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Abstract

We have realized for the first time the multibreather vector multi-solitons supporting 

collision dynamics with many interaction effects (namely reflection, attraction, beat-

ing, etc., effects) associated with the coupled nonlinear Schrödinger family equations 

having multiple applications. Such effects can be suppressed or enhanced by using 

the soliton parameters. Here each colliding multibreather vector one-soliton is com-

posed with many soliton and antisoliton parts. Our solutions have freedom to control 

the number of soliton and antisoliton parts used to compose a vector one-soliton 

with a definite breathing length. It is also interesting to observe that the breathing 

maps associated with the obtained solutions depend on their free parameters and also 

the system parameters. All such investigations help us to realize different breath-

ing mechanisms (namely pedaling, toggling, symmetric compression, symmetric 

elongation, asymmetric compression, asymmetric elongation, etc.) supported by the 

colliding one-solitons. An existing breathing mechanism of a given vector breather 

one-soliton can be suppressed or switched into another mechanism by tuning cer-

tain parameters appropriately. Because of such features we believe that this kind of 
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study will further give impetus on the Lindner–Fedyanin system in the continuum 

limit, and find the potential applications in fiber coupler and also in Bose–Einstein 

condensates.

Keywords: Nonlinear physics

1. Introduction

A scalar soliton solution of the nonlinear Schrödinger (NLS) equation propagates 

with an unchanging profile by exactly compensating the self-phase modulation 

(SPM) with dispersion (in the case of temporal solitons) or diffraction (in the 

case of spatial solitons) while in the vector case one must also account for cross-

phase modulation (XPM) between components and solve simultaneously a set of 

coupled nonlinear Schrödinger (CNLS) equations [1, 2, 3]. A shape conserving 

solution of such equations is known as a vector soliton on account of its multi-

component nature. Such solitons can be spatial or temporal in nature. In veracity, 

such equations are more complicated and not forever integrable. For instance, the 

straightforward two component incoherent CNLS equations used to depict the (1 +1) 

dimensional propagation of high intensity pico-second light of arbitrary polarization 

in the isotropic Kerr media [4, 5]

𝑖
𝜕𝑞𝑛

𝜕𝑧
+ 𝑑

𝜕2𝑞𝑛
𝜕𝑥2

− 2𝜇(|𝑞𝑛|2 + 𝜎|𝑞3−𝑛|2)𝑞𝑛 = 0, 𝑛 = 1, 2, ... (1)

reduce to renowned integrable vector soliton system (namely Manakov model) [6], 

provided the ratio between nonlinearity thanks to XPM (the coefficient of |𝑞3−𝑛|2) 

and SPM (the coefficient of |𝑞𝑛|2) is taken into account to be unity.

In the Eq. (1), 𝑞1 and 𝑞2 are two components of a vector soliton, variables 𝑧 and 𝑥

are the longitudinal and transverse co-ordinates respectively, and 𝜎 gives the ratio 

between XPM and SPM values. In the Manakov model, the parameter 𝑑 can be 

positive or negative in the temporal case depending on the nature of the dispersion 

(anomalous or normal). The parameter 𝑑 takes only positive value in the spatial case 

which is related to diffraction [1, 2]. Further, the nonlinear parameter 𝜇 in (1) may 

be either negative for the so-called self-focusing (SF) Kerr medium or positive for 

the self-defocusing (SDF) Kerr medium [3]. Without the loss of generality, one can 

remove 𝑑 and 𝜇 from the Eq. (1) by properly scaling the components 𝑞1 and 𝑞2
provided 𝜎 = 1. However, here we retain 𝑑 and 𝜇 to conveniently define the existing 

regions of the different vector soliton forms of the Manakov model.

The scalar one component counterparts of Eq. (1) supports stable localized bright 

(or dark) soliton [7, 8] if 𝑑𝜇 < 0 (or 𝑑𝜇 > 0). The bright and dark solitons have 

completely different nature and they result from the different physical situations 

corresponding to all four possible sign combinations [9] of 𝜇 and 𝑑. Because of the 
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multi-component nature the Manakov case of Eq. (1) admits different forms of the 

exact two-component vector solitons by coupling two different bright scalar solitons 

or two different dark scalar solitons or dark and bright scalar solitons [1, 2, 3]. The 

existing region of the resulting vector soliton solution of the Manakov model depends 

on the nature of coupling. For example if each scalar component of Eq. (1) in the 

absence of all the others has 𝑑𝜇 < 0 then the Manakov case of Eq. (1) supports 

(i) the bright–bright (BB) vector soliton with six free real parameters [6, 9, 10], 

(ii) the bright guided dark (BGD) vector soliton with five free real parameters [11]

in the SF Kerr media and (iii) the seven-parameter bright–dark (BD) vector soliton 

in a parametric domain with the SF nonlinearity [12] as solutions. Similarly if 𝑞1
and 𝑞2 are scalar components with 𝑑𝜇 > 0 then the Manakov model which couples 

such components admits (i) the dark–dark (DD) vector soliton with eight free real 

parameters [13], (ii) the five-parameter dark guided bright (DGB) vector soliton [11]

in the SDF Kerr media and (iii) the seven-parameter BD vector soliton in a parametric 

domain with the self-defocusing nonlinearity [12] as solutions. Among which the BB 

vector solitons exhibit energy exchange collision among the components of colliding 

solitons in the SF Kerr media [14, 15]. This cascaded collision dynamics of BB 

vector soliton lays experimental foundation for optical computation [16, 17, 18] and 

information transfer [19]. Anastassiou et al. [20] observed such strongly exchange 

collision experimentally. Moreover it was investigated in diverse areas [21, 22, 23, 

24, 25] including Bose–Einstein condensates [23], X-junction multi-port devices 

[21], lattice based quantum representation [24], etc. Very recently such nature of 

collision has also been numerically demonstrated in the SDF region [26]. This study 

may also lead to many practical applications as in the SF case.

Although the Manakov model does not couple one component with 𝑑𝜇 > 0 and 

other component with 𝑑𝜇 < 0, the modified Manakov soliton system with such 

mixed nonlinearities can be realized from the Eq. (1) provided 𝜎 = −1 [27, 28, 29, 

30, 31, 32]. It is also interesting to note that eventhough both the parameters 𝑑 and 𝜇

in any one of the components of this modified Manakov equation change their signs 

simultaneously then the resulting equation with the mixed nonlinearities also has the 

Painlevé’s (P) integrability property [29]. In the modified Manakov case, one can 

directly realize the dark–dark [10], the bright–bright [33, 34], and the bright–dark 

[35, 36, 37] vector soliton solutions by making trivial changes in the corresponding 

manipulations made for the Manakov case by using the Hirota’s technique. The 

possible physical realizations of such modified Manakov model arise in the contexts 

of Boson–Fermion gas mixtures [38, 39], BECs involving two isotopes of the same 

element [40], multi-field propagation in a quadratic medium with inefficient phase 

matching [41] and Bose–Hubbad model [42]. Moreover Lazarides and Tsironis [22]

have used the Eq. (1) as a mathematical model to govern the electromagnetic pulse 

propagation in the isotropic and homogeneous nonlinear left handed material.
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In this paper we have analyzed the behavioral changes in the five-parameter BGD and 

DGB vector soliton solutions of the Manakov model [11] by changing the signs of 𝑑, 

𝜇, and 𝜎. Particularly, section 2 is conveniently used to show that both the BGD and 

DGB vector soliton solutions of the Manakov model become a five-parameter BD 

vector soliton by making a simple modification in their mathematical expressions 

while the cross-phase modulation (XPM) coefficient of the Manakov model alters 

its sign. Further this BD vector soliton solution and other possible solutions 

of the modified equation with mixed nonlinearities obtained by simultaneously 

changing the signs of SPM and dispersion coefficients of any one of its scalar 

component can be directly derived through the simple transformations realized 

by comparing the Hirota bilinear forms of the Manakov model and its modified 

form as shown in the section 2. Section 3 reveals that all such solutions modify 

their nature as multibreather vector one-solitons with different breathing maps, if 

the linear coupling terms are added suitably in the respective Manakov model and 

its modified form without loss of their integrability properties in accordance with 

many earlier studies [42, 43, 44, 45, 46, 47, 48, 49, 50]. Moreover the number of 

soliton and anti-soliton parts composed in each breather with a definite breathing 

length can be controlled by tuning its free parameters for pulse-width, velocity, 

and depth of localization appropriately. Section 3.3 is used to study the nature of 

collision between two different multibreather vector one-solitons by constructing a 

multibreather vector multi-soliton solution. Our solution supports different collision 

scenarios. Specifically we have noted reflection, attraction, and beating effects in 

the collision regions of different pairs of colliding breather vector one-solitons. 

