2015; Xu et al., 2016; Yang Q. Y.

et al., 2016; Li X. et al., 2020

GRM7 Glutamate metabotropic receptor 7 rs1485175, rs1920109, rs9826579 Yu et al., 2018a,b

HDAC2 Histone deacetylase 2 rs10499080, rs6568819 Wang et al., 2021

HOTAIR HOX transcript antisense RNA rs4759314 Wang B. et al., 2017

IL-6 Interleukin 6 rs1800795 Braga et al., 2014

ITGA8 Integrin subunit alpha 8 rs10508489 Xia et al., 2011

NCL Nucleolin rs7598759 Grondin et al., 2015

NOTCH1 Notch receptor 1 rs3124594, rs3124603 Ding et al., 2018

NRN1 Neuritin 1 rs3805789 Liu et al., 2021

PER1 Period circadian regulator 1 rs2585405 Chen et al., 2021

POU4F3 POU class 4 homeobox 3 rs1368402, rs891969 Xu et al., 2016

PTPRN2 Protein tyrosine phosphatase receptor type
N2

rs10081191 Niu et al., 2021

SIK3 Salt-inducible kinase 3 rs493134, rs6589574, rs7121898 Yin et al., 2020

STAT3 Signal transducer and activator of
transcription 3

rs1053005 Gao et al., 2021

TSP Thrombospondin Null (animal experiment) Smeriglio et al., 2019

UBAC2 UBA domain containing 2 rs3825427 Wan et al., 2022

WHRN Whirlin rs12339210 Jiang et al., 2021

XPO5 Exportin 5 rs11077 Wang et al., 2020

XRCC1 X-Ray repair cross complementing 1 rs1799782 Ding et al., 2019
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subjects with normal hearing by logistic regression analysis.
It was found that rs12026 CG and CG + GG genotypes and
rs7785846 CT and CT+ TT genotypes were highly susceptible to
NIHL. Wu et al. (2020) confirmed these results that PON2 gene
affects the NIHL susceptibility of cochlea.

Superoxide Dismutase 1 and 2
Superoxide Dismutase (SOD) is an important antioxidant
enzyme in organisms and the primary substance for scavenging
ROS in the body, which is involved in the reaction of superoxide
anion (O2

−) and H+ to produce H2O2. It plays an important
role on blocking cell damages caused by ROS and repairing
the damaged cells in time. Liu et al. (2010a,b) analyzed the
audiometric data of 2400 Chinese Han people exposed to
occupational noise, and selected the 10% most susceptible and
the 10% most resistant individuals as subjects to collect DNA
samples. It has been found that the SOD1 AA genotype at the
rs2070424 was protective against NIHL, while the SOD1 GG
genotype of rs10432782 and the CT genotype of rs4880 (SOD2
V16A SNP) was associated with higher occurrence of NIHL.
However, the above results were not in agreement with a former
research based on a Swedish population, which suggests that SOD
genetic polymorphism may confer a race-specific contribution
(Carlsson et al., 2005).

Potassium Ion (K+) Cycling Related
Genes
As an important charge carrier in the process of sound sensory
conduction, K+ can be secreted to the endolymph, and then
utilized by the sensory hair cells of the inner ear through the
mechanically sensitive K+ channel, and this ion circulation
ensures the generation of hearing. The related genes which has
been proved susceptible to NIHL are illustrated in Figure 2.

Potassium Voltage-Gated Channel Subfamily E
Regulatory Subunit 1 and Potassium Voltage-Gated
Channel Subfamily Q Member 1
KCNE1 encodes a regulatory subunit of the KCNQ1 potassium
channel-complex. Both KCNE1 and KCNQ1 are necessary for
normal hearing. Pawelczyk et al. (2009) performed a study
to clarify the hypothesis that genetic variability in genes of
the potassium recycling pathway may be a risk factor for the
development of NIHL. The significant results revealed that the
AA genotype in rs2070358 appeared more frequently in resistant
individuals than in susceptible ones, while genotype GG was
more often among susceptible subjects. Recently, another study
(Ding et al., 2020) was designed to investigate the association
between genetic mutations in the KCNE1 gene and susceptibility
to NIHL in the Chinese population. Their results showed that the
rs3453 C allele and the rs1805127 G allele were associated with
increased susceptibility to NIHL.