Our solution has freedom to control the nature of collision effect and the nature 

of breathing mechanism associated with the colliding breather vector one-solitons. 

Finally, section 4 is reserved for conclusion.

2. Theory/calculation

By using the Hirota bilinear transformations 𝑞1 = 𝑔∕𝑓 and 𝑞2 = ℎ∕𝑓 (where 𝑔(𝑧, 𝑥)
and ℎ(𝑧, 𝑥) are complex functions and 𝑓 (𝑧, 𝑥) is a real function), Eq. (1) can be 

rewritten while 𝜎 = +1 as

𝑓 [(𝑖𝐷𝑧 + 𝑑𝐷2
𝑥
− 𝜆)𝑔 ⋅ 𝑓 ] − 𝑔[(𝑑𝐷2

𝑥
− 𝜆)𝑓 ⋅ 𝑓 + 2𝜇(𝑔𝑔∗ + ℎℎ∗)] = 0,

𝑓 [(𝑖𝐷𝑧 + 𝑑𝐷2
𝑥
− 𝜆)ℎ ⋅ 𝑓 ] − ℎ[(𝑑𝐷2

𝑥
− 𝜆)𝑓 ⋅ 𝑓 + 2𝜇(𝑔𝑔∗ + ℎℎ∗)] = 0, (2)

where

𝐷𝑚
𝑧
𝐷𝑛

𝑥
𝑔(𝑧, 𝑥) ⋅ 𝑓 (𝑧, 𝑥) =

(
𝜕

𝜕𝑧
− 𝜕

𝜕𝑧′

)𝑚 (
𝜕

𝜕𝑥
− 𝜕

𝜕𝑥′

)𝑛

𝑔(𝑧, 𝑥) ⋅ 𝑓 (𝑧′, 𝑥′)|𝑧=𝑧′,𝑥=𝑥′ .
The above Eq. (2) can be decoupled as the following set of bilinear equations

(𝑖𝐷𝑧 + 𝑑𝐷2
𝑥
− 𝜆)𝑔 ⋅ 𝑓 = 0, (𝑖𝐷𝑧 + 𝑑𝐷2

𝑥
− 𝜆)ℎ ⋅ 𝑓 = 0,

(𝑑𝐷2 − 𝜆)𝑓 ⋅ 𝑓 = −2𝜇(𝑔𝑔∗ + ℎℎ∗), (3)

𝑥
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where ∗ denotes the complex conjugate and 𝜆 is an unknown decoupling constant 

to be determined. By following the algorithmic steps of Hirota’s method as in the 

Ref. [11], one can derive the five-parameter vector one-soliton solution with the help 

of Eq. (3) as

𝑞1𝑀 = 𝜏𝑒𝑖 (𝜓1+𝜑+𝜋)[𝑖 sin𝜑 + cos𝜑 tanℎ(𝜂1𝑅 + 𝜉

2
)],

𝑞2𝑀 =
√|𝜏|2 cos2 𝜑 − 𝑑

𝜇
𝑘21𝑅(𝑒

𝑖𝜂1𝐼 ) secℎ(𝜂1𝑅 + 𝜉

2
), (4)

where 𝜓1 = 𝑙𝑥 −(𝑑𝑙2 +𝜆)𝑧 +𝜓
(0)
1 , cos𝜑 = 𝑘1𝑅∕

√|𝑝1|2, sin𝜑 = (𝑘1𝐼 − 𝑙)∕
√|𝑝1|2, 

𝜂1𝑅 = 𝑘1𝑅𝑥 − 2𝑑𝑘1𝑅𝑘1𝐼𝑧 + 𝜂
(0)
1𝑅, 𝜂1𝐼 = 𝑘1𝐼𝑥 + [𝑑(𝑘21𝑅 − 𝑘21𝐼 ) − 𝜆]𝑧 + 𝜂

(0)
1𝐼 , 𝜆 =

2𝜇|𝜏|2, 𝜉 = 𝑙𝑛

( 4|𝜏|2𝑘21𝑅|𝑝1|2 −
4𝑑𝑘21𝑅

𝜇

)−1
and |𝑝1|2 = 𝑘21𝑅 + (𝑘1𝐼 − 𝑙)2. There are five 

free real parameters namely 𝑘1𝑅, 𝑘1𝐼 , 𝑙, 𝜏𝑅, and 𝜏𝐼 in the above solution. These 

can be characterized as explained below. The envelope phase (𝜂1𝑅 + 𝜉

2 ) of Eq. (4)

reveals that 𝑘1𝑅 and 𝑘1𝐼 represent the envelope width and envelope speed of both the 

components. Next to understand the role of 𝑙, the changes in 𝑞1𝑀 of Eq. (4) while 𝜑

varies as a function of 𝑘1𝑅, 𝑘1𝐼 , and 𝑙 should be examined. It is interesting to note 

that with respect to the value of 𝜑, the vector soliton (4) can be classified into (i) DB 

vector soliton with fundamental dark component under the condition 𝑘1𝐼 = 𝑙 (i.e., at 

𝜑 = 0), (ii) DB vector soliton with gray dark component under the condition 𝑘1𝐼 ≠ 𝑙

(i.e., 𝜑 ≠ 0). That is, if 𝜑 = 0, 𝑞1𝑀 component has no intensity at 𝜂1𝑅 + 𝜉

2 = 0 and 

becomes as the fundamental dark soliton. In the 𝜑 ≠ 0 case, the minimum intensity 

of 𝑞1𝑀 can be varied by tuning 𝜑 with the help of 𝑘1𝑅, 𝑘1𝐼 , and 𝑙.

From the expression for 𝜉 in the Eq. (4), it is obvious that the Eq. (4) is as such valid 

if 𝑑𝜇 < 0. However in the case of 𝑑𝜇 > 0, the Eq. (4) is valid provided |𝜏|2|𝑝1|2 >
𝑑

𝜇
. 

Therefore the physical nature of each case is different. For example, if 𝑑𝜇 > 0 then 

the bright component of Eq. (4) does not exist without the support of dark component 

due to the restriction |𝜏|2|𝑝1|2 >
𝑑

𝜇
. Therefore such case is referred as dark guided bright 

(DGB). Similarly for 𝑑𝜇 < 0, the dark component does not exist alone. In this case 

Eq. (4) is as such called as the bright guided dark (BGD) vector soliton.

For 𝜎 = −1, the Eq. (1) can be read as

𝑖
𝜕𝑞𝑛

𝜕𝑧
+ 𝑑

𝜕2𝑞𝑛
𝜕𝑥2

− 2𝜇(|𝑞𝑛|2 − |𝑞3−𝑛|2)𝑞𝑛 = 0, (𝑛 = 1, 2, ...) (5)

By using the Hirota bilinear transformations as in 𝜎 = +1 case, Eq. (5) can be 

rewritten as

𝑓 [(𝑖𝐷𝑧 + 𝑑𝐷2
𝑥
− 𝜆)𝑔 ⋅ 𝑓 ] − 𝑔[(𝑑𝐷2

𝑥
− 𝜆)𝑓 ⋅ 𝑓 + 2𝜇(𝑔𝑔∗ − ℎℎ∗)] = 0,

𝑓 [(𝑖𝐷𝑧 + 𝑑𝐷2
𝑥
− 𝜆)ℎ ⋅ 𝑓 ] − ℎ[(𝑑𝐷2

𝑥
− 𝜆)𝑓 ⋅ 𝑓 + 2𝜇(𝑔𝑔∗ − ℎℎ∗)] = 0. (6)

The above Eq. (6) can be decoupled as
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(𝑖𝐷𝑧 + 𝑑𝐷2
𝑥
− 𝜆)𝑔 ⋅ 𝑓 = 0, (𝑖𝐷𝑧 + 𝑑𝐷2

𝑥
− 𝜆)ℎ ⋅ 𝑓 = 0,

(𝑑𝐷2
𝑥
− 𝜆)𝑓 ⋅ 𝑓 = −2𝜇(𝑔𝑔∗ − ℎℎ∗). (7)

By comparing the bilinear equations (3) and (7) of the 𝜎 = +1 case and the 

𝜎 = −1 case, one can note that there is a change of sign in the last term of last 

equation. Therefore by exploiting the systematic procedure of the Hirota method, 

we have directly realized the mixed vector soliton solution of the modified Manakov 

model by interchanging the two terms within the square root of the amplitude part 

of 𝑞2𝑀 and also making a similar change in the 𝜉 term of the Eq. (4). That is the 

amplitude part and the term 𝜉 of the modified Manakov model become respectively 

as 

√
𝑑𝑘21𝑅
𝜇

− |𝜏|2 cos2 𝜑 and ln
(

4𝑑𝑘21𝑅
𝜇

−
4|𝜏|2𝑘21𝑅|𝑝1|2

)−1
without disturbing other parts 

of Eq. (4).

Eventhough such changes are trivial, we have noted that the mixed vector soliton 

solution of the modified Manakov model is valid only in the region 𝑑𝜇 > 0 provided 
𝑑

𝜇
>

|𝜏|2|𝑝1|2 . But in the Manakov case such solution is valid for both the 𝑑𝜇 > 0
and 𝑑𝜇 < 0 cases as mentioned before. Moreover the mixed vector soliton solution 

of the modified Manakov model is helpful to realize a fact that both the 𝑞1 and 𝑞2
components exist in the absence of other. It is interesting to note that here 𝑞1 exists 

in the SDF region while 𝑞2 is absent or 𝑞2 exists in the SF region while 𝑞1 is absent. 

Therefore we have named the five-parameter mixed vector soliton solution of the 

modified Manakov model as the five-parameter BD vector soliton solution in the 

SDF region. In this modified Manakov model (i.e., 𝜎 = −1 case), if we change the 

signs of 𝑑 and 𝜇 simultaneously in any one of the component then the resultant 

equation couples two components with different nonlinearities and preserves its 

P-property [29]. For example, one can make such change in the 𝑞1 component then 

the resultant solution can be read from the solution of the actual case through the 

transformation 𝑞2 → 𝑞∗2 and 𝑘1𝐼 = −𝑘1𝐼 . For the other similar possible change the 

transformation equations are 𝑞1 → 𝑞∗1 and 𝑙 = −𝑙.

3. Results and discussion

By including the linear coupling terms in the Eq. (1) considerable attentions were 

paid on the resultant coupled soliton equations [42, 43, 44, 45, 46, 47, 48, 49, 50]. 

Such equations model the Lindner–Fedyanin system [28, 42, 51] which is a 1D 

continuum limit of 2D Hubbard model. Further the Eq. (1) with the linear coupling 

terms has been realized recently as a mathematical model for the experimentally 

designed structural rocking filter made by using the highly birefringent photonic 

crystal fiber [47]. Another physical model associated with such equation is two-

component BECs, where the signs of SPM and XPM coefficients can be tuned 

suitably through Feshbach resonance [48]. In the case of nonlinear coupler the 

numerical value of 𝜎 in the Eq. (1) with the linear coupling terms depends on the 
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overlap between the 𝑞1 and 𝑞2 modes [48]. For example the dual-core coupler has 

relatively small 𝜎 value. The performance of nonlinear single-core coupler or rocking 

rotator can also be studied by using such equation with relatively large 𝜎 value [48, 

52, 53]. At this point it is worth to point out that considerable attentions were focused 

to study the effects of linear coupling terms on the Manakov model and its modified 

forms [44, 45, 46, 47, 49]. In this section, to the best of our knowledge, we have 

derived the exact multibreather vector solitons with different breathing maps by 

solving such equations for the first time. The breathing maps associated with the 

different initial intensity profiles were also characterized.

3.1. Multibreather vector soliton solutions of the Manakov 

model with linear coupling parameters

By adding the linear coupling terms in the Eq. (1), then the Manakov model (𝜎 =
+1) can be rewritten [44, 45, 46, 47, 49] as

𝑖𝑞1𝑧 + 𝑑𝑞1𝑥𝑥 + 𝜌𝑞1 + 𝜅𝑞2 − 2𝜇(|𝑞1|2 + |𝑞2|2)𝑞1 = 0,

𝑖𝑞2𝑧 + 𝑑𝑞2𝑥𝑥 − 𝜌𝑞2 + 𝜅𝑞1 − 2𝜇(|𝑞1|2 + |𝑞2|2)𝑞2 = 0, (8)

where 𝜌 is the linear self-coupling coefficient and 𝜅 is the cross-coupling coefficient. 

Using the following transformation [45]

𝑞1 = cos(𝜃∕2)𝑒𝑖Γ𝑧𝑞1𝑀 − sin(𝜃∕2)𝑒−𝑖Γ𝑧𝑞2𝑀,

𝑞2 = sin(𝜃∕2)𝑒𝑖Γ𝑧𝑞1𝑀 + cos(𝜃∕2)𝑒−𝑖Γ𝑧𝑞2𝑀, (9)

where Γ =
√
𝜌2 + 𝜅2 and 𝜃 = tan−1(𝜅∕𝜌), the Eq. (8) can be related to the 

Manakov model. For coupled system, both the linear coupling constants 𝜅 and 

𝜌 are present, then the Eq. (8) has an periodic intensity exchange between the 

orthogonally polarized modes [45]. When the linear self-coupling coefficient is 

absent (i.e., 𝜌 = 0), then the Eq. (8) has a simple solitary wave solution exhibiting 

energy switching between the modes [44]. If both the linear coupling constants are 

absent (i.e., 𝜅 = 𝜌 = 0) then one can easily recognize the system (8) to be celebrated 

as an integrable Manakov model (1). Thereby substituting the mixed vector one-

soliton solution (4) of the Manakov model in (9) one can read the one-soliton solution 

of (8) as

𝑞1 = − cos(𝜃∕2)𝜏𝑒𝑖 (𝜓1+𝜑+Γ𝑧) [𝑖 sin𝜑 + cos𝜑 tanℎ(𝜂1𝑅 + 𝜉

2
)]

− sin(𝜃∕2)
√|𝜏|2 cos2 𝜑 − 𝑑

𝜇
𝑘21𝑅 (𝑒𝑖(𝜂1𝐼−Γ𝑧)) secℎ(𝜂1𝑅 + 𝜉

2
),

𝑞2 = − sin(𝜃∕2)𝜏𝑒𝑖 (𝜓1+𝜑+Γ𝑧) [𝑖 sin𝜑 + cos𝜑 tanℎ(𝜂1𝑅 + 𝜉

2
)]

+ cos(𝜃∕2)
√|𝜏|2 cos2 𝜑 − 𝑑

𝑘21𝑅 (𝑒𝑖(𝜂1𝐼−Γ𝑧)) secℎ(𝜂1𝑅 + 𝜉 ). (10)

𝜇 2
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To facilitate the understanding of the dynamical behavior with reference to the 

periodic intensity variation of 𝑞1 and 𝑞2, it is convenient to obtain |𝑞1|2 and |𝑞2|2
from (10) as

|𝑞1|2 = cos2(𝜃∕2)|𝜏|2 sin2 𝜑 + cos2(𝜃∕2)|𝜏|2 cos2 𝜑 tanh2(𝜂1𝑅 + 𝜉

2
) + sin2(𝜃∕2)