Potassium Voltage-Gated Channel Subfamily Q
Member 4
Potassium Voltage-Gated Channel Subfamily Q Member 4
(KCNQ4) is a voltage-gated potassium channel that plays
essential roles on maintaining ion homeostasis and regulating

FIGURE 2 | Schematic diagram of potassium ion cycling related NIHL
susceptibility genes. K+ cycling related NIHL susceptibility genes include K+

channel proteins and gap junction proteins. According to the operational
mechanism and structures, NIHL susceptibility related K+ channels can be
classified into 3 groups: inward rectifier (Kir, including KCNJ10), voltage-gated
(Kv, including KCNQ1, KCNE1, and KCNQ4), and Ca2+activated (KCa,
including KCNMA1). Gap junctions between hair cells and non-sensory cells
are primarily formed by a family of connexin proteins, which is encoded by
gene GJB1, GJB2, GJB3, GJB4, and GJB6. Gap junction-mediated
intercellular communication plays an essential role in K+ exchange.

hair cell membrane potential. Guo et al. (2018b) conducted a
genetic association study to scrutinize the association between
KCNQ4 polymorphism and susceptibility to NIHL. They
detected that rs4660468 CT/TT genotype and T allele may
increase the susceptibility. In another study among Chinese
population, the SNPs of rs4660468, rs4660470, rs34287852
in KCNQ4 were genotyped by Zhou W. H. et al. (2020).
They identified that the risk of developing NIHL in subjects
carrying TA genotype of rs4660470 was 2.197 times than
the one carrying TT genotypes, suggesting that the mutant
allele A of rs4660470 in KCNQ4 may be a risk factor for
developing NIHL.
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Potassium Inwardly Rectifying Channel Subfamily J
Member 10
KCNJ10 encodes the inward-rectifying potassium channel that
is expressed in the brain, the inner ear, and kidney. Pawelczyk
et al. (2009) conducted a study to explore the putative hypothesis
that genetic variations in ten genes associated with the potassium
recycling pathway in the inner ear may influence susceptibility
to the development of NIHL. Their results discovered that
the polymorphism of rs1130183 in KCNJ10 may be a risk
factor for the development of NIHL. In addition, Bhatt et al.
(2020) performed research to investigate the relationship between
candidate genetic variants and NIHL in young musicians,
they also identified that KCNJ10 rs1130183 showed significant
association with the distortion product otoacoustic emission
(DPOAE) signal-to-noise ratio (SNR) in the right ear.

Gap Junction Protein Beta 2 (Connexin 26, Cx26)
GJB2, encoding a gap junction protein expressed in the inner ear,
has been considered to be involved in the potassium recycling
pathway in the cochlea. Van Eyken et al. (2007) performed a
study to investigate the association between the GJB2 35delG
mutation and the development of NIHL. Frustratingly, the results
suggested that 35delG carriers had no increased susceptibility
to the development of NIHL. However, in an animal study,
Zhou et al. (2016) established a Connexin26 knockdown mouse
model to investigate the relationship between Connexin26 gene
and NIHL. Their results indicated that decreased Connexin26
expression may contribute to the increased susceptibility to NIHL
and promote the cell degeneration in the Corti’s organ.

Cilia Structure Related Genes
Tip links of the hair cells play a crucial role in the process
of mechano-electrical transduction (MET), transforming the
mechanical sound stimuli into electrical signals (Sakaguchi
et al., 2009). The main constituent of tip links are cadherin
related 23 (CDH23) and procadherin related 15 (PCDH15),
atypical members of the cadherin superfamily. Cadherin is
a calcium-dependent cellular adhesion glycoprotein, which
plays an important role in cell recognition, migration, tissue
differentiation, the composition of adult tissues and embryonic
development. The polymorphism of those genes is closely related
to the susceptibility to NIHL. Besides, the damage of MYH14,
located at the tip links between hair cells and hair cells, hair cells
and supporting cells, also leads to susceptibility to NIHL.

Cadherin Related 23
Cadherin Related 23 (CDH23) is an important protein which
is mainly expressed in the cilia of inner hair cells and
vestibular membrane (Wilson et al., 2001). Anchored to ciliated
microfilaments by actin, it forms a protein network with myosin
VIIA for functional activity (Boeda et al., 2002). Its primary
function is to maintain the structure and function of hair cell
cilia and the ion composition of endolymph, which ensure
the mechanical-electrical conversion of sound waves can be
carried out normally during the transduction of sound waves
in the inner ear (Siemens et al., 2004). It was evidenced in
adult mice that Cdh23 mutant mice were susceptible to NIHL.