(|𝜏|2 cos2 𝜑 − 𝑑

𝜇
𝑘21𝑅) secℎ

2(𝜂1𝑅 + 𝜉

2
) − sin 𝜃|𝜏|√|𝜏|2 cos2 𝜑 − 𝑑

𝜇
𝑘21𝑅

secℎ(𝜂1𝑅 + 𝜉

2
) sin𝜑 sin(𝜓1 + 𝜑 + 𝜁 − 𝜂1𝐼 + 2Γ𝑧)

+ sin 𝜃|𝜏|√|𝜏|2 cos2 𝜑 − 𝑑

𝜇
𝑘21𝑅 secℎ(𝜂1𝑅 + 𝜉

2
) cos𝜑 tanh(𝜂1𝑅 + 𝜉

2
)

cos(𝜓1 + 𝜑 + 𝜁 − 𝜂1𝐼 + 2Γ𝑧),

|𝑞2|2 = sin2(𝜃∕2)|𝜏|2 sin2 𝜑 + sin2(𝜃∕2)|𝜏|2 cos2 𝜑 tanh2(𝜂1𝑅 + 𝜉

2
) + cos2(𝜃∕2)

(|𝜏|2 cos2 𝜑 − 𝑑

𝜇
𝑘21𝑅) secℎ

2(𝜂1𝑅 + 𝜉

2
) + sin 𝜃|𝜏|√|𝜏|2 cos2 𝜑 − 𝑑

𝜇
𝑘21𝑅

secℎ(𝜂1𝑅 + 𝜉

2
) sin𝜑 sin(𝜓1 + 𝜑 + 𝜁 − 𝜂1𝐼 + 2Γ𝑧)

− sin 𝜃|𝜏|√|𝜏|2 cos2 𝜑 − 𝑑

𝜇
𝑘21𝑅 secℎ(𝜂1𝑅 + 𝜉

2
) cos𝜑 tanh(𝜂1𝑅 + 𝜉

2
)

cos(𝜓1 + 𝜑 + 𝜁 − 𝜂1𝐼 + 2Γ𝑧), (11)

where 𝜏 = |𝜏|𝑒𝑖𝜁 .

From the above equations (10), (11) it is obvious to note that if the effect of linear 

cross-coupling (𝜅) is absent (i.e., 𝜃 = 0◦) in the presence of linear self-coupling 

(𝜌) then the components 𝑞𝑗 become 𝑞𝑗 = 𝑞𝑗𝑀 𝑒∓(−1)
𝑗∗𝑖𝜌∗𝑧, 𝑗 = 1, 2, ...𝑛. Since here 

𝜌 appears only in the 𝑧 coefficient of the complex modulation of each component, 

the intensity profiles of the two components of the vector soliton (11) do not differ 

from those of the mixed vector soliton equation (4). If we increase 𝜃 value in order

to introduce the effect of 𝜅 then some changes appear in the intensity profiles of 

the 𝜃 = 0◦ (i.e., 𝜅 = 0, 𝜌 ≠ 0) case. As an example for some special values of 𝜃, 

namely 𝜃 = 45◦ where 𝜅 = 𝜌 and 𝜃 = 90◦ where 𝜌 = 0, 𝜅 ≠ 0, we have 

numerically demonstrated such changes in the form of periodically varying breather 

vector solitons with different breathing maps as shown in Figures 1, 2, 3, 4, 5, 6 and 7

not only by tuning the five free parameters but also changing the signs of SPM and 

XPM coefficients.

In order to have convenient discussion, now we simplify the expression (11) by 

exploiting the condition 𝑙 = 𝑘1𝐼 (or 𝜑 = 0) used to create the fundamental dark 

and bright components in the vector one-soliton (4) as

|𝑞1|2 =
[
cos(𝜃∕2)|𝜏| tanh(𝜂1𝑅 + 𝜉

2
) + sin(𝜃∕2)

√|𝜏|2 − 𝑑

𝜇
𝑘21𝑅 secℎ(𝜂1𝑅 + 𝜉

2
)
]2
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− sin(𝜃)|𝜏|√|𝜏|2 − 𝑑

𝜇
𝑘21𝑅 tanh(𝜂1𝑅 + 𝜉

2
) secℎ(𝜂1𝑅 + 𝜉

2
)

[1 − cos(𝜓1 + 𝜁 − 𝜂1𝐼 + 2Γ𝑧)],

|𝑞2|2 =
[
sin(𝜃∕2)|𝜏| tanh(𝜂1𝑅 + 𝜉

2
) + cos(𝜃∕2)

√|𝜏|2 − 𝑑

𝜇
𝑘21𝑅 secℎ(𝜂1𝑅 + 𝜉

2
)
]2

− sin(𝜃)|𝜏|√|𝜏|2 − 𝑑

𝜇
𝑘21𝑅 tanh(𝜂1𝑅 + 𝜉

2
) secℎ(𝜂1𝑅 + 𝜉

2
)

[1 + cos(𝜓1 + 𝜁 − 𝜂1𝐼 + 2Γ𝑧)]. (12)

The first two terms of Eq. (11) define gray-dark (GD) and bright intensity profiles 

while in the case of Eq. (12) the first two terms represent fundamental dark (FD) and 

bright intensity profiles. In the case of Eq. (11) 𝜑 ≠ 0. Therefore it contains the last 

two terms with the periodic functions of 𝑧 and 𝑥. But due to the restriction 𝑙 = 𝑘1𝐼
(i.e., 𝜑 = 0), the Eq. (12) has an oscillating term. The two analytical expressions (11)

and (12) are very helpful to interpret the influence of such oscillating terms through 

their numerical plots obtained for different parametric choices in the following part 

of discussion. The oscillating terms in the equations (11) and (12) reveal that there is 

a periodic change in the intensity profiles of the components 𝑞𝑗 , 𝑗 = 1, 2... provided 

both 𝜅 ≠ 0 and |𝜏|2𝑐𝑜𝑠2𝜑 ≠ 𝑑

𝜇
𝑘21𝑅. Such periodic variation associated with the 

Eq. (11) and the Eq. (12) can be defined by using their phase of the oscillating terms 

respectively as

𝐿𝑐𝑔 = 2𝜋
(𝑑𝑘21𝐼 − 𝑑𝑙2 − 𝑑𝑘21𝑅 + 2

√
𝜌2 + 𝜅2)

, (13)

and

𝐿𝑐𝑓 = 2𝜋
(−𝑑𝑘21𝑅 + 2

√
𝜌2 + 𝜅2)

. (14)

As one expects the Eq. (14) follows from the Eq. (13) under the condition 𝑙 = 𝑘1𝐼 . 

These equations define the length at which the initial profiles of (11) and (12) (i.e.,|𝑞1|2 and |𝑞2|2 at 𝑧 = 0) appear periodically during the propagation along the 𝑧-axis.

As mentioned before in the absence of coupling coefficient 𝜅 there is no such periodic 

variation. Therefore first we want to analyze such periodic variation in the coupling 

length 𝐿𝑐𝑓 and then in the coupling length 𝐿𝑐𝑔 systematically by tuning 𝜃 with the 

help of 𝜅. We are performing such studies by selecting different possible parametric 

values without violating the condition |𝜏|2𝑐𝑜𝑠2𝜑 ≠ 𝑑

𝜇
𝑘21𝑅. The value of 𝜃 (i.e., the 

role of 𝜌 and 𝜅) defines the amount of contribution of the first two terms in the 

Eqs. (11), (12) and the influence of oscillating terms. For example the first two terms 

equally contribute only if 𝜃 = 𝑛𝜋∕2 (𝜅 ≠ 0, 𝜌 = 0), (𝑛 = 1, 3, 5, ..). Under the given 

parametric values the oscillating terms give their maximum contribution as for as 

this 𝜃 value is concerned. For 𝜃 = 𝑛𝜋 or 𝜅 = 0, 𝜌 ≠ 0 (𝑛 = 0, 2, 4..), |𝑞1|2 and |𝑞2|2 are the intensity profiles of FD and bright without any oscillations. However if 
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Figure 1. (𝑎1–𝑎3) An initial profile of Eq. (12) for a given 𝜃 value (i.e., with a particular breathing still) 
can be switched into another breathing still form. By tuning 𝑘1𝑅 value in the (𝑎3) as shown in (𝑏1) 𝑘1𝑅 =
2.90, (𝑏2) 𝑘1𝑅 = 3.99 FD–FD form (if 𝑑𝜇 > 0) and (𝑏3). Note that the amplified scalar D-soliton appears 
(if 𝜃 = 0◦, 𝜏 = 𝑘1𝑅, and 𝑑𝜇 > 0).