The results showed that the threshold of compound action
potential (CAP) was increased by about 50dB at 12 kHz and
30 kHz frequency, which was more than twice that of wild
type mice (Holme and Steel, 2004). Kowalski et al. (2014)
selected 314 workers with the worst hearing as the experimental
group and 313 workers with the best hearing as the control
group from 3860 workers database exposed to the same noise
environment. Statistical analysis showed that the genotype of
the SNP rs3752752 located in exon 21 was closely related to
NIHL susceptibility, in which CC genotype was more common
in susceptible population, while CT genotype appeared more
frequently in the group with better noise tolerance. Another study
(Yang et al., 2006) revealed that individuals with rs3802721TT
genotype, rs1227049CC genotype and GG genotype at the end of
exon 7 were more susceptible to NIHL.

Procadherin Related 15
PCDH15 encodes a membrane protein that mediates calcium-
dependent cell adhesion. It is considered that tip-link is
composed of proteins encoded by PCDH15 and CDH23 genes
(Rowlands et al., 2000). The protein encoded by the PCDH15
forms the lower part of the tip-link, and the CDH23 forms the
upper part. In vitro, the extracellular components of PCDH15
and CDH23 form parallel homodimers, and the homodimers
are arranged in a Ca2+ dependent antiparallel manner (Ahmed
et al., 2006). In recent years, it has been found that there is
a correlation between PCDH15 gene polymorphism and NIHL
susceptibility. Zhang et al. (2014) selected 476 workers with
NIHL and 475 workers with normal hearing from a factory
in China for a case-control study. There is no difference in
sex ratio, noise exposure years and exposure intensity between
the two groups. It was found that the allele frequency and
genotypes of rs1104085 were significantly correlated with NIHL
susceptibility, that is, the susceptibility of variant allele CT
or CC genotype was significantly lower than that of wild
type TT homozygotes. Besides, SNPs of rs1100085, rs10825122,
rs1930146, rs2384437, rs4540756, and rs2384375 were also found
to have correlations with NIHL.

Myosin Heavy Chain 14
The MYH14 is located on chromosome 19 and encodes myosin-
binding protein C. It is an ATP-dependent molecular motor
involved in cytoskeletal rearrangement and ion gate control.
MYH14 was first identified as the causative gene for neurogenic
deafness in 2004 (Donaudy et al., 2004). Konings et al. (2009a)
conducted an association study of NIHL based on a candidate
gene approach. They found two SNPs in MYH14 (rs667907 and
rs588035) that resulted in significant associations in the Polish
sample set and significant interactions with noise exposure level
in the Swedish sample set. Fu et al. (2016) established Myh14
knockout mice using CRISPR/Cas9 technology and clarified
the role of MYH14 in the cochlea and NIHL. They found
that Myh14−/− mice were more susceptible to high-intensity
noise compared to control mice. After acoustic trauma, more
pronounced loss of outer hair cells was observed in Myh14−/−

mice than in wild-type controls, suggesting that Myh14 may
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play a beneficial role in protecting the cochlea after acoustic
overstimulation in CBA/CaJ mice.

Heat Shock Protein Genes 70
Heat shock protein genes (HSPs) can be overexpressed in the
inner ear by stimulation such as physiological stress, ototoxic
drugs, high temperature and noise. Among them, HSP70 is a
dominant type of heat stress protein which has great protective
effect. Gratton et al. (2011) observed the difference of cochlear
membrane labyrinth gene expression between noise-susceptible
experimental group and noise-tolerant control group. It was
found that the protein contents of HSP70 and HSP40 in
the control group were significantly higher than those in the
experimental group, indicating that the expression of HSP70
gene may play an important role on protecting animals from
NIHL. Lei et al. (2017) used Meta analysis to comprehensively
analyze the relationship between HSP70 polymorphism and
NIHL susceptibility, and concluded that the polymorphism
of rs1061581 and rs2227956 may be closely related to the
susceptibility to NIHL. Li et al. (2017) screened 286 NIHL
patients by measuring the hearing threshold of iron and steel
workers, and selected another 286 normal hearing workers
in the same noise environment as the control group. It was
found that the proportion of TT genotype of rs2763979 in
Chinese Han population was higher than that of CC/TC genotype
in the NIHL group.

DNA Damage Repair Related Genes
Eyes Absent Homolog 4
Eyes Absent Homolog 4 (EYA4) is a member of the eye absent
family of proteins that encode transcriptional activator-related
proteins and plays an important role on regulating tissue-specific
differentiation during embryonic development (Borsani et al.,
1999). It also participates in a variety of biological activities
including maintaining the development and maturation of the
Corti’s organ (Wayne et al., 2001). Zhang et al. (2015) investigated
the relationship between the polymorphisms of EYA4 and the
risk of developing NIHL. The results of this study showed that
rs3777781 and rs212769 in the EYA4 gene were significantly
associated with the risk of NIHL. In rs3777781, carriers of the
AT and AA genotypes had a reduced risk of NIHL compared
to subjects carrying the TT genotype. In rs212769, carriers of
the AG and AA genotypes had an increased risk of NIHL
compared to subjects with the GG genotype. In another case-
control study (Yang et al., 2017), subjects carrying the rs3813346
TT genotype had a higher risk of NIHL than subjects carrying the
GG genotype in the noise intensity > 85 dB group. In contrast,
in the cumulative noise exposure (CNE) > 98 dB-year group,
haplotype CGT showed a protective role in the development
of NIHL compared to haplotype TGC, suggesting that genetic
polymorphisms in the EYA4 gene may be a genetic susceptibility
factor for NIHL.

8-Oxoguanine DNA Glycosylase
Human 8-hydroxyguanine glycosylase (hOGG1) is a DNA repair
enzyme in the base excision repair pathway, whose main function
is to recognize and excise 8-oxo G in the DNA double strand

and repair damaged DNA. Shen et al. (2014) designed research
to investigate the relationship between the gene polymorphism
(hOGG1 Ser326Cys) of rs1052133 and susceptibility to high
frequency hearing loss. The hOGG1 Cys/Cys genotype was found
to be a possible risk factor for high-frequency hearing loss,
and stratified analysis revealed it was also associated with risk
factors such as years of work in noisy jobs, noise exposure level
and smoking. Thus, they concluded that the hOGG1 Cys/Cys
genotype may be a risk factor for high frequency hearing loss in
the Chinese Han population.

Apoptosis Related Genes
Extracellular Signal-Regulated Kinase 2
Extracellular signal-regulated kinase (ERK) is a member of the
MAPK cascades which is a key signaling pathway that control
a multitude of cellular processes such as cell survival, protein
synthesis, cell proliferation, growth, migration, and apoptosis
(Cargnello and Roux, 2011). Recently, accumulative evidences
indicate that ERK is involved in response to cellular stress such as
noise exposure. When activated by stimulation, ERK2 transfers
from the cytoplasm to the nucleus, result in the activation of
downstream transcription factors who would further execute
kinds of cellular functions (Seger et al., 1991). Kurioka et al.
(2015) revealed that conditional Erk2 knockout mice were more
susceptible to noise damage and had slower recovery from
NIHL compared to control mice. Furthermore, they detected a
significant lower survival rate of inner hair cells in Erk2 knockout
mice. Their results suggest that Erk2 is essential to the survival
of hair cells in NIHL. However, to the best of our knowledge, the
research concerning ERK2 polymorphisms in NIHL population
is nearly a piece of blank.

C-Jun N-Terminal Kinases 1
C-Jun N-terminal kinase (JNK), also known as stress-activated
protein kinase (SAPK), is a member of the MAPK family
(Hollville et al., 2019). The JNK stress pathways are involved
in many different intracellular signaling pathways that control
diverse cellular processes such as cell growth, differentiation,
transformation, and most importantly, apoptosis (Zeke et al.,
2016). Sun et al. (2021) conducted a study to explore the effect
of JNK1 polymorphisms on the sensitivity of NIHL, and the
results indicated that the rs11598320 TT genotype and the
rs8428 TT genotype may be associated with a higher risk of
NIHL. Interestingly, a previous study has also reported that
prednisone, a well-known steroid clinically used in the treatment
of hearing loss, could inhibit the IL-1β-induced activation of
JNK1 (Hong and Jang, 2014).