𝑛 = 1, 3, 5.. , such intensity profiles switch their forms from one component to other. 

Moreover in this paper we have shown that due to the different nature of Eq. (11)

and Eq. (12), the Eq. (11) supports multibreather vector soliton solutions composed 

with many soliton and antisoliton parts while the Eq. (12) supports breather solitons 

composed with a pair of soliton and antisoliton. The nature of breathing mechanism 

of each case not only depends on the five solution free parameters but also depends 

on the system parameters 𝜃, 𝑑, 𝜇 and 𝜎. In this paper by considering the suitable 

parametric values the breathing maps within the range 𝜃 = 0◦ to 90◦ are analyzed. 

Such studies can be related to the results associated with the other 𝜃 values through 

some symmetric transformations. Moreover the role of free parameters in each 𝜃

case is analyzed systematically as shown below.

Figure 1(𝑎1) shows an intensity profile of the Eq. (12) at 𝑧 = 0 under the parametric 

values 𝜏 = 4.0, 𝑘1𝑅 = 0.05, 𝑘1𝐼 = 𝑙 = 0.25, 𝜅 = 0.0, 𝜌 = 0.25 and 𝑑 = 𝜇 =
0.5. In this profile 𝑞1 supports fundamental dark (FD) component while 𝑞2 supports 

bright component although linear self-coupling effect (𝜌) exists in the absence of 

cross-coupling effect (𝜅) (i.e., 𝜃 = 0◦). The nature of this initial profile takes different 

forms as shown in the Figure 1, if we gradually introduce the effect of 𝜅 by tuning 𝜃. 

The initial profiles with 𝜃 ≠ 0 vary periodically and form moving breather vector 

solitons as shown in Figure 2 with different breathing maps as shown in Figure 3

provided 𝜏 ≠ 𝑘1𝑅. The numerical values for 𝐿𝑐𝑓 realized from the Figures 2, 3

agree with the Eq. (14). In the cases (i) 𝜃 ≠ 0 and 𝜏 = 𝑘1𝑅, (ii) 𝜃 = 0◦ and 𝜏 = 𝑘1𝑅, 

and (iii) 𝜃 = 0◦ but 𝜏 ≠ 𝑘1𝑅, with 𝑑𝜇 > 0, the breathing effects disappear by forming 
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Figure 2. Dynamics of the initial intensity profiles shown in (a) Figure 1(𝑎2), (b) Figure 1(𝑎3) and 
(c) Figure 1(𝑏1). Note that each breather repeats its initial form periodically at 𝐿𝑐𝑓 .

(i) the FD–FD vector soliton as shown in Figure 1(𝑏2), (ii) the amplified scalar dark 

soliton as shown in Figure 1(𝑏3), and (iii) the DGB vector soliton as shown in the 

Figure 1(𝑎1). If we consider the 𝑑𝜇 < 0 case then the breathing effect disappears 

by forming the B–B vector soliton or the amplified scalar bright soliton or the BGD 

vector soliton as one expects. Hence if we tune 𝜏 and 𝑘1𝑅 freely without violating the 

condition 𝜏 ≠ 𝑘1𝑅 while 𝜃 ≠ 0, then the Eq. (12) supports moving breather vector 

solitons with different breathing maps within the length 𝐿𝑐𝑓 as explained below.

If 𝜏 = 4.0 and 𝑘1𝑅 = 0.05 (i.e., 𝜏 ≫ 𝑘1𝑅) then for 𝜃 = 45◦ (i.e., 𝜅 = 𝜌) 

and 𝜃 = 90◦ (i.e., 𝜌 = 0, 𝜅 = 0.25) different breathing maps appear within 

the 𝐿𝑐𝑓 = 9.0 and 𝐿𝑐𝑓 = 12.59 respectively as shown in Figures 3(𝑎) and 3(𝑏)

during the propagation of the initial profiles Figures 1(𝑎2) and 1(𝑎3) respectively. 

The breathing map of the initial profile with 𝜃 = 90◦ and 𝑘1𝑅 = 2.9 (Figure 1(𝑏1)) 

also differs from the previous cases as shown in Figure 3(c). In the Figures 1(𝑎2, 𝑎3, 
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Figure 3. Showing the snapshots of the breather vector soliton dynamics in Figure 2 within the length 𝐿𝑐𝑓

as (a) Figure 1(𝑎2), (b) Figure 1(𝑎3) and (c) Figure 1(𝑏1), in order to understand different breathing 
mechanisms associated with the corresponding breathing stills in the Figure 1.

𝑏1), both 𝑞1 and 𝑞2 are composed with a soliton part and an antisoliton part. Here 

one component has maximum intensity while other component has zero intensity. 

In order to understand the breathing mechanism associated with the Figures 1(𝑎2, 

𝑎3, 𝑏1), first we consider the propagation of the initial profile Figure 1(𝑎3) having 

equal contribution of soliton and antisoliton parts. During the propagation maximum 

intensity value of each component decreases uniformly while its minimum intensity 

value increases. Therefore at one stage the localization parts compress completely. 

Consequently the components settle at an uniform intensity value against 𝑥 at 𝑧 ≈
𝐿𝑐𝑓∕4 (see Figure 3(𝑏1)). During further propagation the maximum intensity value 

of each component continuously decreases until the soliton part becomes antisoliton 

while the minimum intensity value increases until the antisoliton part becomes 

soliton at 𝑧 = 𝐿𝑐𝑓∕2 as shown in Figure 3(𝑏2). Such reversing mechanism here 

after we refer as pedaling effect. Once again complete compression takes place at 

𝑧 = 3𝐿𝑐𝑓∕4 as shown in Figure 3(𝑏3) if one can allow the Figure 1(𝑎3) to move 

further. Finally as shown in Figure 3(𝑏4) at 𝑧 = 𝐿𝑐𝑓 = 12.59, the initial profile 

in the Figure 1(𝑎3) reappears through another pedaling effect. Such breathing map 

repeats periodically during the propagation as shown in Figure 2(𝑏). Here at every 

𝑧 ≈ 𝑛𝐿𝑐𝑓∕4 (𝑛 = 1, 3, 5, ..) both the breather components not only have uniform 

intensity value but also stimulate pedaling effect. Hence if 𝜏 ≫ 𝑘1𝑅 and 𝜃 = 90◦

then the Eq. (12) supports symmetric breather vector soliton. It breathes during the 

propagation with the help of pedaling mechanism as explained above.
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Now we consider the propagation of the initial profile in the Figure 1(𝑏1). In this case 

the difference between 𝜏 and 𝑘1𝑅 is reduced by increasing the 𝑘1𝑅 value from 0.05 

to 2.9 without affecting the other parametric values. Because of this change the 

initial profile exhibits different breathing mechanism by composing its form with an 

unequal combination of antisoliton and soliton parts in its each component as shown 

in the Figure 3(c). During the propagation the components of such pulse suppress 

and enhance their localized regions periodically. Consequently during suppression 

the minimum contribution part (i.e., soliton part of Figure 1(𝑏1)) in each component 

disappears by leaving the excess antisoliton part as a GD–GD vector soliton at 𝑧 =
𝐿𝑐𝑓∕4 as shown in the breathing map Figure 3(𝑐). During further propagation the 

localized regions at 𝐿𝑐𝑓∕4 expand into the form as shown in Figure 3(𝑐2) at 𝐿𝑐𝑓∕2. 

This profile still at 𝑧 = 𝐿𝑐𝑓∕2 obtained from the initial profile (Figure 1(𝑏1)) at 𝑧 = 0
by pedaling its soliton and antisoliton parts of each component into the length of 

antisoliton and soliton parts. If we permit it to move further GD–GD vector soliton 

reappears periodically at 𝑧 = 𝑛𝐿𝑐𝑓∕4 (𝑛 = 1, 3, 5, .. as shown in the Figures 2(c) 

and 3(c) by gradually inhaling the soliton part of each component) and the initial 

form reappears periodically at 𝑧 = 𝑛𝐿𝑐𝑓 (𝑛 = 1, 2, 3, .. as shown in Figures 2(c), 

3(c) after a complete pedaling).

Next we discuss the breathing mechanism of the initial profile Figure 1(𝑎2) by using 

the corresponding breathing map in Figure 3(a). Here we set 𝜃 = 45◦ and 𝑘1𝑅 =
0.05 without affecting the other parametric values in the previous case. Because 

of such changes, this profile differs from the earlier cases by changing the nature 

of contribution of a soliton and an antisoliton part. That is, in the 𝑞1 component 

antisoliton part dominates by permitting very small soliton part while in the 𝑞2
component soliton part dominates by leaving very small part for antisoliton. As 

in the earlier cases the localized regions of these components gradually compress 

during the propagation. Consequently the initial profile switched into gray-dark–

bright (GD–B) vector soliton at 𝑧 = 𝑛𝐿𝑐𝑓∕4 (𝑛 = 1, 3, 5, ..) by compressing the 

very small localized regions of the components as shown in Figure 3(𝑎1). Further 

propagation expands the localized regions of the GD–B vector soliton and generates 

the disappeared parts by toggling the sides of their localized regions. Therefore at 

each 𝐿𝑐𝑓 the initial form reappears periodically as shown in Figure 2 by following 

this breathing map (see Figure 3(a)).

By using the Eq. (11) now we discuss the general case 𝑘1𝐼 ≠ 𝑙. For this purpose we 

tune 𝑙 such that 𝑘1𝐼 ∼ 𝑙 is small without affecting the other parametric values in the 

Figure 1. For example if we tune 𝑙 from 0.25 to 0.23 then the initial profile (FD–B 

vector soliton) with 𝑘1𝐼 = 𝑙 in Figure 1(𝑎1) switches into the GD–B vector soliton as 

shown in Figure 4(𝑎1). If one can introduce the linear cross-coupling effect by tuning 

𝜃 value then the Figure 4(𝑎1) admits breathing effects as shown in Figures 4(𝑎2, 𝑎3) 

respectively for 𝜃 = 45◦ and 𝜃 = 90◦ while the Figure 1(𝑎1) permits breathing 
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Figure 4. (𝑎1–𝑎3) It shows the initial intensity profiles of Eq. (11) under the condition 𝑘1𝐼 ≃ 𝑙. Here 
𝑘1𝐼 = 0.25, 𝑙 = 0.23 and other parameters are having values as in the Figure 1. By tuning 𝑘1𝑅 value in 
the Figure 4(𝑎3) as shown in (𝑏1) 𝑘1𝑅 = 0.50, (𝑏2) 𝑘1𝑅 = 2.90 and (𝑏3) 𝑘1𝑅 = 3.99.

effect as shown in the Figures 1(𝑎2, 𝑎3) respectively for 𝜃 = 45◦ and 𝜃 = 90◦. It 

is interesting to note that the Figures 4(𝑎2, 𝑎3) differ from the Figures 1(𝑎2, 𝑎3) by 

changing the ratio of a soliton part and an antisoliton part used to compose them. 

For example in the Figure 1(𝑎3) soliton and antisoliton parts equally contribute 

in each component while in the Figure 4(𝑎3) such symmetric nature disappears. 

However in the Figure 4(𝑎3) one can set such symmetric nature by increasing the 

𝑘1𝑅 value from 0.05 to 0.5 as shown in Figure 4(𝑏1). It is also interesting to note 

that the breathing map of Figure 4(𝑎3) differs from the other cases in the Figure 3

by permitting an additional soliton and antisoliton part while inhaling the localized 

regions as shown in Figure 5. Hence if 𝑘1𝐼 ≃ 𝑙 instead of 𝑘1𝐼 = 𝑙 in an initial 

profile with a breathing effect then some changes appear in the breathing nature as 

mentioned before. However such changes can be nullified by tuning 𝑘1𝑅 value or 𝜏

value.

What does happen if we tune 𝑙 such that 𝑘1𝐼 ∼ 𝑙 is large? In order to answer this 

question we increase 𝑘1𝐼 ∼ 𝑙 value from 0.02 to 0.25 by tuning the 𝑙 value into 

0.50 without affecting the other parametric values in the Figure 1. Now the various 

initial profiles with 𝜃 ≠ 0 and 𝜏 ≠ 𝑘1𝑅 in the Figure 1 change their breathing vector 

soliton forms into the multibreather vector soliton forms as shown in Figure 6. It 

is also interesting to note that the number of soliton and antisoliton parts used to 

compose 𝑞1 and 𝑞2 components increases as 𝜃 increases for given parametric values. 

However for given 𝜃, it can be controllable as explained below with an example. 
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Figure 5. (𝑎1–𝑎4) show the snapshots of the dynamics of the Figure 4(𝑎3). Note that breather repeats its 
initial form (i.e., Figure 4(𝑎3)) periodically at 𝐿𝑐𝑔 as shown in Figure 5b.

Figure 6. (𝑎1–𝑎3) show the initial intensity profiles of Eq. (11) for a given 𝜃 value under the condition 
𝑙 > 𝑘1𝐼 . Here we set 𝑙 = 0.5, by keeping the remaining parametric values as in the Figure 4. This case 
supports multibreather. The multibreathing effect can be suppressed or enhanced by tuning the amplitude 
parameters 𝜏 and 𝑘1𝑅 suitably as shown in (𝑏1–𝑏3).

Consider the initial profile Figure 6(𝑎3) having complicated form with 𝜃 = 90◦ and 

𝑘1𝑅 = 0.05. It repeats its form periodically at 𝐿𝑐𝑔 = 15.5 (as dictated by the Eq. (13)) 

during the propagation as shown in the Figure 7(b) with a breathing map Figure 7(a). 

The more number of soliton and antisoliton parts in each component of this case can 

be reduced with a breathing effect by increasing the 𝑘1𝑅 value towards 𝜏 value such 

that |𝜏|2𝑐𝑜𝑠2𝜑 ≠ 𝑑
𝑘2 as shown in the Figure 6.
𝜇 1𝑅
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Figure 7. (𝑎1–𝑎4) illustrate the snapshots of the multibreather vector soliton dynamics in the Figure 6(𝑎3). 
Note that breather repeats its initial form (i.e., Figure 6(𝑎3)) periodically at 𝐿𝑐𝑔 as shown in Figure 7b.