Other Noised-Induced Hearing Loss
Susceptible Genes
Caspase Recruitment Domain Family Member 8
Inflammation is a complex process that is thought to contribute
to the development of NIHL. CARD8 is an important component
of the inflammasome and has been implicated in inflammation.
Miao et al. (2021) conducted a study to investigate the
relationship between CARD8 gene polymorphisms and NIHL
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risk and to infer the underlying mechanisms. They verified
three SNPs (rs2043211, rs1062808 and rs12459322) in a
Chinese population including 610 NIHL cases and 612 normal
hearing controls. The haplotype AGG (rs2043211-rs1062808-
rs12459322), the AA genotype and A allele of rs2043211 were
found associated with a reduced risk of NIHL.

Fas Cell Surface Death Receptor
Reactive oxygen species (ROS) production in the cochlea and
blood caused by noise exposure leads to the processes of oxidative
stress, lipid peroxidation, and DNA damage, during which FAS
is activated. Xu et al. (2021) conducted case-control research
to investigate the relationship between genetic polymorphisms
in the FAS gene and NIHL risk. 692 NIHL workers and 650
controls were genotyped for four SNPs, among which two
polymorphisms, rs1468063 and rs2862833, were associated with
NIHL. Individuals harboring rs1468063-TT or rs2862833-AA
genotypes had a decreased risk of NIHL.

Forkhead Box O3
FOXO3 is a gene with a variety of biological functions and
is closely related to mammalian longevity. It regulates specific
activation of transcription factors to exert effects on cell
differentiation, apoptosis, cell cycle, DNA damage repair and
oxidative stress (Stefanetti et al., 2018). Through the study
of the animal model of NIHL, Gilels et al. (2017) found
that the outer hair cells of Foxo3 knockout mice were more
seriously damaged than those of normal mice after the same
intensity of noise exposure, and the severity of hearing loss
increased significantly, indicating that Foxo3 is an important
protective gene for mice to maintain hearing after noise exposure.
Guo et al. (2017) conducted research to explore the effects
of FOXO3 polymorphisms on individual NIHL susceptibility.
The results proved that individuals with the G allele of
rs2802292, G allele of rs10457180, T allele of rs12206094 and the
haplotype GAC and others (TGT/GGT/GGC/GAT) (rs2802292-
rs10457180-rs12206094) are associated with an increased risk
of NIHL in a Chinese population. In addition, they revealed
that GT-GG genotype in FOXO3 may be a risk factor for
occupational NIHL (Guo et al., 2018c). They concluded that the
genetic polymorphisms rs2802292, rs10457180, rs12206094 and
rs12212067 within FOXO3 have the potential to be biomarkers
for noise exposed impairment for workers.

Grainyhead-Like 2
Grainyhead-Like 2 (GRHL2) is a transcription factor that
expressed in epithelial tissues, it not only plays a central role in
embryonic development, but also contributes to epithelial cell
maintenance (Peters et al., 2002). Li X. et al. (2013) conducted a
study to evaluate the contribution of the GRHL2 polymorphisms
to NIHL susceptibility in a Chinese population and found that the
subjects carrying rs611419 AT/TT were more resistant to NIHL
compared with those carrying the AA genotype. In addition,
another study revealed that the CC genotype of rs1981361 in
GRHL2 gene was contributed to a higher risk of NIHL (Xu et al.,
2016). Additionally, the fact that the rs3735715 GG genotype had
a higher NIHL risk compared with the GA genotype was also

verified in another study among Chinese population (Yang Q. Y.
et al., 2016).

Metabolic Glutamate Receptor 7 Gene
Metabolic Glutamate Receptor 7 Gene (GRM7) is mainly
responsible for glutamate-mediated postsynaptic excitation of
neurons. In order to study the effect of GRM7 polymorphism
on NIHL susceptibility, Yu et al. (2018a) selected 292 NIHL
patients and 584 workers with normal hearing in a steel factory
as subjects. It is found that the C allele genotype of the rs1485175
mutant of GRM7 gene plays an important role in reducing the
incidence of NIHL. Permutation test of generalized multiple
dimensionality reduction (GMDR) suggested that rs1920109,
rs1485175 and rs9826579 might interact with each other in the
pathogenesis of NIHL.