3.2. Modified Manakov model under the influence of linear 

terms and multibreather vector solitons

Now we consider the modified Manakov equation (𝜎 = −1) with the linear coupling 

terms [49] as

𝑖𝑞1𝑧 + 𝑑𝑞1𝑥𝑥 + 𝜌𝑞1 − 𝜅𝑞2 − 2𝜇(|𝑞1|2 − |𝑞2|2)𝑞1 = 0,

𝑖𝑞2𝑧 + 𝑑𝑞2𝑥𝑥 − 𝜌𝑞2 + 𝜅𝑞1 − 2𝜇(|𝑞1|2 − |𝑞2|2)𝑞2 = 0. (15)

The above Eq. (15) reduces to the modified Manakov equation (5) under the 

transformation with hyperbolic function as

𝑞1 = cosh(𝜃∕2)𝑒𝑖Γ𝑧𝑞1𝑀 + sinh(𝜃∕2)𝑒−𝑖Γ𝑧𝑞2𝑀 ,

𝑞2 = sinh(𝜃∕2)𝑒𝑖Γ𝑧𝑞1𝑀 + cosh(𝜃∕2)𝑒−𝑖Γ𝑧𝑞2𝑀 , (16)

where 𝜃 = tanh−1(𝜅∕𝜌) and Γ =
√
𝜌2 − 𝜅2, 𝜅 ≤ 𝜌. The nature of transformation 

varies from the earlier case because of the changes in the signs of 𝜎 and linear 

cross coupling coefficients. When 𝜅 = 0, then the Eq. (15) reduced to the 

Lindner–Fedyanin system [42] which is a one-dimensional continuum limit of two 

dimensional (2D) Hubbard model. In addition, we trust that such mathematical 

model can be used to study the left handed materials and also be introduced in the 

BECs that induces Rabi oscillation or Josephson oscillation between the population 

of two states [50].

As in the previous section, by substituting the BD vector soliton solution of the 

Eq. (5) in the Eq. (16), one can obtain the equations for the intensity profiles of 

one-soliton solution of the Eq. (15) as

|𝑞1|2 = cosh2(𝜃∕2)|𝜏|2 sin2 𝜑 + cosh2(𝜃∕2)|𝜏|2 cos2 𝜑 tanh2(𝜂1𝑅 + 𝜉 )

2
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+ sinh2(𝜃∕2)(𝑑
𝜇
𝑘21𝑅 − |𝜏|2 cos2 𝜑) secℎ2(𝜂1𝑅 + 𝜉

2
) + sinh 𝜃|𝜏|

√
𝑑

𝜇
𝑘21𝑅 − |𝜏|2 cos2 𝜑 secℎ(𝜂1𝑅 + 𝜉

2
) sin𝜑 sin(𝜓1 + 𝜑 + 𝜁 − 𝜂1𝐼 + 2Γ𝑧)

− sinh 𝜃|𝜏|√𝑑

𝜇
𝑘21𝑅 − |𝜏|2 cos2 𝜑 secℎ(𝜂1𝑅 + 𝜉

2
) cos𝜑 tanh(𝜂1𝑅 + 𝜉

2
)

cos(𝜓1 + 𝜑 + 𝜁 − 𝜂1𝐼 + 2Γ𝑧),

|𝑞2|2 = sinh2(𝜃∕2)|𝜏|2 sin2 𝜑 + sinh2(𝜃∕2)|𝜏|2 cos2 𝜑 tanh2(𝜂1𝑅 + 𝜉

2
)

+ cosh2(𝜃∕2)(𝑑
𝜇
𝑘21𝑅 − |𝜏|2 cos2 𝜑) secℎ2(𝜂1𝑅 + 𝜉

2
) + sinh 𝜃|𝜏|

√
𝑑

𝜇
𝑘21𝑅 − |𝜏|2 cos2 𝜑 secℎ(𝜂1𝑅 + 𝜉

2
) sin𝜑 sin(𝜓1 + 𝜑 + 𝜁 − 𝜂1𝐼 + 2Γ𝑧)

− sinh 𝜃|𝜏|√𝑑

𝜇
𝑘21𝑅 − |𝜏|2 cos2 𝜑 secℎ(𝜂1𝑅 + 𝜉

2
) cos𝜑 tanh(𝜂1𝑅 + 𝜉

2
)

cos(𝜓1 + 𝜑 + 𝜁 − 𝜂1𝐼 + 2Γ𝑧). (17)

As mentioned before the above equation is valid only in the region 𝑑𝜇 > 0. 

Moreover as it supports the hyperbolic functions instead of the circular functions 

in the transformation equation, the role of 𝜃 differs from the earlier case. The value 

of 𝜃 (i.e., the role of 𝜌 and 𝜅) defines the amount of contribution of the first two 

terms in the Eq. (17) and the influence of oscillating terms. For example if 𝜃 = 0◦

(i.e., 𝜌 = 1 and 𝜅 = 0), |𝑞1|2 and |𝑞2|2 are the intensity profiles of bright–dark. 

For other 𝜃 values first two terms of Eq. (17) are never equally contribute due to 

the presence of hyperbolic functions in the transformation equation (16). Therefore 

it is interesting to note from Figure 8 that the 𝑞1 supports soliton/antisoliton part 

while 𝑞2 also supports soliton/antisoliton part. However the contribution of each 

part never becomes symmetric and hence avoiding the possibility of appearing 

pedaling effect in the breathing maps. This modified case also supports periodically 

varying breathing vector solitons with different breathing maps due to the presence 

of oscillating terms. Moreover here breathing mechanism is not same under certain 

parametric choices as in the earlier case.

For example in the 𝜃 = 90◦ case if 𝜏 → 𝑘1𝑅 we get dark–dark vector soliton by 

suppressing breathing effect as shown in Figure 8(𝑏3). Because here 𝑞2𝑀 = 0 as 

𝜏 → 𝑘1𝑅. Therefore the resultant solution is valid in the SDF region. On the other 

hand, if 𝜏 → 0 (i.e., 𝑞1𝑀 → 0) then the BB vector soliton appears in the SF region 

as shown in Figure 8(𝑏1) by suppressing the breathing effects otherwise as shown in 

Figure 8(𝑏2). Moreover at 𝜃 = 0◦ it supports bright–dark intensity profile as shown 

in Figure 8(𝑎1). If we increase the value of 𝜃 the initial intensity varies as shown in 

the Figures 8(𝑎2–𝑎3). During the propagation such initial pulses vary periodically by 

following certain breathing maps.
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Figure 8. (𝑎1–𝑎3) show the initial intensity profiles of Eq. (17) under the parametric choices 𝑘1𝐼 = 𝑙 =
0.025, 𝑘1𝑅 = 0.1 and 𝑑 = 𝜇 = 0.5. In this case an initial breathing profile can be switched into BB or 
DD or another breathing form by tuning the amplitude parameters 𝑘1𝑅 and 𝜏 appropriately as shown in 
(𝑏1–𝑏3).

3.3. Multibreather two-soliton with different collision scenarios

In order to study the interaction effects between two such periodically varying 

breather vector one-solitons, first we have derived the vector multibreather two-

soliton of Eq. (8) by using the mixed vector two-soliton solution of the Manakov 

model [11] in the transformation (9) as

𝑞1 = cos(𝜃∕2)𝑒𝑖Γ𝑧 𝜓
(1)

𝐷
− sin(𝜃∕2)𝑒−𝑖Γ𝑧 𝜓

(2)

𝐷
,

𝑞2 = sin(𝜃∕2)𝑒𝑖Γ𝑧 𝜓
(1)

𝐷
+ cos(𝜃∕2)𝑒−𝑖Γ𝑧 𝜓

(2)