HOX Transcript Antisense RNA
LncRNA HOTAIR is a non-coding RNA that plays a crucial
role in RNA processing, gene regulation, chromatin modification,
gene transcription, post-transcriptional regulation (Kalwa et al.,
2016). It is involved in the alterations of oxidative stress levels,
cell proliferation, cell cycle progression and apoptosis. As its
expression level is always dysregulated in variety of cancers, it
is considered to be used as a potential biomarker (Yang et al.,
2019). In order to explore the effect of HOTAIR polymorphisms
on the NIHL susceptibility, three tag SNPs of the HOTAIR
(rs874945, rs4759314 and rs7958904) were genotyped in a
Chinese population including 570 NIHL cases and 570 controls
(Wang B. et al., 2017). The results showed that individuals with
the G allele of HOTAIR tagSNP rs4759314 and the haplotype
(rs874945, rs4759314 and rs7958904) were associated with an
increased risk of NIHL.

POU Class 4 Homeobox 3
POU Class 4 Homeobox 3 (POU4F3), also known as Bm3.1
or Bm3c, is a transcription factor which is important for the
maturation, differentiation and survival of inner ear hair cells.
Xu et al. (2016) performed a matched case-control study to
explore the relationship between SNPs in the POU4F3 gene
and susceptibility to high frequency hearing loss in a Chinese
population. They revealed that when CNE > 95 dB, individuals
carrying the AA genotype had an increased risk of hearing loss
compared to the CC/CA genotype at SNP rs1368402. Compared
to the AA/GA genotype at rs891969, the GG genotype revealed to
be a risk genotype.

CONCLUDING REMARKS

As the death of hair cells in the cochlear is irreversible, and
NIHL is a completely preventable disease, it is particularly
important to prevent the potential hearing impairment in
advance through possible screening and evaluation. The explore
of NIHL susceptible genes offers an opportunity to decrease
the incidence of hearing loss by risk assessment as early as
infant. The incidence of NIHL would be significantly reduced
by distributing the susceptible individuals away from intense
noise exposure. For example, factories could assign different
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employees according to their genotype of NIHL susceptible
genes to avoid the occupational impairment; NIHL susceptibility
screening could also be applied during conscription.

Although dozens of possible susceptibility genes related to
NIHL have been screened, there is still a big gap between
practical application and researches. Taylor et al. (1965) first
established a linear regression model between noise exposure and
high frequency hearing threshold in 1965. It was found that the
distribution of NIHL susceptibility in the population showed a
unimodal left bias, and there was no single peak on the right
side of the main peak (susceptible area), suggesting that the
susceptibility is related to many factors and is likely to be affected
by multiple minor genes, which increases the difficulty of the
study on susceptibility genes.

In relation to the screening of NIHL susceptibility genes, there
are some limitations whether using animal research or population
study. For animal research, although it has the advantages of
short test cycle and easy to obtain materials, the results must
be verified in the population. For population study, family
analysis is the most effective method to study susceptibility
genes, but medical ethics cannot expose all subjects to noise
environment, so pedigree analysis cannot be used in the study,
only NIHL susceptibility genes can be searched in the genome.
Besides, due to many factors, such as regional diversity, ethnic
differences, study sample size and gene interaction, inconsistent
research conclusions is a commonplace, resulting in limited
clinical reference value. Most studies have been conducted in a
single population, so further analysis of the correlation between
different populations is essential.

Currently, only a handful of NIHL susceptibility genes have
been uncovered, and existing studies suggest that NIHL may
be caused by accumulative abnormal influence of multiple
genes. Further in-depth researches are needed to explore
gene-gene interaction and find comprehensive and dominant
susceptibility genes among numerous NIHL susceptibility genes.
Although there are still great difficulties and challenges in the

study of NIHL susceptibility genes, with the further research
on new genetic research methods, such as next-generation
DNA sequencing (NGS) and high-throughput genotyping array,
more susceptibility genes related to NIHL will be found. The
luminant prospect of designing of molecular probes that can
be used for clinical detection of NIHL susceptible individuals is
awaiting on the way.

In conclusion, genetic factor plays a vital role on the
pathogenesis of NIHL. NIHL susceptible genes can be used for
better identification of potential risks and prevent the occurrence
of NIHL. Through the continuous screening of genetic variants in
the susceptibility of NIHL, new susceptibility genes will come to
light, and ideally, get into the stage of clinical application, which
lays a solid foundation for the accurate screening of high-risk
population and the reduction of NIHL incidence.
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