𝐷
, (18)

where 𝜓 (1) = 𝜏𝑒(𝑖𝜓1)(1 −
2∑

𝑗,𝑘=1

𝜌𝑗

𝜌∗
𝑘

𝜇𝑗𝑘𝑒
𝜂𝑗+𝜂∗𝑘 + 𝜒 (1)), 𝜓 (2) =

2∑
𝑗=1

𝑒𝜂𝑗 +

2∑
𝑗=1

𝜈12𝜇1𝑗𝜇2𝑗𝑒
𝜂1+𝜂∗𝑗 +𝜂2 , 𝐷 = 1 +

2∑
𝑗,𝑘=1

𝜇𝑗𝑘𝑒
𝜂𝑗+𝜂∗𝑘 + 𝐹𝑒

𝜂1+𝜂∗1+𝜂2+𝜂
∗
2 , 𝜈𝑗𝑘 = −(𝑘𝑗 −

𝑘𝑘)2
[ |𝜏|2
𝜌𝑗𝜌𝑘

+ 𝑑

𝜇

]
, 𝜒 (1) = 𝜌1𝜌2

𝜌∗1𝜌
∗
2
𝐹𝑒

𝜂1+𝜂∗1+𝜂2+𝜂
∗
2 , 𝜇𝑗𝑘 =

[
(𝑘𝑗 + 𝑘∗

𝑘
)2
( |𝜏|2

𝜌𝑗𝜌
∗
𝑘

− 𝑑

𝜇

)]−1
, 

𝐹 = 𝜇11𝜇22|𝜇12𝜈12|2, 𝜂𝑗𝑅 = 𝑘𝑗𝑅𝑥 −2𝑑𝑘𝑗𝑅𝑘𝑗𝐼𝑧 +𝜂
(0)
𝑗𝑅
, 𝜂𝑗𝐼 = 𝑘𝑗𝐼𝑥 +(𝑑(𝑘2

𝑗𝑅
−𝑘2

𝑗𝐼
) −

𝜆)𝑧 + 𝜂
(0)
𝑗𝐼

, 𝜂(0)
𝑗

= 𝜂
(0)
𝑗𝑅

+ 𝑖𝜂
(0)
𝑗𝐼

, 𝑘𝑗 = 𝑘𝑗𝑅 + 𝑖𝑘𝑗𝐼 , 𝜌𝑗 = 𝑘𝑗 − 𝑖𝑙 for (𝑗 = 1, 2).

The asymptotic analysis reveals us that Eq. (18) defines two well separated multi-

breather vector one-solitons appearing before and after collisions respectively at the 

limits 𝑧 → +∞ and 𝑧 → −∞. These two-solitons at 𝑧 → ±∞ take the form (9)

with different parameters for pulse-width (𝑘𝑗𝑅) and velocity (𝑘𝑗𝐼 ) but with the 

same background field for the dark components in each colliding vector one-soliton. 
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Figure 9. Smooth collision dynamics of Eq. (18) under the parametric choices 𝜏 = 4.0, 𝑘1𝑅 = 0.75, 
𝑘2𝑅 = 0.57, 𝑙 = 0.06, 𝑑 = 𝜇 = 0.5 (a) 𝑘2𝐼 = −𝑘1𝐼 = 0.03 and (b) 𝑘1𝐼 = 0.08 and 𝑘2𝐼 = 0.03.

The collision does not affect any soliton parameters other than the phase-constant. 

Therefore our aim is to study the interaction effects between two such solitons 

with different velocities when they are packed closely by tuning the pulse-width 

parameters 𝑘𝑗𝑅 appropriately. As one expects collision dynamics of Eq. (18) appears 

as a head on collision as shown in Figure 9(a) if the sign of velocity parameter𝑘1𝐼 and 

that of 𝑘2𝐼 are different. Otherwise it looks like an overtaking collision as shown in 

Figure 9(b). Here other parameters don’t restrict the nature of appearance of collision 

dynamics. In the Figure 9 the collision is very smooth without any effects in the 

SDF colliding region. By taking the case corresponding to Figure 9(a) different 

interaction effects can be found in the colliding region by tuning pulse-width and 

velocity parameters as discussed below.

If we decrease the 𝑘1𝑅 value from 0.75 to 0.55, 𝑘2𝑅 value from 0.57 to 0.37 and |𝑘𝑗𝐼 | value from 0.03 to 0.01, then the beating effect (i.e., components of colliding 

solitons beat each other in the colliding region) introduced in the Figure 9(a) as 

shown in Figure 10(a). Without affecting the velocity parameters in the Figure 9(a), 

if we decrease the value of 𝑘1𝑅 from 0.75 to 0.55 and 𝑘2𝑅 from 0.57 to 0.50, 

then the jumping effect introduced in the colliding region of Figure 9(a) as shown 

in Figure 10(b). All these cases (corresponding to the Figures 9, 10) are having 

attractive collisions with the different interaction effects in the colliding regions. 

Is it able to change the nature of such collision? Yes, it is possible to change the 

nature of collision as a reflective collision. As an example in the Figure 9(a), we have 

introduced the reflection effect by setting △𝑘𝑅 = 0.02 as shown in Figure 11(a). 

In this case one can introduce the beating effect by increasing the velocity value 
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Figure 10. Attractive collision dynamics with (a) beating effect, (b) jumping effect.

Figure 11. Collision dynamics with (a) reflection effect, (b) beating effect.

from 0.03 to 0.15 as shown in Figure 11(b). If we closely pack two solitons with 

same velocity by taking 𝑘1𝑅 = 0.77, 𝑘2𝑅 = 0.70 and 𝑘1𝐼 = 𝑘2𝐼 = 0.00, then 

an additional breathing effect appears in the Figure 9(a) due to the effects of one 

on the other as shown in Figure 12(a). This effect disappears if we increase the 

initial separation distance as shown in Figure 12(b). Finally by selecting the suitable 

parametric values it is also possible to study the collision dynamics between breather 
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Figure 12. (a) Interaction effect between the two closely packed breather vector one-solitons with same 
velocities. (b) Suppressing such interaction effect by decreasing the △𝑘𝑅 value in order to increase the 
initial separation distance.

vector one-solitons with different breathing maps. As an example, in Figure 13(a) 

we have numerically demonstrated the collision dynamics between simple breather 

and complicated multibreather vector one-solitons under the parametric choices 𝜏 =
4.0, 𝑘1𝑅 = 0.55, 𝑘1𝐼 = −0.01, 𝑘2𝑅 = 0.37, 𝑘2𝐼 = 0.02, 𝑙 = 0.70 and 𝑑 = 𝜇 = 0.5. 

We have also demonstrated the collision dynamics between the two complicated 

multibreather vector one-solitons as shown in Figure 13(b) under the parametric 

choices 𝜏 = 4.0, 𝑘1𝑅 = 0.60, 𝑘1𝐼 = 0.02, 𝑘2𝑅 = 0.4, 𝑘2𝐼 = −0.02, 𝑙 = 0.20 and 𝑑 =
𝜇 = 0.5. Moreover the collision dynamics between two breather vector one-soliton 

solutions of the modified CNLS equation (15) with the negative nonlinear cross-

coupling can also be investigated by using the two-soliton solutions of the modified 

Manakov model [35, 49].

4. Conclusions

In conclusion, it is interesting to reveal that the DGB vector soliton of the Manakov 

model [11] exists in the parametric domain |𝜏|2|𝑝1|2 >
𝑑

𝜇
of the SDF region while its 

BGD vector soliton appears freely in the SF region. If we change the sign of the 

XPM, the resulting solution is a BD vector soliton in the parametric domain 𝑑
𝜇

>

|𝜏|2|𝑝1|2 of the SDF region. We have also defined the changes in these solutions due to 

the changes in the signs of 𝑑 and 𝜇. By influencing all such physically interesting 

solutions with the effects corresponding to the terms proportional to 𝜅 and 𝜌 one 
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Figure 13. (a) Collision between symmetric breather and multibreather. (b) Collision between 
multibreathers.

can generate multibreather vector soliton. Such soliton in this paper has freedom to 

control the number of soliton and antisoliton parts used to compose it. Moreover 

its breathing mechanism (or) breathing map and breathing length are tunable. One 

can switch this breathing mechanism from one kind to other kind. Moreover by 

suppressing the breathing effect one can generate the DD or BB or BD vector soliton 

or the amplified scalar soliton as shown in the Figures 1, 4 and 8. Moreover different 

interaction effects in between them are realized. Such effects can be suppressed or 

enhanced by using the soliton parameters. Because of such features we believe that 

this kind of study will further give impetus on the Lindner–Fedyanin system in the 

continuum limit, and find the potential applications in fiber coupler and also in BECs. 

Further the Manakov model and its modified forms with the coupling terms used for 

our studies are receiving continuous interest in the literature [42, 43, 44, 45, 46, 

47, 48, 49] due to their various potential applications as mentioned in the section 3.

The effects of loss and other possible XPM values, etc. [48, 52, 53] can also be 

investigated in somewhere else by using the obtained solution as an unperturbed 

part [33].
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